A MODULI SPACE OF HOLOMORPHIC SUBMERSIONS

Annamaria Ortu

University of Gothenburg

A MODULI SPACE OF HOLOMORPHIC SUBMERSIONS

SETTING AND MOTIVATION

proper holomorphic submersion of smooth projective varieties

- all fibres are smooth
- L- B ample line bundle

•
$$H_Y \rightarrow Y$$
 relatively ample line bundle :
 $H_Y |_{Y_6} \rightarrow Y_6$ ample

These fibrations

 (Y, H_{Y})

(B,L)

- -> generalise holomorphic vector bundles
- -> constitute a way of studying families of projective manifolds

On vector bundles $E \longrightarrow B$ holomorphic vector bundle. Assume E is simple: $\Gamma(E, EndE) \cong C$. Taking the projectivisation $X = IP(E) \longrightarrow B$ holomorphic submersion, $9_{P(E)}(-1)^V \longrightarrow P(E)$ relatively ample $\Im_{P(E)}(-1)^V |_{X_V} = 9_{P(E)_U}(1)$ Hitchin - Kobayeshi correspondence (Narashiman-Seshadri, Donaldson, Uhlenheck, Yau) Slope Stability \longrightarrow 3 Hermite-Einstein connections (algebro-geometric) (geometric PDE)

On vector bundles $E \longrightarrow B$ holomorphic vector bundle. Assume E is simple: $\Gamma(E, EndE) \cong C$. Taking the projectivisation $X = IP(E) \longrightarrow B$ holomorphic submersion, $9_{P(E)}(-1)^V \longrightarrow P(E)$ relatively ample

GOAL: • construct a moduli space of smooth fibrations

generalise the Hermite-Einstein connections to optimal symplectic
 connections on fibrations with K-semistable fibres

Example: E -> C holomozphic vector bundle over a curve, we köhler on C.

$$\frac{Def}{rkE} \cdot slope \circ F E : \mu(E) = \frac{degE}{rkE} = : \frac{d}{rkE}$$
where $deg E = deg(\Lambda^{rkE}E) = c_1(E) \cdot [w_c]$

- E is stable if $\mu(E) > \mu(F)$ VFCE subbundle
- E is semistable if u(E) > u(F) ¥FCE

=> (Numford) there exists a moduli space of semistable vector bundles with fixed rank and degree, $\mathcal{M}^{ss}(\pi,d)$, and the moduli space is constructed as a GIT quotient (locally and globally)

From the geometric PDE side: $E \rightarrow B$ h or fibrel of E h Hermitian structure induces A_R Chern connection. Def A_R is Hermite-Einstein if $\Lambda_{\omega_B} F_{A_R} = \lambda 1_E$ $\lambda = \frac{\mu(E)}{\int \omega_c}$

[Fujiki-Schumacher] there exists a moduli space of vector bundles that admit a Hermite-Einstein connection.

Back to fibrations $Y \longrightarrow B$:

- We need: -> a generalisation of Hermite-Einstein connections: optimal Symplectic connections. They are solutions to a PDE that are related to the stability of the fibration.
 - -> Stability condition for the fibres: in terms of K-stability

Back to fibrations $Y \longrightarrow B$:

We need: -> a generalisation of Hermite-Einstein connections: optimal Symplectic connections. They are solutions to a PDE that are related to the stability of the fibration.

-> Stability condition for the fibres: in terms of K-stability

Another bit of motivation: merge these two pictures

Slope stability <u>H-k</u> J Hermite-Einstein K-stability <u>YTD</u> J Köhler metrics with conj Constant scalar curvature CSCK Scal(w) = S

SMAIN RESULT

THEOREM(-) There exists a moduli space that parametrises holomozphic submersions Try: (Y, Hy) -> (B,L) that

• have discrete relative automozphism group:

Aut $(\pi_y) = \{g \in Aut(Y, H_y) \mid \pi_y \circ g = \pi_y \}$

• admit an optimal symplectic connection.

