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Parameter space and function space

• Often we have a parametrized set of hypotheses {P✓ : ✓ 2 ⇥} ✓ M
• Seek to optimize an objective function of the form

L(✓) = `(P✓),

interested in P✓⇤ rather than ✓⇤

• We can use the steepest direction in M rather than ⇥

• We still need to decide how to define the geometry of M
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Unregularized Regularized

Discr. time Cts. time Discr. time Cts. time

Vanilla O(t�1) – linear –

Kakade linear linear
quadratic

linear
linear

Morimura – linear quadratic linear

� > 1 – O(t�
1

��1 ) quadratic linear

Table 1: Our work covers the bold results; previously shown were results for vanilla
[Mei et al., 2020, Mei et al., 2021], Kakade discrete time – regularized
[Cen et al., 2021] and unregularized [Khodadadian et al., 2021]
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actions

observations

Want to optimize the action selection mechanism (policy)
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Markov Decision Process

• S states

• A actions

• ↵ 2 �S⇥A

S
transition probabilities

• r 2 RS⇥A instantaneous reward

• ⇡ 2 �S

A
memoryless stochastic policy - the search variable

In this talk we focus on fully observable case; for POMDPs ⇡ = ⇡0 � �
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A policy ⇡ induces transition kernels P⇡ 2 �S⇥A

S⇥A
and p⇡ 2 �S

S

P⇡(s
0, a0|s, a) = ↵(s 0|s, a)⇡(a0|s 0) p⇡(s

0|s) =
X

a2A

↵(s 0|s, a)⇡(a|s)

St

At

St+1

At+1

St+2St

At

↵ ↵

⇡ ⇡

In this talk we focus on fully observable case; for POMDPs ⇡ = ⇡0 � �
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At each time step, the agent receives an instantaneous reward r(s, a) for
taking action a at state s. Want to optimize long-term reward:

Expected discounted reward

Rµ
� (⇡) := EP⇡,µ


(1� �)

1X

t=0

�tr(st , at)

�

Properties: Non-convex, rational function of ⇡

In this talk we focus on discounted reward; for mean reward � ! 1
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The reward can be written as

Rµ
� (⇡) =

X

s,a

r(s, a)⌘⇡,µ� (s, a) = hr , ⌘⇡,µ� iS⇥A,

where the expected discounted state-action frequency is

⌘⇡,µ� (s, a) := (1� �)
1X

t=0

�tP⇡,µ(st = s, at = a),

which can be interpreted as a discounted stationary distribution.

Observation: The optimization problem is linear in ⌘

Idea: Study the problem over ⌘ and the factorization

parameter
✓

7! policy
⇡

7! state-action frequency
⌘

7! reward
R
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For MDPs the feasible values of ⌘ form a polytope:

Proposition 1 (State-action polytope of MDPs, [Derman, 1970])

The set N of state-action frequencies is a polytope given by
N = L \�S⇥A, where

L =
�
⌘ 2 RS⇥A : `s(⌘) = 0 for all s 2 S, ⌘ � 0

 
, (1)

and `s(⌘) :=
P

a ⌘sa � �
P

s0,a0 ⌘s0a0↵(s|s 0, a0)� (1� �)µs .

Corollary 2
The MDP problem is a linear program over ⌘.
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�O

A

⇡ �S

A

�S,�
A

⌧⇡ �S⇥A

N µ,�
� N µ

�

⌘⇡,µ�

f����!
linear

 µ
�����!

rational

Observation policies State policies State-action frequencies

⇡ 7! R
rational

⌧ 7! R
rational

⌘ 7! R
linear

G. Montúfar 12/ 66



Assumption 1 (Positivity)

For every s 2 S and ⇡ 2 �O

A
, we assume that

P
a ⌘

⇡
sa > 0.

Note: This positivity assumption is satisfied e.g. if µ > 0, and is required
for global convergence of PG methods [Mei et al., 2020].

