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Overview

Topic: Riemannian metrics on 7-manifolds with holonomy group G2

Use a construction starting from complex algebraic geometry to exhibit
examples with interesting topological and geometric properties, such as
disconnected moduli space of holonomy G2 metrics.
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1. Context
Berger’s list

The holonomy group of a Riemannian n-manifold is the subgroup of O(n)
generated by parallel transport around closed loops.

Theorem (Berger)

The only possible holonomy groups of complete, simply connected
Riemannian manifolds that are neither a product nor a symmetric space are

Holonomy group dim Parallel spinors Type

SO(n) n generic

U(k) 2k Kähler

SU(k) 2k 2 Calabi-Yau (Ricci-flat)

Sp(`) 4` `+ 1 hyper-Kähler (Ricci-flat)

Sp(`) · Sp(1) 4` Quat. Kähler (Einstein)

G2 7 1 exceptional (Ricci-flat)

Spin(7) 8 1 exceptional (Ricci-flat)



Holonomy G2 and G2-structures

G2 = Aut(O), automorphisms of the 8-dimensional octonion algebra.

G2 ⊂ SO(7) can also be defined as the stabiliser of a definite 3-form

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 ∈ Λ3(R7)∗.

Therefore G2-structure on M7 ↔ ϕ ∈ Ω3(M) pointwise equivalent to ϕ0

(an open condition on ϕ).

A G2-structure induces a metric. A metric has Hol ⊆ G2 if and only if it is
induced by a G2-structure that is torsion-free, ie satisfies

dϕ = d∗ϕ = 0.

In particular, ϕ represents a de Rham cohomology class

[ϕ] ∈ H3(M).



The G2 moduli space

Let M be a closed 7-manifold. The moduli space

M = {torsion-free G2-structures on M}/Diff(M)

is a locally finite quotient of the “Teichmüller space”

M0 = {torsion-free G2-structures on M}/(id component of Diff(M))

Theorem (Joyce)

ϕ→ [ϕ] induces a local homeomorphism M0 → H3(M).

So M is an orbifold, but little is understood about its global properties.

Existing constructions of closed G2-manifolds to some extent map out
neighbourhood of boundary components whose points correspond to singular
or otherwise degenerate G2-manifolds.



Constructions of closed G2-manifolds

Closed G2-manifolds cannot admit continuous symmetries (because Ric = 0).
All known examples come from gluing constructions.

� Joyce (1995) Orbifold construction
Resolve singularities of T 7/Γ using QALE Calabi-Yau spaces.
Many examples, topology slightly complicated to pin down.

� Kovalev (2003), Corti-Haskins-N-Pacini (2014)
Twisted connected sums: glue asymptotically cylindrical Calabi-Yaus×S1.
Many examples, topology computable and classification results often
applicable, but limited variation.

� Joyce-Karigiannis (2018)
Resolve singularities of (CY 3 × S1)/Z2.
Not yet any new topological types.

� Crowley-Goette-N (2018) Extra-twisted connected sums
Glue quotients of ACyl CY ×S1 by finite groups.
Limited (thousands?) but quite varied supply of examples.



2. Main results
Some interesting phenomena

� There exist smooth closed 7-manifolds M1, M2 both admitting holonomy
G2 metrics such that M1 is homeomorphic but not diffeomorphic to M2.

� There exist smooth closed 7-manifolds M that admit two holonomy G2

metrics such that the associated torsion-free G2-structures are not
homotopic (ie they cannot be connected by any path of G2-structures,
torsion-free or otherwise), even after applying a diffeomorphism of M to
one of the G2-structures.
In particular, the G2 moduli space is disconnected.

� There exist smooth closed 7-manifolds M with two holonomy G2 metrics
in different components of the G2-moduli space, such that the associated
torsion-free G2-structures are nevertheless homotopic.

Ingredients

� Invariants to distinguish

� Supply of examples

� Classification results for 2-connected 7-manifolds



Invariants

For a 2-connected 7-manifold M with H4(M;Z) torsion-free, the “obvious”
algebraic-topological invariants boil down to

� b3(M) = b4(M)

� The greatest divisor d of the first Pontrjagin class, ie p1(M) = dx for a
primitive x ∈ H4(M;Z). (Set d = 0 if p1(M) = 0, but that never
happens for G2-manifolds.)

