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Basic number field invariants

Polynomial Degree Rank Description

x2 − 2 2 1 Real quadratic
x2 + 2 2 0 Imaginary quadratic

x4 − x3 − 3x2 + x + 1 4 3 Totally real
x3 − x3 − x2 + x + 1 4 1 Totally imaginary

x6 − 7x4 + 14x2 − 7 6 5 Totally real
x6 − x3 + 1 6 2 Totally imaginary

Signature

The signature of F is (r1, r2), where r1 (resp. r2) is the number of
real roots (resp. conjugate pairs of complex roots). We have
degree(F/Q) = r1 + 2r2, and rank

(
O×F
)

= r1 + r2 − 1.
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Real quadratic fields, I

General form

For squarefree d ∈ Z>0, we have Q(
√
d) = {a + b

√
d : a, b ∈ Q}.

Failure of unique factorization

In Q(
√

10), we have 9 = 32 = (7− 2
√

10)(7 + 2
√

10).

Class number

The class number hF of a number field F quantifies the failure of
OF to be a unique factorization domain.
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Real quadratic fields, II

Class number Q(
√
d)

1 d = 2, 3, 5, 6, 7, 11, . . . , 5581, . . . , 2000029, . . .

2 d = 10, 15, 65, 85, . . . , 5133, . . .

3 d = 79, 142, 229, 257, . . . , 5081, . . .

4 d = 82, 145, 445, 505, . . . , 5545, . . .
...

...

21 d = 7057, 13698, 49033, . . .
...

...

Class number problem (Gauss, 1801)

Does Q(
√
d) have class number 1 for infinitely many squarefree d?
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Elliptic curves

Theorem (Mordell, 1922)

The rational points on an elliptic curve defined over Q form a
finitely generated abelian group.

Theorem (Mazur, 1977/78)

There are 15 explicit possibilities for the torsion subgroup of E (Q).

Rank Example Proportion (conjectural)

0 y2 + y = x3 − x2 50%
1 y2 + y = x3 − x 50%
2 y2 + y = x3 + x2 − 2x 0%
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Ranks of elliptic curves

Question (possibly dating back to Poincaré, 1901)

Which integers r can occur as the rank of an elliptic curve over Q?
Is the set of such r bounded?

Conjecture (Birch and Swinnerton-Dyer, 1960s)

The rank r is equal to the order of vanishing for the elliptic
L-function L(E , s) at s = 1. Furthermore, there is a formula for
the leading Taylor coefficient involving certain invariants of E .
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Experimental strategy

1 Given a set U of vectors and, for each u ∈ U, a label `(u),
consider the labeled dataset D = {u → `(u) : u ∈ U}.

2 Choose a subset T ⊂ D and denote its complement by
V = D − T . We will refer to T as the training dataset, and V
as the validation dataset.

3 Train a classifier on the set T with a standard
supervised-learning algorithm.

4 For u ∈ V, ask the classifier to determine `(u). We record the
precision and confidence.

5 Repeat steps 2 to 4 for different choices of T . Record
precision/confidence representative of several repetitions.
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Naive implementation

Object Vectors Labels

number fields defining polynomial class number
elliptic curves Weierstrass equation rank

Experimental outcome

Results vary depending on specifics, but typically no better than
guesswork.

Basic objective

Find better training vectors!
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L-functions

L-functions

Dirichlet series L(s) =
∑∞

n=1 ann
−s , converging for Re(s)� 0. In

this talk, it will be the case that an ∈ Z.

Training vectors

Given M ∈ Z>0, and an L-function L(s), we define the vector
LM = (a1, . . . , aM) ∈ ZM .

Complexity

Measured by conductor QL ∈ Z, which appears in a functional
equation satisfied by L.
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Experimental strategy, revisited

1 Choose a finite set F of L-functions and, for each L ∈ F , let
I (L) denote an invariant of interest. Generate a labeled
dataset of the form D = {LM → I (L) : L ∈ F}

2 Choose a subset T ⊂ D and denote its complement by
V = D − T . We will refer to T as the training dataset, and V
as the validation dataset.

3 Train a classifier on the set T with a standard
supervised-learning algorithm.

4 For L ∈ V, ask the classifier to determine I (L). We record the
precision and confidence.

5 Repeat steps 2 to 4 for different choices of T . Record
precision/confidence representative of several repetitions.
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Typical specifications

Vector length

M ≈ 102.