We will use this to have a di↵eomorphism between �S

A
and N :

Proposition 3 ([Müller and Montúfar, 2022])

Under Assumption 1, the mapping �S

A
! N ,! 7! ⌘ is rational and

bijective with rational inverse given by conditioning N ! �S

A
, ⌘ 7! !,

where !as =
⌘saP
a0 ⌘sa0

.
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Natural Gradients
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Parameter
space ⇥ ✓ Rp

Model
space MP

Reals R

`
L

Figure 1: Parametric model and factorizing objective.
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Riemannian gradients

• Steepest direction of L(✓) at ✓

min
d✓

L(✓ + d✓)

s.t. |d✓|2 = ✏2

• In a Riemannian manifold with metric G (✓) = (gij(✓)),

|d✓|2 =
X

ij

gij(✓)d✓id✓j

• Leads to d✓ / G (✓)�1rL(✓)
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Natural Gradients

For an objective function R , Natural Gradients take the form

✓k+1 = ✓k +�t G (✓k)
+rR(✓k),

where

• G (✓)ij = g(dP✓ei , dP✓ej) is a Gram matrix

• G (✓)+ pseudo inverse

• g Riemannian metric

• P(✓) representation of the parameter
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Example 4 (Fisher Natural Gradient)

• P(✓) 2 �X a probability distribution parametrized by ✓

• g Fisher information metric

gP(u, v) =
X

x

uxvx
Px

, for all u, v 2 TP�X

• G (✓)ij =
P

x
@i Px (✓)@jPx (✓)

Px (✓)
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Definition 5 (General natural gradient)

Consider an objective L : ⇥ ! R, where the parameter space ⇥ ✓ Rp an
open subset. Further, assume that the objective factorizes as L = ` � P ,
where P : ⇥ ! M is a model parametrization with M a Riemannian
manifold with Riemannian metric g , and ` : M ! R is a loss in model
space, as shown in Figure 1. For ✓ 2 ⇥ we define the Gram matrix

G (✓)ij := gP(✓)(dP✓ei , dP✓ej)

and call
rNL(✓) := G (✓)+rL(✓)

the natural gradient (NG) of L at ✓ with respect to the factorization
L = ` � P and the metric g .
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Best improvement direction

Theorem 6 (NG leads to steepest descent in model space)

Consider the settings of Definition 5, where M is a Riemannian manifold
with metric g . Let rNL(✓) := G (✓)+r✓L(✓) denote the natural gradient
with respect to this factorization. Then it holds that

dP✓(rNL(✓)) = ⇧T✓M⇥(r
g `(P(✓))).
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Choice of the geometry in model space
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Invariance axiomatic

Definition 7 (Invariance)

Given (E , g), (E 0, g 0) and an embedding f : E ! E 0, the metric is said to be
invariant if the embedding is an isometry, meaning that

gp(u, v) = g 0

f (p)(f⇤u, f⇤v), for all p 2 E and u, v 2 TpE ,

where f⇤ : TpE ! Tf (p)E 0 is the pushforward of f .

Probability distributions: [Čencov, 1982, Campbell, 1986, Ay et al., 2017]
characterize Fisher as the unique metric (up to scaling) that is invariant
with respect to congruent embeddings by Markov mappings.

Conditional probability distributions: Product of Fisher metric satisfies
invariance properties [Lebanon, 2005, Montúfar et al., 2014];
nevertheless, choice less clear than on the simplex.
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Hessian geometries

Idea: Select a metric based on the optimization problem at hand.
If the objective ` : M ! R has a positive definite Hessian at every point, it
induces a Riemannian metric via

gp(v ,w) = v>r2`(p)w ,

in local coordinates, that we call the Hessian geometry;
see [Amari and Cichocki, 2010, Shima, 2007].
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Example 8 (Hessian geometries)

The following Riemannian geometries are induced by strictly convex
functions.

1. Euclidean geometry: The Euclidean geometry on Rd is induced by the
convex function x 7! 1

2

P
i x

2
i .

2. Fisher geometry: The Fisher metric on Rd
>0 is induced by the negative

entropy x 7!
P

i xi log(xi ).