The more subtle invariants we need are

� Generalisation of the Eells-Kuiper invariant µ(M) ∈ Z/N,
where N is the greatest common divisor of 28 and 1

4 lcm(8, d).

� ν(ϕ) ∈ Z/48 and ξ ∈ Z invariant under both diffeomorphisms and
homotopies of a G2-structure ϕ

� ν̄(ϕ) ∈ Z, a refinement of ν in the sense that ν(ϕ) is the mod 48
reduction of ν̄(ϕ) + 24 for any torsion-free G2-structure ϕ.



Classification theorems

We can generate many examples of closed G2-manifolds using the twisted
connected sum and extra-twisted connected sum constructions, and
compute many of their topological invariants. In many cases one can
arrange that they are 2-connected, and apply the following classification
theorems (simplified form when H4 is torsion-free).

Theorem (Wilkens, Crowley-N)

Let M1 and M2 be closed smooth 2-connected manifolds with H4(Mi )
torsion-free, and let ϕi be a G2-structure on Mi . Then

� M1 is homeomorphic to M2 if and only if b3(M1) = b3(M2) and
d(M1) = d(M2).

� M1 is diffeomorphic to M2 if and only if in addition µ(M1) = µ(M2)

(vacuous if the numerator of d(Mi )
8 is coprime to 28).

� There is a diffeomorphism f : M1 → M2 such that f ∗ϕ2 is homotopic to
ϕ1 if in addition ν(ϕ1) = ν(ϕ2) and ξ(ϕ1) = ξ(ϕ2).
(The condition on ξ is vacuous if d(Mi ) divides 224.)



3. Twisted connected sums
Basic outline

Kovalev (2003), Corti-Haskins-N-Pacini (2014).
Ingredients:

� Closed simply-connected Kähler 3-folds Z+, Z−
� Σ± ⊂ Z± anticanonical K3 divisors ([Σ±] = c1(Z±)) with trivial normal

bundle

� r : Σ+ → Σ− diffeomorphism

Let V± := Z±\ tubular neighbourhood Σ± ×∆; so ∂V± = Σ± × S1.
Form simply-connected M7 by gluing boundaries of V+ × S1 to V− × S1 by

Σ+ × S1 × S1 → Σ− × S1 × S1,

(x , u, v) 7→ (r(x), v , u)

Tian-Yau, Haskins-Hein-N:
V± admits asymptotically cylindrical Calabi-Yau metrics

 metrics on V± × S1 with holonomy SU(3) ⊂ G2.
For carefully chosen r, these metrics glue to a holonomy G2 metric on M.



Diagram of twisted connected sum

V−

V+

×

×

M

V+, V− asymptotically cylindrical Calabi-Yau threefolds
with ends asymptotic to Σ± × S1 × R, where Σ± are K3 surfaces.

Truncate ends and glue V− × S1 to V+ × S1, flipping the circles.

For large neck length, the G2-structure on M obtained by gluing has dϕ = 0
and d∗ϕ “small”, and can be perturbed to a torsion-free one.



Building blocks from Fano 3-folds

Example

Let Z be the blow-up of P3 in the complete intersection C of two quartic
K3s (or in other words a smooth base locus of an anticanonical pencil).
Let Σ ⊂ Z be the proper transform of one of those quartics.

The blow-up ensures that the normal bundle of Σ in Z is trivial, so that
Z \ Σ admits asymptotically cylindrical Calabi-Yau metrics.

Moreover, clearly any quartic K3 Σ (ie any smooth non-hyperelliptic K3 with
ample class of degree 4) appears in a “building block” (Z ,Σ) of this form.

One can construct building blocks like this starting from all but 2 of the 105
families in the classification of smooth Fano 3-folds, and from thousands of
weak Fano 3-folds.

But to apply the construction, we in addition need appropriate
diffeomorphisms r : Σ+ → Σ− for pairs of such building blocks.