Such a moduli space is a Hausdorff complex analytic space and it admits a Weil-Retersson type Köhler metric

In terms of analytic K-semistability ->> I csck metrics More precisely:

Assume that $(Y,H_Y) \rightarrow (B,L)$ degenerates to $(X,H_X) \rightarrow (B,L)$ such that $\forall b \in B$ (X_b, H_b) has a Köhler metric with constant scalar curvature:

$$\omega_{b} \in c_{1}(H_{X}|_{X_{b}})$$
 such that $Scal(\omega_{b}) = \widehat{S}_{b}$

- 1. \hat{S}_b is a topological constant that does not depend on b, because $C_1(H_X|_{X_b})$ is an integer class as cohomology class
- 2. [Dervan · Sektnan] There exists $\omega \in C_1(H_X)$ s.t. $\omega|_{X_L}$ has constant scalar curvature. ω is Relatively KAHLER METRIC

Degeneration means: $\begin{aligned}
S = \text{ parameter space } (\text{disk } \Delta \text{ or } \mathbb{C}) \\
(\mathfrak{X}, \mathcal{H}) & (\mathfrak{X}_{0}, \mathcal{H}_{0}) \simeq (\mathfrak{X}, \mathcal{H}_{x}) & (\mathfrak{X}_{3}, \mathcal{H}_{5}) & (\mathcal{Y}, \mathcal{H}_{y}) \\
\downarrow & s.t. & \downarrow & \downarrow & s.t. & \downarrow & \downarrow & s.t. \\
& B \times S & B & B & S \\
\end{aligned}$

Degeneration means: $S = parameter space (disk \Delta or C)$

(¥,H)		$(\mathcal{X}_{o},\mathcal{H}_{o})\simeq(X,H_{x})$			(夭, 거s)		
	ડત.	Ļ		and		2	
BxS		B	Ř		B	¥s≠o	Å

How to think of these degenerations:

Let
$$\mathbb{C}^* \mathcal{R} \to \mathbb{B} \times \mathbb{C}$$
 trivially on \mathbb{B} . Then we can realise the degeneration $(\mathcal{X}, \mathcal{H}) \longrightarrow \mathbb{B} \times \mathbb{C}$ using a lift of \mathbb{C}^* to $(\mathcal{X}, \mathcal{H})$

Philosophically: $(\mathcal{X}, \mathcal{H}) \rightarrow B \times \mathbb{C}$ is a family of test configurations for the fibres X_b compatible with the fibration structure

Remark:

1. the fibres of Y-B are analytically K-semistable

$(\mathfrak{X},\mathcal{H})$		$(\mathcal{X}_{o},\mathcal{H}_{o})\simeq(X,H_{x})$			(¥, Hs)		
l By C	કર્ત.	↓ ₽) Ř	and	 Ř	≃ ¥s≠o	 X
0 ~ 0		D	U				

Remark:

- 1. the fibres of Y-B are analytically K-semistable
- 2. A relative version of Ehresmann theorem implies that X and Y are diffeomorphic. Let M = underlying smooth manifold.

=> we can view Y as a deformation of the complex structure of X.

(¥,H)	((¥., H.)	(¥, Hs)			(4,Hy)	
l BxS	st.	↓ B	⊢ ₿	and.	 B	≃ ¥s≠o	 Å

Remark:

- 1. the fibres of Y-B are analytically K-semistable
- A relative version of Ehresmann theorem implies that X and Y are diffeomorphic. Let M = underlying smooth manifold.
 > we can view Y as a deformation of the complex structure of X.
- 3. $C_1(H_X) = C_1(H_Y) \in H^2(M, \mathbb{Z})$ and $C_1(H_X)$ is of type (1,1) also on Y

- 1. the fibres of Y-B are analytically K-semistable
- A relative version of Ehresmann theorem implies that X and Y are diffeomorphic. Let M = underlying smooth manifold.
 > we can view Y as a deformation of the complex structure of X.
- 3. $C_1(H_X) = C_1(H_Y) \in H^2(M, \mathbb{Z})$ and $C_1(H_X)$ is of type (1,1) also on Y
- => we have $\omega \in c_1(H_X)$ relatively csck <u>AND</u> we can assume that $\omega \in c_1(H_Y)$ is also relatively kähler (but no csck on the fibres)

=> We fix the smooth structure M and the relatively symplectic form ω We have the holomorphic structure: $X = (M, \omega, J_0) \rightarrow B$ $Y \cong \mathcal{X}_S = (M, \omega, J_S) \longrightarrow B$

=> We fix the smooth structure M and the relatively symplectic form ω We hazy the holomorphic structure: $X = (M, \omega, J_0) \rightarrow B$ $Y \cong \mathcal{X}_S = (M, \omega, J_S) \longrightarrow B$

This can be made precise by THEOREM (-) The deformations of the holomorphic submersion X - Bthat preserve the projection onto B can be parametrized by an open subset V_{π} of a finite-dimensional vector space in $\Omega^{0,1}(T_{vert}^{1,0}X)$: $H^{4}(T_{X})$

