
Isometry-Invariant and Subdivision-Invariant

Representations of Embedded Simplicial Complexes

Taejin Paik

May 24, 2023

Seoul National University

paiktj@snu.ac.kr



3D Objects

Figure 1: 3D objects

https://www.thingiverse.com/thing:151081

https://github.com/krober10nd/SeismicMesh

https://en.wikipedia.org/wiki/Fullerene



Triangular Mesh

• Triangular mesh can be used to represent complex 3D objects,

and it is widely used in computer graphics and computer

vision.

• The mesh is created by connecting vertices with edges to form

triangular faces.

• We can consider a triangular mesh as a type of simplicial

complex.



Triangular Mesh

• Triangular mesh can be used to represent complex 3D objects,

and it is widely used in computer graphics and computer

vision.

• The mesh is created by connecting vertices with edges to form

triangular faces.

• We can consider a triangular mesh as a type of simplicial

complex.



Triangular Mesh

• Triangular mesh can be used to represent complex 3D objects,

and it is widely used in computer graphics and computer

vision.

• The mesh is created by connecting vertices with edges to form

triangular faces.

• We can consider a triangular mesh as a type of simplicial

complex.



How to analyze?

Tasks:

• Classifying

• Identifying the category or group that a 3D object belongs to

based on its features or characteristics.

• Regression

• Predicting a numerical value for a target variable based on the

features or characteristics of a 3D object.

• Clustering

• Grouping similar 3D objects together based on their features or

characteristics, without prior knowledge of their categories or

groups.



Vector Representation

• Our goal is to find a suitable representation vector with

constant size based on our task.

• This vector can be used to cluster similar simplicial complexes

together, study their properties, and for supervised learning

tasks.



Vector Representation

• Our goal is to find a suitable representation vector with

constant size based on our task.

• This vector can be used to cluster similar simplicial complexes

together, study their properties, and for supervised learning

tasks.



Classical Approaches

Gupta, A., Watson, S., & Yin, H. (2020, July). 3d point cloud feature explanations using gradient-based

methods. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d

shape recognition. In Proceedings of the IEEE international conference on computer vision (pp. 945-953).

https://keras.io/examples/vision/pointnet/



Isometry Invariance



Subdivision Invariance



Our Goal

• Finding a representation vector of each simplicial complex in

Euclidean space

• Invariances

• Isometry Invariance

• Subdivision Invariance

First, let’s briefly look at the definition of a simplicial complex.



Our Goal

• Finding a representation vector of each simplicial complex in

Euclidean space

• Invariances

• Isometry Invariance

• Subdivision Invariance

First, let’s briefly look at the definition of a simplicial complex.



Preliminaries



Simplex

Definition

A k-simplex is a convex hull of k + 1 affinely independent points

in an ambient space Rn.

0-simplex 1-simplex 2-simplex 3-simplex

https://umap-learn.readthedocs.io/en/latest/how umap works.html



Simplicial Complex

Definition

A simplicial complex K is defined as a finite collection of

simplices that satisfy:

1. If τ is a face of σ and σ ∈ K , then τ ∈ K .

2. Assume that σ0 and σ1 are elements of K . Then, σ0 ∩ σ1 is a

face of σ0 and σ1 if it is not the empty set.

https://en.wikipedia.org/wiki/Simplicial complex



Embedded Simplicial Complex

• We primarily focus on embedded simplicial complex, which

is defined as a union of simplices in a given simplicial complex

K with the subspace topology inherited from the ambient

Euclidean space.

• For a simplicial complex K , we will also call the embedded

simplicial complex K for ease of notation.



Embedded Simplicial Complex

• We primarily focus on embedded simplicial complex, which

is defined as a union of simplices in a given simplicial complex

K with the subspace topology inherited from the ambient

Euclidean space.

• For a simplicial complex K , we will also call the embedded

simplicial complex K for ease of notation.



Notations

Definition

For an embedded simplicial complex K in Rn, we write MK to

denote
{
M−1x | x ∈ K

}
for M ∈ GLn(R).

Also, for a vector v in Rn, we denote the set {x + v | x ∈ K} as

K + v .

Definition

Suppose f is a function from Sn−1 and R be a matrix O(n).

Then, the function obtained by applying the matrix R to the

input of f , that is, the function x 7→ f (Rx), is denoted as R∗f .



Notations

Definition

For an embedded simplicial complex K in Rn, we write MK to

denote
{
M−1x | x ∈ K

}
for M ∈ GLn(R).