Hyper-Kähler rotations

The Calabi-Yau structure on V can be encoded in terms of a pair (Ω, ω),
where ω is the Kähler form, and Ω is a holomorphic 3-form.
Along the cylindrical end R× S1 × Σ, they can be written as

ω ∼ ωI + dt ∧ du, Ω ∼ (du − idt) ∧ (ωJ + iωK ),

where u is the S1 coordinate and (ωI , ωJ , ωK ) is a “hyper-Kähler triple”.

The torsion-free G2-structure ϕ on V × S1 is defined by ϕ = dv ∧ω+ Re Ω ,
for v the “external” S1 coordinate.
For a pair of ACyl Calabi-Yau manifolds (V±, ω±,Ω±), the condition that

Σ+ × S1 × S1 × R→ Σ− × S1 × S1 × R, (x , u, v , t) 7→ (r(x), v , u,−t)

identifies the asymptotic limits of the G2-structures on V+ × S1 and
V− × S1 reduces to

r∗ωI = ωJ , r∗ωJ = ωI , r∗ωK = −ωK .

Call such r “hyper-Kähler rotations”.



4. The matching problem
Set-up

In practice, it is fruitful to ask:

Given two sets Z+ and Z− of building blocks, can we find some
(Z+,Σ+) ∈ Z+ and (Z−,Σ−) ∈ Z− such that V± := Z± \ Σ± admit ACyl
Calabi-Yau structures, and there is a hyper-Kähler rotation r : Σ+ → Σ−?

For control on the topology of the resulting G2-manifold we need

� all elements of Z± to have same topology (eg Z± a deformation type)

� to prescribe the action r∗ : H2(Σ−;Z)→ H2(Σ+;Z).

In particular, all (Z±,Σ±) ∈ Z± should have the same “polarising lattice”

N± := Im(H2(Z±;Z )→ H2(Σ±;Z),

and to eg apply Mayer-Vietoris we need to know N+ ∩ r∗N−.

Other significance of N±: always N± ⊆ Pic Σ± := H2(Σ±;Z) ∩ H1,1(Σ±),
giving an a priori constraint on what K3 surfaces can appear in Z±.



Configurations of polarising lattices

Given blocks (Z±,Σ±) and an isomorphism F : H2(Σ+;Z)→ H2(Σ−;Z),
we can identify both H2(Σ+;Z) and H2(Σ−;Z) with a fixed copy L of the
K3 lattice (ie unimodular lattice of signature (3, 19)) in a compatible way.

This way we obtain a pair of embeddings N+,N− ↪→ L, defined up to
simultaneous action of isometry group O(L) on both embeddings.

All topological invariants we can compute for twisted connected sums
depend only on data about the two blocks and the configuration, so we
reformulate the matching problem as:

Given two sets Z+ and Z− of blocks, which configurations N+,N− ↪→ L of
their polarising lattices are realised by hyper-Kähler rotations?

Nikulin
If the sum of images N+ + N− is primitive in L (ie no cotorsion) and has
rank ≤ 11, then it is determined up to O(L) by the form on N+ + N−.

Most configurations we care about are described simply
by a form on N+ ⊕ N−.

(
N+ AT

A N−

)



Non-metric translation in terms of periods

Given a configuration N+,N− ↪→ L of a pair of blocks (Z±,Σ±), in L⊗ R
we have distinguished
� period 2-planes Π±, spanned by real/imag parts of holomorphic 2-form
� open cones K± ⊂ N± ⊗ R, the images of the Kähler cones of Z±

For the configuration to be realised by a hyper-Kähler rotation r of the
asymptotic limits of some ACyl Calabi-Yau structures on V± := Z± \Σ±, we
must have

[ωI
+] = [ωJ

−] ∈ K+∩Π−, [ωI
+] = [ωJ

−] ∈ Π+∩K−, [ωK
+ ] = −[ωK

−] ∈ Π+∩Π−.

Proposition

If (Z±,Σ±) are building blocks and r : Σ+ → Σ− is a diffeomorphism such
that K+ ∩ Π−, Π+ ∩ K− and Π+ ∩ Π− are non-empty, then V± := Z± \ Σ±
admit ACyl Calabi-Yau structures so that r is a hyper-Kähler rotation.