3. Itakura-Saito: The logarithmic barrier function x 7!
P

i log(xi ) of the
positive cone Rd

>0 yields the Itakura-Saito metric (see the next item).
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4. �-geometries: All of the above examples can be interpreted as special
cases of a parametric family of Hessian metrics. Let

��(x) :=

8
><

>:

P
i xi log(xi ) if � = 1

�
P

i log(xi ) if � = 2
1

(2��)(1��)

P
x2��
i otherwise

(2)

Then the resulting Riemannian metric on Rd for � 2 (�1, 0] and on
Rd
>0 for � 2 (0,1) is given by

g�
x (v ,w) =

X

i

viwi

x�i
. (3)

This recovers the Euclidean geometry for � = 0, the Fisher metric for
� = 1, and the Itakura-Saito metric for � = 2.
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5. Conditional entropy: Consider the conditional entropy

�C (µ) := H(µ|µX ) = H(µ)� H(µX ), (4)

which is convex on �X⇥Y .
The Hessian of the conditional entropy is given by

@(s,a)@(s0,a0)�C (µ) = �xx 0
�
�yy 0µ(x , y)�1 � µX (x)

�1
�

(5)

This is a Riemannian metric on the interior of
{µ 2 �X⇥X : µX = ⌫(µY |X )}, for a smooth ⌫ : int(�X

Y
) ! int(�X ).

Indeed, it is the pull back of the Riemannian metric

g : T�X

Y ⇥ T�X

Y ! R, gµ(·|·)(v ,w) :=
X

x

⌫(x)
X

y

v(x , y)w(x , y)

µ(y |x) .

G. Montúfar 27/ 66



Natural Policy Gradients
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Softmax policy parametrization
The tabular softmax parametrization is given by

⇡✓(a|s) :=
e✓saP
a0 e

✓sa0
for all a 2 A, s 2 S, for ✓ 2 RS⇥A. (6)

Definition 9 (Regular policy parametrization)

We call a policy parametrization Rp ! int(�S

A
); ✓ 7! ⇡✓ regular if it is

di↵erentiable and satisfies

span{@✓i⇡✓ : i = 1, . . . , p} = T⇡✓�
S

A for every ✓ 2 Rp.

This assumes an unconstrained parameter, can be overparametrized.
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Policy Gradient Theorem

Theorem 10 (Policy gradient theorem)

Consider an MDP (S,A,↵, r), � 2 [0, 1) and a parametrized policy class.
It holds that

@✓iR(✓) =
X

s

⇢✓(s)
X

a

@✓i⇡✓(a|s)Q
⇡✓(s, a)

=
X

s,a

⌘✓(s, a)@✓i log(⇡✓(a|s))Q
⇡✓(s, a),

where Q⇡ := (I � �P⇡)�1r 2 RS⇥A is the state-action value function.
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Kakade’s NPG
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Definition 11 (Kakade’s NPG and geometry in policy space)

We refer to the natural gradient rKR(✓) := GK (✓)+r✓R(⇡✓) as Kakade’s
natural policy gradient (K-NPG), where GK is defined by

GK (✓)ij =
X

s

⇢✓(s)
X

a

@✓i⇡✓(a|s)@✓j⇡✓(a|s)
⇡✓(a|s)

. (7)

Hence, Kakade’s NPG is the NPG induced by the factorization
✓ 7! ⇡✓ 7! R(✓) and the Riemannian metric on int(�S

A
) given by

gK
⇡ (v ,w) :=

X

s

⇢⇡(s)
X

a

v(s, a)w(s, a)

⇡(a|s) for all v ,w 2 T⇡�
S

A. (8)

[Kakade, 2001]
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Theorem 12 (Kakade’s geometry as cond. entropy Hessian geometry)

Consider an MDP (S,A,↵) and fix µ 2 �S and � 2 (0, 1) such that
Assumption 1 holds. Then, Kakade’s geometry on �S

A
is the pull back of

the Hessian geometry induced by the conditional entropy on the
state-action polytope N ✓ �S⇥A along ⇡ 7! ⌘⇡.

In particular, K-NPG is the NPG induced by factorization ✓ 7! ⌘✓ 7! R(✓)
with respect to the conditional entropy Hessian geometry, i.e.,

GK (✓)ij =
X

s,a

@✓i⌘✓(s, a)@✓j⌘✓(s, a)

⌘✓(s, a)
�
X

s

@✓i⇢✓(s)@✓j⇢✓(s)

⇢✓(s)
. (9)
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K-NPG is known to converge at a locally quadratic rate under conditional
entropy regularization [Cen et al., 2021], which in policy space is

 (⇡) =
X

s

⇢⇡(s)
X

a

⇡(a|s) log(⇡(a|s)) =
X

s

⇢⇡(s)H(⇡(·|s)).