Labeled dataset

D = {LM → I (L) : B0 < QL < B1}, with conductor bounds B0,B1

chosen so that 103 < |D| < 106.

Training/Validation ratio

|T |
|D|
∈ {0.2, 0.8, 0.7}.
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Dedekind zeta functions

Dedekind zeta function

ζF (s) =
∏
p

(
1− N(p)−s

)−1
=
∑
I≤OF

N(I )−s ,

where p varies over prime ideals in OF , I varies over the non-zero
ideals in OF .

Dirichlet coefficients

We have ζF (s) =
∑∞

n=1 ann
−s , where

an = #{N(I ) = n : I ≤ OF}.

The conductor QF is equal to the discriminant, which is divisible
exactly by the primes ramified in F .
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Promising example: class numbers

Let F = {[F : Q] = 2, hF ∈ {1, 2}, 1 < ∆F < 106}.
Labeled dataset DZ = {(a1, . . . , aM)→ hF : F ∈ F}.
Randomly splitting DZ into a disjoint union T

∐
V, a random

forest classifier trained on T predicts the (unseen) class
numbers of V with accuracy ≈ 0.96 and confidence ≈ 0.92.
Furthermore, we find that the same trained classifier can
predict class numbers for larger discriminants with decent
levels of success.

[T0,T1] [V0,V1] Precision Confidence
[1, 1× 106] [1, 1× 106] 0.96 0.92
[1, 1× 106] [1× 106, 2× 106] 0.92 0.86
[1, 1× 106] [2× 106, 3× 106] 0.91 0.84

Table: Training discriminants in range [T0,T1], validation discriminants
in range [V0,V1].
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Cautionary tale: Signatures

Let F consist of cyclic extensions with bounded discriminant,
degree 6 and unit group rank rF equal to either 5 (totally
real) or 2 (totally imaginary).

Applying standard classifiers to the labeled dataset
{(a1, . . . , aM)→ rF : F ∈ F} leads to predictions with
accuracy < 0.6.

By way of contrast, let F contain cyclic extensions of degree
dF ∈ {4, 6, 8}. Training on a labelled dataset
{(a1, . . . , aM)→ dF : F ∈ F}, a classifier is able to make
predictions with accuracy ≈ 0.98 and precision ≈ 0.97.

Recall that the extension degree is equal to r1 + 2r2, and the
unit group rank is equal to r1 + r2 − 1.
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Naive training for signatures

Instead of zeta coefficients, one can use defining polynomials:

P(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0, ci ∈ Z, n = [F : Q].

We introduce the following labeled dataset:

DP = {(c0, . . . , cn−1)→ rF : F ∈ F}.

Trained on this data, a random forest classifier can make much
more accurate rank predictions.

Galois group (r1, r2) rank(O×
F ) DP precision DP confidence

C6
(6,0)
(0,3)

5
2

0.97 0.93

C8
(8,0)
(0,4)

7
3

> 0.99 > 0.99

D4
(8,0)
(0,4)

7
3

0.98 0.95
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Logistic regression example, I

Rounding function

Given a real number X , let [X ] denote the integer nearest to X .

Logistic sigmoid

σ(z) =
1

1 + exp(−z)

Objective

Let F contain cyclic degree 6 number fields with rank 2 or rank 5
and bounded conductor. We aim to find (w0, . . . ,w5) ∈ R6 such
that the function 3[σ(c0w0 + · · ·+ c4w4 + c5w5)] + 2 ∈ {2, 5}
predicts the rank.
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Logistic regression example, II

Best fit

We get 94% precision with best fit:

− 0.000169037c0 − 0.0000689721c1 − 0.000120625c2

− 0.00196535c3 − 0.058735c4 + 0.917924c5.

The accuracy of this model varies with rF and ∆F . More precisely,
the model predicts rank 2 with accuracy > 0.91 for almost all
ranges of |∆F | occurring in the dataset with overall precision 0.99.
On the other hand, the model above performs poorly for rank 5
fields with |∆F | < 1.80× 109 (around 77% accuracy) and
|∆F | > 2.55× 1014 (around 60% accuracy); the overall precision
for the classification of rank 5 fields is 0.89.
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Hasse–Weil L-functions

Local zeta function

Let X be a smooth, projective, geometrically connected curve of
genus g . For each good prime p of X , we define:

Z (X/Fp;T ) = exp

( ∞∑
k=1

#X
(
Fpk
)
T k

k

)
.