 Φ : V_{π} \longrightarrow $\mathcal{J}_{\pi} = \begin{cases} almost complex structures on M compatible \\ with w and with the projection onto B \end{cases}$

THEOREM (-) The deformations of the holomorphic submersion X - Bthat preserve the projection onto B can be parametrised by an open subset V_{π} of a finite-dimensional vector space in $\Omega^{0,1}(T_{vert}^{1,0}X)$: $\Phi: V_{\pi} - \mathcal{F}_{\pi} = \begin{cases} almost complex structures on M compatible \\ with W and with the projection onto B \end{cases}$ equivariant $\omega.r.t$.

$$K\pi$$
 = bibolomozphisms of X that commute with π
and are fibrewise isometries of the relatively
Kähler form ω

Relative kuzanishi theorem, or Luna slice theorem or Hilbert scheme

So we can identify $V_{T} \ni 0 \iff X_{1} \quad \text{iel. csck} \\ B \quad K^{-}P^{5} \qquad \text{and the degeneration } (\mathcal{X}, \mathcal{H}) \rightarrow B \times S$ $Can be realised as an orbit in <math>V_{T}$ $V_{s} \iff \mathcal{X}_{s} \cong \mathcal{Y}_{s} \qquad C^{*} \cdot \mathcal{Y}_{s} \qquad s.t. \quad 0 \in \overline{\mathbb{C}} \cdot \mathcal{Y}_{s}$ $U_{s} \xleftarrow{} \mathcal{Y}_{s} \cong \mathcal{Y}_{s} \qquad C^{*} \cdot \mathcal{K}_{T}$

Key to construct moduli space: having a degeneration to a relatively csc k fibration is a locally closed property.

So we can identify

 $\begin{array}{cccc} & X & & \text{and the degeneration } (X, X) \rightarrow B \times S \\ & B & & \text{Con be realised as an orbit in } V_{TT} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Key to construct moduli space: having a degeneration to a relatively csc k fibration is a locally closed property.

Assume that : Auto (Xb, Hxlb) are all isomorphic. Lemma (-) There exists WC VT locally closed subvariety such that VWE W the corresponding fibration Yw - B admits a degeneration to some X' -> B with csck fibres.

Assume that : Auto (Xb, Hxlb) are all isomorphic.

- Lemma (-) There exists $W \subset V_{TT}$ locally closed subvariety such that $\forall w \in W$ the corresponding fibration $Y_{w} \longrightarrow B$ admits a degeneration to some $X^1 \longrightarrow B$ with csck fibres.
- Proof: UCB open chart. Consider the Kuranishi space of the fibres of $X \rightarrow U$ to construct $X' \rightarrow U$ locally $V_{b_0} \cap K_{b_0} =$ biholomozphic isometries of $(w|_{X_{b_0}}, J_0|_{X_{b_0}})$ $K_{b_0}^{\mathcal{C}} = Aut_0(X_{b_0}, H_X|_{b_0})$
 - => csck fibres near Xb, are
 - · (Szelalyhidi) GIT-polystoble points in Vb.
 - · fixed points by the assumption

Assume that : Auto (Xb, Hxlb) are all isomorphic.

Lemma (-) There exists $W \subset V_{TT}$ locally closed subvariety such that $\forall w \in W$ the corresponding fibration $Y_{w} \longrightarrow B$ admits a degeneration to some $X^1 \longrightarrow B$ with csck fibres.

=>
$$X_{b} \leftarrow x_{b} c V_{b}$$
 and $U_{c} \leftarrow x_{b} c V_{b}$
 $V_{c} \leftarrow x_{b} c V_{b}$ and $U_{c} \leftarrow x_{b} c V_{b}$
s.t. $K_{b}^{c} \cdot y_{b} = x_{b}$

Assume that : Auto (Xb, Hxlb) are all isomorphic.

Lemma (-) There exists $W \subset V_{TT}$ locally closed subvariety such that $\forall w \in W$ the corresponding fibration $Y_{w} \longrightarrow B$ admits a degeneration to some $X^{1} \longrightarrow B$ with csck fibres.

Assume that : Auto (Xb, Hxlb) are all isomorphic.

Lemma (-) There exists $W \subset V_{TT}$ locally closed subvariety such that $\forall w \in W$ the corresponding fibration $Y_{w} \longrightarrow B$ admits a degeneration to some $X' \longrightarrow B$ with csck fibres.