However Kakade’s geometry in policy space gK is not the Hessian
geometry induced by  in policy space, which would take the form

r2 (⇡) =
X

s

⇢⇡(s)r2H(⇡(·|s)) +
X

s

H(⇡(·|s))r2⇢⇡(s)

+
X

s

(rH(·|s)>r⇢⇡(s) +rH(·|s)r⇢⇡(s)>).

Kakade’s metric only considers the first term; see (8).
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Morimura’s NPG
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Definition 13 (Morimura’s NPG)

We refer to the natural gradient rMR(✓) := GM(✓)+r✓R(⇡✓) as
Morimura’s natural policy gradient (M-NPG), where GM is given by

GM(✓)ij =
X

s,a

@✓i log(⌘✓(s, a))@✓j log(⌘✓(s, a))⌘✓(s, a). (10)

Hence, Morimura’s NPG is the NPG induced by the factorization
✓ 7! ⌘✓ 7! R(✓) and the Fisher metric on int(�S⇥A).

[Morimura et al., 2008]
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Comparison of Kakade and Morimura
By (9) the Gram matrix proposed by Morimura and co-authors and the
Gram matrix proposed by Kakade are related to each other by

GK (✓) = GM(✓)� F⇢(✓),

where F⇢(✓)ij =
P

s ⇢✓(s)@✓i log(⇢✓(s))@✓j log(⇢✓(s)) denotes the Fisher
information matrix of the state distributions.
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General Hessian NPG
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Definition 14 (Hessian NPG)

We refer to the natural gradient r�R(✓) := G�(✓)+r✓R(⇡✓) as Hessian
NPG with respect to � or �-natural policy gradient (�-NPG).

In particular:

Definition 15 (�-NPG)

We refer to the natural gradient r�R(✓) := G�(✓)+r✓R(⇡✓) as the
�-natural policy gradient (�-NPG). Hence �-NPG is the NPG induced by
factorization ✓ 7! ⌘✓ 7! R(✓) and metric g� on int(�S⇥A) defined in (3).

For � = 1 we recover the Fisher geometry and hence M-NPG; for � = 2
the Itakura-Saito metric; and for � = 0 the Euclidean geometry.

Later, we show that the Hessian gradient flows exist globally for � 2 [1,1)
and provide convergence rates depending on �.
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Reduction to state-action space

Proposition 16 (Evolution in state-action space)

Consider an MDP (S,A,↵), a Riemannian metric g on int(N ) = RS⇥A

>0
and an di↵erentiable objective function R : int(�S⇥A) ! R. Consider a
regular policy parametrization and the objective R(✓) := R(⌘✓) and a
solution ✓ : [0,T ] ! ⇥ = RS⇥A of the NPG flow

@t✓(t) = rNR(✓(t)) = G (✓(t))+rR(✓(t)), (11)

where G (✓)ij = g⌘(@✓i⌘✓, @✓j⌘✓) and G (✓)+ denotes a pseudo inverse of
G (✓). Setting ⌘(t) := ⌘✓(t) we have that ⌘ : [0,T ] ! �S⇥A is the gradient
flow with respect to the metric g |N and the objective R, i.e., solves

@t⌘(t) = rg |NR(⌘(t)) = ⇧g
TL

(rgR(⌘(t))), (12)

where ⇧g
TL

is the g -orthogonal projection onto TL with L defined in (1).
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Convergence of unregularized Hessian NPG flows
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Setting 17

• Objective R : RS⇥A ! R [ {�1} that is finite, di↵erentiable and
concave on RS⇥A

>0 and cts on dom(R) = {⌘ 2 RS⇥A : R(⌘) 2 R}.
• Function � : RS⇥A ! R [ {+1}, finite and C 2 on RS⇥A

>0 , with
r2�(⌘) positive definite on T⌘N = TL ✓ RS⇥A for ⌘ 2 int(N ).

• Solution ⌘ : [0,T ) ! N of the Hessian gradient flow

@t⌘(t) = ⇧TL(r2�(⌘(t))�1rR(⌘(t))). (13)

• We denote1 R⇤ := sup⌘2N R(⌘) < 1 and by ⌘⇤ 2 N , we denote a
maximizer – if one exists – of R over N .