Proof.
Calabi-Yau theorem allows to realise any Kähler class by Ricci-flat
+ Torelli theorem



Genericity

Given a configuration N+,N− ↪→ L, let

� N ′− ⊆ N− the orthogonal complement to N+, and

� Λ+ ⊆ N+ + N− the orthogonal complement to N ′−, so

N+ ⊆ Λ+ ⊂ N+ + N− ⊂ L.

The period Π± ∼= H2,0(Σ±) is always orthogonal to N± ⊂ H1,1(Σ±;R).
If there is a hyper-Kähler rotation r with the given configuration, then

[ωJ
+] ∈ Π+ ∩ K− ⊂ N ′− and [ωK

+ ] ∈ Π+ ∩ Π− ⊂ (N+ + N−)⊥

are both orthogonal to Λ+. Thus Λ+ ⊆ Pic Σ+.

Punchline: To find a matching among Z+ and Z− with given configuration,
there must be at least some (Z±,Σ±) ∈ Z± with Λ± ⊆ Pic Σ±.

Approximate converse: if a generic K3 Σ± with Λ± ⊆ Pic Σ± appears
in Z±, then matchings exist.



Mass-production vs hand-crafting

Theorem (Beauville, Corti-Haskins-N-Pacini)

Let Y be a smooth Fano 3-fold, Σ ⊂ Y an anticanonical K3 divisor, and let
N be the image of H2(Y ;Z) in H2(Σ;Z). Then a generic K3 Σ′ with
N ⊆ Pic Σ′ embeds an anticanonical K3 divisor in a deformation of Y .
Same holds for smooth “semi-Fano” 3-folds.

So for configurations with Λ± = N±, any sets of blocks produced by blowing
up semi-Fanos in a curve have the desired genericity property.

That is the case if the configuration is defined by orthogonal sum N+ ⊥ N−

 108 examples

Many are 2-connected so that it is easy to apply smooth classification
results, and many different constructions yield the same smooth manifold.

Example (Crowley-N)

Some twisted connected sums ∼= total spaces of S1-bundles.

But µ, ν, ν̄ always take the same value for such configurations...



Handcrafting

Actually, we can never use ν or ν̄ to distinguish twisted connected sums.

Theorem (Crowley-Goette-N)

Any twisted connected sum has ν̄ = 0 (and ν = 24).

If one uses non-perpendicular matchings then Λ± 6= N± so one has do more
work (to some extent “by hand”) to prove improved genericity results.

Example

The set of blocks obtained by blowing up P3 in the intersection of two
quartics has the Λ-genericity property if Λ contains a degree 4 class H, and
no class v such that H.v = 0 and v2 = −2, or H.v = 2 and v2 = 0.

Pay-off: µ and ξ can take different values  examples of

� G2-manifolds that are homeomorphic, but diffeomorphism types
distinguished by µ (Crowley-N)

� G2-manifolds where components of moduli space are distinguished by ξ.
(Wallis)



5. Extra-twisted connected sums
Tori

Recall:

From a building block (Z ,Σ) we get an ACyl Calabi-Yau 3-fold V := Z \ Σ
with cylindrical end R× S1 × Σ. Think of this circle factor as “internal”.

Now suppose the building block (Z ,Σ) has a cyclic automorphism group Γ
that fixes Σ pointwise.
Then the action of Γ on V acts trivially on the Σ factor in the asymptotic
end while rotating the S1

int factor.

Next choose a free action of Γ on “external” circle S1
ext .

Then (S1
ext × V )/Γ is a smooth ACyl G2-manifold. Its asymptotic end is of

the form R× T 2 × Σ, but the torus T 2 := (S1
ext × S1

int)/Γ need not be a
metric product of two circles.
The geometry of T 2 depends on the circumferences of S1

ext and S1
int , which

can be chosen freely.



Adding the extra twist

To make an extra-twisted connected sum

� Find some building blocks (Z±,Σ±) with automorphism groups Γ±
� Choose circumferences so that there is an isometry t : T 2

+ → T 2
−

� Find ACyl Calabi-Yau metrics so that there is r : Σ+ → Σ− that makes

(−1)× t× r : R× T 2
+ × Σ+ → R× T 2

− × Σ−

an isomorphism of the asymptotic limits of the G2-structures.