Theorem (Weil, 1949)

Z (X/Fp;T ) =
Lp(X ,T )

(1− T )(1− pT )
,

where Lp(T ) ∈ Z[T ] has degree 2g and constant term 1.
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Elliptic L-functions

Elliptic Euler factors

If E is an elliptic curve defined over Q and p is a good prime, then
Lp(E ,T ) = 1− apT + pT 2, where ap = p + 1−#E (Fp). For a
bad prime p, we also define ap this way.

Training vectors

For i ∈ Z>0, let pi denote the ith prime. For M ∈ Z>0, we
introduce the vector:

vL(E ) = (ap1 , . . . , apM ) ∈ ZM .

Conductor QE divisible only by bad primes.
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Elliptic curve ranks

QE training M QE validation P C

[1, 1× 104] 100 [1, 1× 104] 0.98 0.96

” 300 ” 0.99 0.98

[2× 104 + 1, 3× 104] 300 [2× 104 + 1, 3× 104] 0.96 0.92

” 500 ” 0.97 0.94

[1, 1× 104] 300 [2× 104 + 1, 3× 104] 0.92 0.85

Table: The precision and confidence of a logistic regression classifier
when asked to distinguish elliptic curves over Q with rank 0 from those
with rank 1. The classifier is trained on the conductor range specified by
the first column, using the number of Euler factors given in the second
column, and verified on the conductor range indicated by the third
column.
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Genus 2 L-functions

Euler factors

If X = C is a smooth projective geometrically connected genus 2
curve defined over Q and p is a good prime for C , then:

Lp(C ,T ) = 1 + a1,pT + a2,pT
2 + a1,ppT

3 + p2T 4.

For a bad prime p, we put (a1,p, a2,p) = (0, p).

Training vectors

For a positive integer M, we introduce the vector:

vL(C ) =
(
(a1,p2 , a2,p2), . . . , (a1,pM+1

, a2,pM+1
)
)
∈
(
Z2
)M

.
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Genus 2 ranks

Theorem (Weil, 1929)

The Jacobian of a genus 2 curve is a 2-dimensional abelian variety,
whose rational points form a finitely generated abelian group.

New phenomenon

A little under 1/3 of the (Jacobians of) genus 2 curves over Q on
the LMFDB have rank 2.

Supervised learning experiment

A logistic regression classifier trained on vL(C ) is able to distinguish
between curves of ranks 0, 1, and 2 for conductors in the range
1 < QC < 106, with precision ≈ 0.97 and confidence ≈ 0.96.
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Endomorphisms of elliptic curves

A generic elliptic curve over Q has endomorphism ring
isomorphic to Z.

The Sato–Tate conjecture (proved over totally real fields)
implies that the Euler factors are distributed the same way for
all generic curves. More precisely, they are distributed like the
characteristic polynomials of random matrices in SU(2).

The non-generic elliptic curves are those with CM. In this
case, the Euler factors are associated with Hecke characters
and distributed differently. This time the distribution matches
random matrices in the normalizer of U(1) in SU(2).
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CM elliptic curves

A naive Bayes classifier trained on random matrices and validated
on elliptic curves is able to distinguish between CM and non-CM
curves. In the following image the precision and confidence is
plotted against the number of random matrices used in training.
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Generic genus 2 curves: Supervised

According to the generalized Sato–Tate conjecture, Euler
factors of generic genus 2 curves are distributed like random
matrices in USp(4).

Again a naive Bayes classifier trained on random matrices can
separate the generic and non-generic case.

There are 54 non-generic cases (33 over Q), which are
subgroups of USp(4) satisfying certain axioms. We will touch
upon the non-generic case again below.
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Generic genus 2 curves: Unsupervised

A two-dimensional projection of labeled coefficient pairs in R400

corresponding to generic and non-generic curves gives the following
image:
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Non-generic genus 2 curves

There are 33 possible non-generic Sato–Tate groups for genus 2
curves over Q. The image belows shows the performance of a
naive Bayes classifier in distinguishing groups J(En),
n ∈ {1, 2, 3, 4, 6}, when trained on random matrices and validated
on curves, relative to the number of Euler factors used.
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Preprints

He–Lee–O, Machine-learning the Sato–Tate conjecture,
arXiv:2011.08958.

He–Lee–O, Machine-learning number fields, arXiv:2011.08958.

He–Lee–O, Machine-learning arithmetic curves,
arXiv:2012.04084.

More ML in pure maths

DANGER (Data, numbers and geometry),
https://sites.google.com/view/danger-workshop.
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