• We denote the policies corresponding to ⌘0 and ⌘⇤ by ⇡0 and ⇡⇤.

1Note that R is bounded over the bounded set N as a concave function.
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Sublinear rates for general case

Lemma 18 (Convergence of Hessian NPG flows)

Consider Setting 17 and assume there exists a solution ⌘ : [0,T ) ! int(N )
of the NPG flow (13) with initial condition ⌘(0) = ⌘0. Then for any
⌘0 2 N and t 2 [0,T ) it holds that

R(⌘0)�R(⌘(t))  D�(⌘
0, ⌘0)t

�1, (14)

where D� denotes the Bregman divergence of �.

In particular, R(⌘(t)) ! R⇤ as T ! 1. Further, convergence happens at
a rate O(t�1) if there is a maximizer ⌘⇤ 2 N of R with �(⌘⇤) < 1.

Similar to [Alvarez et al., 2004, Prop. 4.4]

Thus proving convergence of NPG reduces to ensuring well-posedness
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To induce Hessian geometries that prevent finite-time hitting boundary:

Definition 19 (Legendre type functions)

We call � : RS⇥A ! R [ {+1} a Legendre type function if:

1. Domain: It holds that RS⇥A

>0 ✓ dom(�) ✓ RS⇥A

�0 , where

dom(�) = {⌘ 2 RS⇥A : �(⌘) < 1}.
2. Smoothness and convexity: We assume � to be continuous on dom(�)

and twice continuous di↵erentiable on RS⇥A

>0 and such that r2�(⌘) is
positive definite on T⌘N = TL ✓ RS⇥A for every ⌘ 2 int(N ).

3. Gradient blowup at boundary: For any (⌘k) ✓ int(N ) with
⌘k ! ⌘ 2 @N we have kr�(⌘k)k ! 1.

Slight generalization of [Alvarez et al., 2004] important for our analysis
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Example 20
Legendre-type functions cover the functions inducing K-NPG and M-NPG
via their Hessian geometries.

1. The functions �� in (2) that define the �-NPG are of Legendre-type
for � 2 [1,1). This includes the Fisher geometry (M-NPG) for � = 1,
but excludes the Euclidean geometry, which corresponds to � = 0.

2. The conditional entropy �C in (4) is a Legendre-type function. Its
Hessian geometry induces the K-NPG.

In this case the gradient blowup holds on the boundary of N but not
on the boundary of �S⇥A or even RS⇥A

�0 .
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Theorem 21 (Conv. of K-NPG flow for unregularized reward)

Consider Setting 17 with � = �C the conditional entropy, let R(⌘) = hr , ⌘i
denote the unregularized reward, and fix an ⌘0 2 int(N ). Then there exists
a unique global solution ⌘ : [0,1) ! int(N ) of K-NPG flow with initial
condition ⌘(0) = ⌘0 and it holds that

R⇤ �R(⌘(t))  t�1D�C (⌘
⇤, ⌘0) = t�1

X

s

⇢⇤(s)DKL(⇡
⇤(·|s),⇡0(·|s)),

where D�C denotes the conditional relative entropy. In particular, we have
dist(⌘(t), S) 2 O(t�1), where S = {⌘ 2 N : hr , ⌘i = R⇤} denotes the
solution set and dist denotes the Euclidean distance.
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Theorem 22 (Convergence of �-NPG flow for unregularized reward)

Consider Setting 17 with � = �� for some � 2 [1,1) being defined in (2).
Denote the unregularized reward by R(⌘) = hr , ⌘i and fix an element
⌘0 2 int(N ). Then there exists a unique global solution
⌘ : [0,1) ! int(N ) of the Hessian NPG flow (13) with inital condition
⌘(0) = ⌘0 and it holds that R⇤ �R(⌘(t)) = O(f�(t)) as t ! 1, where

f�(t) :=

8
><

>:

t�1 for � 2 [1, 2)

log(t)t�1 for � = 2

t��3 for � 2 (2,1).

In particular, we have dist(⌘(t), S) 2 O(f�(t)), where
S = {⌘ 2 N : hr , ⌘i = R⇤} denotes the solution set and dist denotes the
Euclidean distance. This result covers M-NPG flow as special case � = 1.
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Remark 23

• Theorem 22 and Theorem 21 show global convergence of �-NPG and
K-NPG flows to a maximizer of the unregularized problem.