Remark

The proof relies on deep results:

- · [Chen-Sun] uniqueness of K-polystable degeneration
- · [Szekelyhidi], [Brönnle] deformation theory of csck manifolds
- · [Szekelyhidi] a k-polystable deformation of a csck manifold is csck
- · analogy with Biatynicki-Birula stratification

§ OPTIMAL SYMPLECTIC CONNECTIONS

DEF Let Y->B be a holomozphic submersion with k-semistable fibres and let X->B be a relatively csck degeneration. A relatively köhler metric w is optimal symplectic connection if

$$P_{E}\left(\Delta_{vert}\Lambda_{w_{B}}+\Lambda_{w_{B}}+\Lambda_{w_{B}}+\lambda_{v}\right)=0$$

- 2 >0
- Fy = symplectic curvature of w
- $p = i\partial \delta \log \omega^m$ m= rel dim X->B i.e. p = cuzubture of Hezmitianmetric induced by ω on $\int_{u=1}^{m} T_{u=1}^{1,0} X = -K_{X/B}$

• Curvature quantity of deformation family: $V = \frac{d^2}{ds^2} |_{s=0} Scal(w, J_s)$

Introduced by Dewan-Sektnan when the fibres are csck. Here: extension to K-semistable fibres

§ OPTIMAL SYMPLECTIC CONNECTIONS

$$P_{\mathsf{E}} \left(\Delta_{\mathsf{wert}} \Lambda_{\mathsf{w}_{\mathsf{B}}} \widetilde{\mathsf{T}}_{\mathcal{H}} + \Lambda_{\mathsf{w}_{\mathsf{B}}} \rho_{\mathcal{H}} + \lambda_{\mathcal{V}} \right) = 0$$

• LHS is smooth function. P_F projection onto $\Gamma^{\infty}(E \rightarrow B) =: \mathcal{C}^{\infty}(E)$ $E_{L} =$ holomorphy potentials on $X_{L} =$ holomorphic vector fields on X_{L} that vanish somewhere = { $f \in \mathcal{O}(x_h) | \partial \nabla^{h} f = 0$ } Our assumption form before that Auto (XL, T''XL) are all isomorphic implies that their lie algebras 1/0 (6) have all the same dimension and 4,(6) <-> Eb => E -> B is a vector bundle [Hallam] Why extend optimal symplectic connections to K-semistable fibres? Because it is an open condition while csck it is not

SOPTIMAL SYMPLECTIC CONNECTIONS

$$P_{\mathsf{E}}\left(\Delta_{\mathsf{vert}} \Lambda_{\mathsf{w}_{\mathsf{B}}} \widetilde{\mathsf{T}}_{\mathcal{H}} + \Lambda_{\mathsf{w}_{\mathsf{B}}} \rho_{\mathcal{H}} + \lambda_{\mathcal{V}} \right) = 0$$

RmK: the equation is interesting when the fibres have more automorphisms of the total space. Eq. it is trivial when the fibres are Riemann Surfaces

§ OPTIMAL SYMPLECTIC CONNECTIONS

$$P_{\mathsf{E}}\left(\Delta_{\mathsf{vert}} \Lambda_{\mathsf{w}_{\mathsf{B}}} \widetilde{\mathsf{T}}_{\mathcal{H}} + \Lambda_{\mathsf{w}_{\mathsf{B}}} \rho_{\mathcal{H}} + \lambda_{\mathcal{V}} \right) = 0$$

Rmk: the equation is interesting when the fibres have more automorphisms of the total space. E.g. it is trivial when the fibres are Riemann Surfaces

E.g. projective bundles:

$$O_{P(\varepsilon)}^{(c_1)^V} \in h$$
 Hezmitian metric on
 $J = J$ $u > h^V$ Hezmitian metric on $O_{P(\varepsilon)}^{(c_1)^V}$
 $P(\varepsilon) \rightarrow B$ $u > h^V$ Hezmitian metric on $O_{P(\varepsilon)}^{(c_1)^V}$
Its curvature $\omega = iF_{h^V}$ such that $\omega|_{P(\varepsilon)_b} = \omega_{FS}|_b$
 ω is optimal symplectic connection $\ll A_k$ is Hermite Einstein

§ OPTIMAL SYMPLECTIC CONNECTIONS

$$P_{\mathsf{E}}\left(\Delta_{\mathsf{vert}} \Lambda_{\mathsf{w}_{\mathsf{B}}} \widetilde{\mathsf{T}}_{\mathcal{H}} + \Lambda_{\mathsf{w}_{\mathsf{B}}} \rho_{\mathcal{H}} + \lambda_{\mathcal{V}} \right) = 0$$

Rmk: the equation is interesting when the fibres have more automorphisms of the total space. Eq. it is trivial when the fibres are Riemann Jurfaces