V−

V+

×
S1
−,int

×
S1
+,int

Σ− Σ+

×
S1
−,ext

×
S1
+,ext

Γ−

Γ+



Inflexibility of the gluing angle for TCS

In the twisted connected sum construction we identify the asymptotic
cross-sections S1

+,ext × S1
+,int × Σ+ and S1

−,ext × S1
−,int × Σ− by the product

of an isometry r : Σ+ → Σ− and the “flip” isometry

S1
+,ext × S1

+,int → S1
−,ext × S1

−,int , (u, v) 7→ (v , u).

We can choose the circumferences of S1
+,ext = S1

−,int , and S1
−,ext

∼= S1
+,int ,

but the angle ϑ between the external circle direction will always be π
2 .

S1
−,int

S1
−,ext

S1
+,ext

S1
+,int

ϑ

This “gluing angle” ϑ turns out to play a key role in the calculation of ν̄.



More exciting torus isometries

As soon as at least one of the tori T 2
+ and T 2

− is not simply an isometric
product S1

ext × S1
int , there are other possibilities for the gluing angle ϑ.

S1
−,int

S1
−,ext

Γ− ∼= Z/3

S1
+,ext

S1
+,int

Γ+
∼= Z/4

ϑ

eg ϑ =
3π

4
,

2π

3
or arccos

(
1√
6

)
.



The matching problem and configurations

Given the size of Γ+ and Γ−, it is essentially a combinatorial problem to
determine all possible torus isometries t : T 2

+ → T 2
−.

Eg for Γ+ = Z/3 and Γ− = Z/4 there are 28 possibilities (up to symmetries).

Once we have chosen a torus isometry t, we need to find blocks (Z+,Σ+)
and (Z−,Σ−) with those automorphism groups and diffeomorphism

r : Σ+ → Σ−

satisfying a condition that depends only on the gluing angle ϑ of t, and on
the periods and Kähler cones of Σ±.

The topology of the resulting extra-twisted connected sum G2-manifold
depends the topology of Z+ and Z−, the choice of t, and on configuration of
polarising lattices N+,N− ↪→ L defined by r∗ : H2(Σ−;Z)→ H2(Σ+;Z).

Difference from before:

“Easy case” of matching problem is now when N+ is “at angle ϑ” to N−.
If ϑ = π

2 one can use perpendicular direct sum, but for ϑ 6= π
2 it is a

non-trivial arithmetic problem whether any such configuration exists.



A building block with Z/4 action

Let

� Q ⊂ P3 any quartic K3 surface.

� Y → P3 the fourfold cover branched over Q.

� C ⊂ Q a hyperplane section (= divisor of normal bundle of Q in Y ).

� Z → Y the blow-up along C

� Σ ⊂ Z the proper transform of Q (which is isomorphic to Q).

The blow-up ensures that the normal bundle of Σ in Z is trivial.
The deck transformation action of Z/4 on Y lifts to Z .
Thus (Z ,Σ) is a building block with Z/4 action.

Like in example before, any smooth quartic K3 appears in a block of this
form.



Survey of “low-hanging fruit”

Using 25 similar blocks with involution (and rkN ≤ 2) and 6 blocks with
automorphisms of order 3 to 6 (and rkN = 1), one can make (at least)

� 305 matchings using only involutions blocks

In many cases classifying diffeomorphism invariants can be worked out
completely, and used to exhibit disconnected G2 moduli space.

ν̄ is always divisible by 3.

� 192 matchings using at least one block with automorphism of order ≥ 3
(thanks to greater variety of choices for the torus isometry)

Greater variety in

� topology, eg can get fundamental groups of order 2, 3, 4, 5, 6, 7, 8, 9,
10, 15 and 21 (but harder to work out full invariants)

� values of ν̄ realised.



6. Coboundary defect invariants
Milnor’s λ-invariant

Milnor: Define invariants of closed manifolds as “defect” of coboundaries.
E.g. for oriented 8-manifolds W whose boundary M has p1(M) = 0 consider
� signature σ(W ) of intersection form on H4(W ,M)
� p1(W )2 ∈ Z (p1(M) = 0⇒ p1(W ) has a preimage in H4(W ,M), whose

square is independent of choice)

These are additive under gluing boundaries. Therefore linear combinations
that vanish for closed manifolds are invariants of the boundary M.
Eg Hirzebruch signature theorem gives

45σ(X ) + p1(X )2 = 7p2(X )

for any closed oriented 8-manifold X , so that

3σ(X ) + p1(X )2 ≡ 0 mod 7.