This is possible because one works not with a regularized objective but
rather with geometry from regularization and original objective.

• For � < 1 the flow may reach a face of the feasible set in finite time;
see Figure 3. For � � 3 Theorem 22 is uninformative.

• One can show that the trajectory converges to the maximizer that is
closest to ⌘0 wrt the Bregman divergence [Alvarez et al., 2004].
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Faster rates for � 2 [1, 2) and K-NPG

Lemma 24 (Convergence rates for gradient flow trajectories)

Consider Setting 17 and assume that there is a global solution
⌘ : [0,1) ! int(N ) of the Hessian gradient flow (13). Assume that there
is ⌘⇤ 2 N such that �(⌘⇤) < +1 as well as a neighborhood N of ⌘⇤ in N
and ! 2 (0,1) and ⌧ 2 [1,1) such that

R(⌘⇤)�R(⌘) � !D�(⌘
⇤, ⌘)⌧ for all ⌘ 2 N. (15)

Then there is a constant c > 0 such that

1. if ⌧ = 1, then D�(⌘⇤, ⌘(t))  ce�!t ,

2. if ⌧ > 1, then D�(⌘⇤, ⌘(t))  ct�1/(⌧�1).

Similar to [Alvarez et al., 2004, Prop. 4.9] but relaxing assumptions.

Thus can get faster NPG rates by ensuring (15); a form of strong convexity.
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Theorem 25 (Linear convergence of unregularized K-NPG flow)

Consider Setting 17, where � = �C is the conditional entropy defined
in (4) and assume that there is a unique maximizer ⌘⇤ of the unregularized
reward R. Then R⇤ �R(⌘(t)) = O(e�ct) for some c > 0.
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Theorem 26 (Linear convergence of unregularized M-NPG flow /
improved rates for �-NPG flow)

Consider Setting 17, where � = �� for some � 2 [1, 2) as defined in (2),
and assume that there is a unique maximizer ⌘⇤ of the unregularized
reward R. Denote ⌘ : [0,1) ! int(N ) the solution of the �-NPG flow.
Then R⇤ �R(⌘(t)) 2 O(g�(t)), where

g�(t) =

(
e�ct if � = 1

t�1/(��1) if � 2 (1, 2),

for some c > 0.
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Numerical examples I

s1 s2

a1

a1

r = +2, a2 a2, r = +1

Figure 2: MDP example transition graph and reward.
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Numerical examples II

Figure 3: State-action trajectories for di↵erent PG methods: vanilla PG, K-NPG
and �-NPG, where M-NPG corresponds to � = 1;
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Numerical examples III
⇡
(a

1
|s
2
)

⇡
(a

1
|s
2
)

⇡(a1|s1) ⇡(a1|s1) ⇡(a1|s1) ⇡(a1|s1) ⇡(a1|s1)

Figure 4: Heatmap of ⇡ 7! R(⇡) and trajectories of individual methods over
�S

A
⇠= [0, 1]2; maximizer ⇡⇤ is at the upper left corner.
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Numerical examples IV
R
⇤
�

R
(✓

(t
))

R
⇤
�

R
(✓

(t
))

t t t t t

Figure 5: Optimality gap R⇤ � R(✓(t)); vanilla PG and � > 1 in log-log as we
expect decay t�1 and t�1/(��1) (shown dashed); K-NPG and M-NPG in log-y as
we expect linear convergence; for � < 1 we observe finite time convergence.

G. Montúfar 56/ 66



Linear convergence of regularized Hessian NPG flows

G. Montúfar 57/ 66



Theorem 27 (Linear convergence for regularized objective)

Consider Setting 17, let � be a Legendre-type function, denote the
regularized reward by R�(⌘) = hr , ⌘i � ��(⌘) for some � > 0, and assume
that the global maximizer ⌘⇤� of R� over N lies in the interior int(N ). Fix
an ⌘0 2 int(N ) and assume ⌘ : [0,1) ! int(N ) solves the NPG flow wrt
R� and the Hessian geometry induced by �.

Then, for any c 2 (0,�) there exists K > 0 st D�(⌘⇤�, ⌘(t))  Ke�ct .