Assume: Aut $(\pi_Y) = \{f \in Aut(Y, H_Y) | \pi \circ f = \pi\}$ discrete

SOPTIMAL SYMPLECTIC CONNECTIONS

$$P_{\mathsf{E}}\left(\Delta_{\mathsf{vert}} \Lambda_{\mathsf{w}_{\mathsf{B}}} \widetilde{\mathsf{T}}_{\mathcal{H}} + \Lambda_{\mathsf{w}_{\mathsf{B}}} \rho_{\mathcal{H}} + \lambda_{\mathcal{V}} \right) = 0$$

RmK: the equation is interesting when the fibres have more automorphisms of the total space. Eq. it is trivial when the fibres are Riemann Surfaces

Assume: Aut $(\pi_{Y}) = \{f \in Aut(Y, H_{Y}) \mid \pi \circ f = \pi \}$ discrete Going back to the Kuzanishi space V_{π} : $0 \in V_{\pi} \longleftrightarrow \overset{\times}{B}$ Let $v_{0} = \partial_{S} |_{S=0} y_{S} \in T_{0} \overline{V_{\pi}}$. Then we can write the $equation on Y as: \Theta(\omega, 0, v_{0}) = 0$ $y_{S} \in V_{\pi} \longleftrightarrow \overset{\times}{B} \cong \overset{\vee}{B}$

§ OPTIMAL SYMPLECTIC CONNECTIONS

$\Theta(\omega, o, r_0) = o$

Assume • Y - B has an optimal symplectic connection, i.e. $\Theta(\omega, 0, v_s) = 0$.

• $W \subset V_{TT}$ locally closed subset of the first lemma : $\forall u \in W$ $\forall_{vv} \rightarrow B$ admits a degeneration to $X' \rightarrow B$ rel. csck.

SOPTIMAL SYMPLECTIC CONNECTIONS

$\Theta(\omega, o, v_o) = o$

Assume $Y \rightarrow B$ has an optimal symplectic connection, i.e. $\Theta(\omega, 0, v_0) = 0$. $W \subset V_{TT}$ locally closed subset of the first lemma : $\forall w \in W$ $Y_{uv} \rightarrow B$ admits a degeneration to $X' \rightarrow B$ rel. csck. Lemma (-) Let Aut(π_Y) be discrete. Let $w \in W \iff Y_{uv} \rightarrow B$. Then we can find a paiz $(x, v) \in TW$ st. $x \iff X' \rightarrow B$ csck fibres $v = \partial_S |_{S=0} w_S \in T_X V_T$ Then $\exists w \in C, (H_Y)$ st. $\Theta(w, x, v) = 0$

SOPTIMAL SYMPLECTIC CONNECTIONS

$\Theta(\omega, o, v_o) = o$

Assume • Y-3 has an optimal symplectic connection, i.e. $\Theta(\omega, o, v_s) = 0$. • $W \subset V_{TT}$ locally closed subset of the first lemma : $\forall u \in W$ $Y_{uv} \rightarrow B$ admits a degeneration to $X' \rightarrow B$ rel. csck. Lemma (-) Let Aut(π_{Y}) be discrete. Let $w \in W \iff Y_{uv} \rightarrow B$. Then we can find a paiz $(x, v) \in TW$ st. $x \longrightarrow X' \longrightarrow B$ $v = \partial_{S}|_{S = 0} w_{S} \in T_{X} \vee \pi$ Then $\exists w \in C_{1}(H_{Y})$ st. $\Theta(w, x, v) = 0$

Pf: implicit function theorem

Rmk: the Lemma gives openness of solutions within a locally closed subvariety.

MODULI SPACE

Let Y -> B admit an optimal symplectic connection The two Lemmas give a locally closed complex space W where the equation still admit solutions

=> Local charts of moduli space: W where $Aut(\pi_y)$ is finite.

MODULI SPACE

Let Y -> B admit an optimal symplectic connection The two Lemmas give a locally closed complex space W where the equation still admit solutions

=> Local charts of moduli space: \overline{W} Aut (π_{Y})

where Aut(Try) is finite.

M-stability -> 3HE K-stability -> 3csck

• Has a Weil-Petersson type köhler metric

Remark :

· Housdorff

- 3 optimal symplectic connections $\langle \cdot \rangle$ fibration stability [Dezvan-Sektnan] [Hallam] f.stability [Hattori]
- [Hashizume-Hattori] moduli space of Cababi-Yau fibrations over a curve where also the base changes