Therefore
λ(M) := 3σ(W ) + p1(W )2 ∈ Z/7

depends only on the smooth manifold M, and not on W .
Used by Milnor (1956) to detect non-standard smooth structures on S7.



The Eells-Kuiper invariant

For a closed spin 8-manifold X , the Atiyah singer index theorem for the
index of the Dirac operator /DX

ind /DX =
7p21 − 4p2

45 · 27

combined with the Hirzebruch signature theorem gives

p1(X )2 − 4σ(X )

32
= 28 ind /DX .

For a closed spin 7-manifold M with p1(M) = 0 and spin coboundary W

µ(M) =
p1(W )2 − 4σ(W )

32
∈ Z/28

is thus a well-defined diffeomorphism invariant.
It distinguishes all 28 classes of smooth structures on S7.



Generalised Eells-Kuiper invariant

If p1(M) 6= 0 then we cannot interpret p1(W )2 as a well-defined element
of Z.
But if H4(M) is torsion-free and p1(M) is divisible by d , then

p1(W )2 ∈ Z/4d̃ .

is well-defined, where d̃ := lcm(8, d). Therefore

µ(M) :=
p1(W )2 − 4σ(W )

32
∈ Z/ gcd

(
28, d̃8

)
is a well-defined diffeomorphism invariant of M.

Crowley-N:
µ(M) detects all equivalence classes of smooth structures on such manifolds.



G2-structures and spinors

To define defect invariants of G2-structures on a closed 7-manifold, first
relate them to spinors.

The spinor representation of Spin(7) is real of rank 8.

The stabiliser in Spin(7) of any non-zero spinor is isomorphic to G2.
Therefore

G2-structure on M7 ↔
metric g + spin structure + nowhere vanishing spinor field s modulo scale

The positive spinor bundle of a spin 8-manifold is also real of rank 8.

If W is a compact 8-manifold with boundary M, then we can consider
s+ ∈ Γ(S+

W ) with transverse zeros such that the restriction s ∈ Γ(SM) of s+
to M defines a given G2-structure.

Then #s−1+ (0) (counted with signs) depends only on W and s.



Invariants of G2-structures

If X is closed and s+ ∈ Γ(S+
X ) has transverse zeros, then #s−1+ (0) equals the

Euler class e(S+
X ), related to Euler characteristic χ(X ) by

−3σ(X ) + χ(X )− 2 #s−1+ (0) = −48 indDX ,

3p1(X )2 − 180σ(X )

8
+ 7χ(X )− 14 #s−1+ (0) = 0.

Therefore, for W compact spin 8-manifold with boundary M and a
transverse s+ ∈ Γ(S+

W ) with s := s+|M ∈ Γ(SM)

ν(M, s) := 3σ(X ) + χ(X )− 2 #s−1+ (0) ∈ Z/48,

ξ(M, s) :=
3p1(W )2 − 180σ(W )

8
+ 7χ(W )− 14 #s−1+ (0) ∈ Z/ 3

2 d̃

are well-defined diffeomorphism invariants of (M, s), ie of M equipped with
a G2-structure.
Also clear that ν and ξ are invariant under continuous deformation of a
G2-structure.



Invariants of twisted connected sums

For “ordinary” twisted connected sums, µ, ν and ξ can be computed by
finding an explicit coboundary.

But even though computing the cobordism group ΩSpin
7 = 0 shows that

coboundaries always exist, there is no algorithm for constructing them.

Crowley-Goette-N:
It is possible to define a diffeomorphism invariant ν̄ ∈ Z of a G2-structure on
a closed 7-manifold in terms of eta invariants of elliptic operators, so that

ν = ν̄ + 24 mod 48

for any torsion-free G2-structure.

For extra-twisted connected sums, ν̄ can be computed by a cut-and-paste
formula.
If the gluing angle is π

2 then all terms vanish, but otherwise there is a range
of possible values depending on the configuration and (if |Γ±| ≥ 3) on the
isolated fixed points of Γ± in Z±.