In particular, for any  2 (c ,1) this implies R⇤

� �R�(⌘(t))  �Ke�ct ,
where c denotes the condition number of r2�(⌘⇤).

Using Lemma 24 and Lemma 31.

Condition ⌘⇤� 2 int(N ) is satisfied if gradient blow-up in Definition 19 is
slightly strengthened; Remark 32.
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Corollary 28 (Linear convergence of regularized K-NPG flow)

Assume that ⌘ : [0,1) ! int(N ) solves the NPG flow with respect to the
regularized reward R� and the Hessian geometry induced by �. For any
! 2 (0,�) there exists a constant K > 0 such that D�(⌘⇤, ⌘(t))  Ke�!t .
In particular, for any  2 (c ,1) this implies R⇤

� �R�(⌘(t))  Ke�!t ,
where c denotes the condition number of r2�C (⌘⇤).
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Corollary 29 (Linear convergence for regularized �-NPG flow)

Consider Setting 17 with � = �� for some � 2 [1,1) and denote the
regularized reward by R�(⌘) = hr , ⌘i � ��(⌘) and fix an element
⌘0 2 int(N ). Assume that ⌘ : [0,1) ! int(N ) solves the natural policy
gradient flow with respect to the regularized reward R� and the Hessian
geometry induced by �. For any ! 2 (0,�) there exists a constant K > 0
such that D�(⌘⇤, ⌘(t))  Ke�!t . In particular, for any  2 ((⌘⇤)�,1)

this implies R⇤

� �R�(⌘(t))  Ke�!t , where (⌘⇤) = max ⌘⇤

min ⌘⇤
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Theorem 30 (Locally quadratic convergence of reg. NPGs)

Consider a real-valued function � : RS⇥A ! R [ {+1}, which we assume
to be finite and twice continuously di↵erentiable on RS⇥A

>0 and such that
r2�(⌘) is pos. def. on T⌘N = TL ✓ RS⇥A for every ⌘ 2 int(N ).
Further, consider a regular policy parametrization and the regularized
reward R�(✓) := R(✓) + ��(⌘✓) and assume that ⌘⇤ 2 int(N ), i.e., the
maximizer lies in the interior of the state-action polytope. Consider the
NPG induced by the Hessian geometry of �, i.e.,

✓k+1 = ✓k +�tG (✓k)
+rR�(✓k),

with step size �t = �, where G (✓k)+ denotes the Moore-Penrose inverse.
Assume that R�(✓k) ! R⇤

� for k ! 1. Then ✓k ! ✓⇤ at a (locally)
quadratic rate and hence R�(✓k) ! R⇤

� at a (locally) quadratic rate.

Using inexact Newton method Theorem 33 and a corresponding description
of reg. NPG by Lemma 34 and 35.
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Unregularized Regularized

Discr. time Cts. time Discr. time Cts. time

Vanilla O(t�1) – linear –

Kakade linear linear
quadratic (�t = �)

linear (�t  �)
linear

Morimura – linear quadratic (�t = �) linear

� > 1 – O(t�
1

��1 ) quadratic (�t = �) linear

Table 2: Our work covers the bold results; previously shown were results for vanilla
[Mei et al., 2020, Mei et al., 2021], Kakade discrete time – regularized
[Cen et al., 2021] and unregularized [Khodadadian et al., 2021]
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Why is the analysis easier in state-action space?

• Problem is strongly convex in state-action space, whereas in policy
and parameter space it is non-convex.

• Further, in policy space the corresponding Riemannian metric might
not be the Hessian metric of the regularizer.

• In the parameter ✓, the NPG algorithm can be perceived as a
generalized Gauss-Newton method; however, the reward function is
non-convex in parameter space.

• For overparametrized models, dim(⇥) > dim(�S

A
), Hessian r2R(✓⇤)

not positive definite, which complicates analysis in parameter space.
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Conclusion

• Study of a general class of natural policy gradient methods arising
from Hessian geometries in state-action space.

• Linear convergence for Kakade’s and Morimura’s NPG for
unregularized reward.

• Locally quadratic convergence for regularized NPG with respect to the
Hessian geometry of the regularizer.

Outlook

• General parametric policy classes and partially observable MDPs.

• Develop NPG methods without plateaus.

• Study NPG methods in state-action space with estimation.
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