Also, for a vector v in Rn, we denote the set {x + v | x ∈ K} as

K + v .

Definition

Suppose f is a function from Sn−1 and R be a matrix O(n).

Then, the function obtained by applying the matrix R to the

input of f , that is, the function x 7→ f (Rx), is denoted as R∗f .



Invariance and Equivariance

• Invariance refers to the property of remaining unchanged
under certain transformations or operations.

ex) f : S2 → Rm, and P(R∗f ) = P(f ) for R ∈ O(3).

• Pooling in neural networks (maximum or average)

• Equivariance is the property of a function or operation that
preserves its behavior under a transformation of its inputs. It
means that if we apply a transformation to the input of a
function, the output of the function will be transformed in the
same way.

ex) f : S2 → Rm, and P(R∗f ) = R∗(P(f )) : S2 → Rk

for R ∈ O(3).



Invariance and Equivariance

• Invariance refers to the property of remaining unchanged
under certain transformations or operations.

ex) f : S2 → Rm, and P(R∗f ) = P(f ) for R ∈ O(3).

• Pooling in neural networks (maximum or average)

• Equivariance is the property of a function or operation that
preserves its behavior under a transformation of its inputs. It
means that if we apply a transformation to the input of a
function, the output of the function will be transformed in the
same way.

ex) f : S2 → Rm, and P(R∗f ) = R∗(P(f )) : S2 → Rk

for R ∈ O(3).



Proposed Approach



Overview of Our Approach

We’ll introduce the operators here one by one:

• K ⊂ R3

• FK : S2 → Map(R→ R)

• DFK : S2 → Ra

• P(DFK ) ∈ Rb

Properties:

• DFRK+v = R∗(DFK )

• P(R∗(DFK )) ' P(DFK )

for R ∈ O(3) and v ∈ R3.

First, we introduce the Euler curve transform F .



Overview of Our Approach

We’ll introduce the operators here one by one:

• K ⊂ R3

• FK : S2 → Map(R→ R)

• DFK : S2 → Ra

• P(DFK ) ∈ Rb

Properties:

• DFRK+v = R∗(DFK )

• P(R∗(DFK )) ' P(DFK )

for R ∈ O(3) and v ∈ R3.

First, we introduce the Euler curve transform F .



Euler Characteristic

Let K be a simplicial complex.

χ(K ) =
∞∑
i=0

(−1)ici

where ci is the number of i-dimensional simplices in K .

χ(K ) =
∞∑
i=0

(−1)i rk Hi (K ).

Therefore, the Euler characteristic is not affected by the

subdivision of the simplicial complex.



Euler Characteristic

Let K be a simplicial complex.

χ(K ) =
∞∑
i=0

(−1)ici

where ci is the number of i-dimensional simplices in K .

χ(K ) =
∞∑
i=0

(−1)i rk Hi (K ).

Therefore, the Euler characteristic is not affected by the

subdivision of the simplicial complex.



Semialgebraic Set (1)

Definition

A semialgebraic set is a subset of n-dimensional Euclidean space

that can be expressed as a finite union or intersection of sets of

two types:

{x̄ ∈ Rn : f (x̄) > 0} and {x̄ ∈ Rn : g(x̄) = 0} ,

where f and g are polynomials in x̄ = (x1, . . . , xn) with real

coefficients.



Semialgebraic Set (2)

• Each simplex is a semialgebraic set.

0-simplex 1-simplex 2-simplex 3-simplex

• Semialgebraic sets are closed under unions.

• Therefore, an embedded simplicial complex is a semialgebraic

set.



Semialgebraic Set (2)

• Each simplex is a semialgebraic set.

0-simplex 1-simplex 2-simplex 3-simplex

• Semialgebraic sets are closed under unions.

• Therefore, an embedded simplicial complex is a semialgebraic

set.



Semialgebraic Set (2)

• Each simplex is a semialgebraic set.

0-simplex 1-simplex 2-simplex 3-simplex

• Semialgebraic sets are closed under unions.

• Therefore, an embedded simplicial complex is a semialgebraic

set.



Semialgebraic Set (3)

• One of the main properties of semialgebraic sets is that they

admit a well-defined notion of Euler characteristics.

Theorem (van den Dries)

Each semialgebraic set K ⊆ Rm has a finite partition

K = C1 ∪ · · · ∪ Cj into cells Ci .

• Euler characteristic for semialgebraic set is (well) defined

similarly.

χ(K ) =
∞∑
i=0

(−1)ici

where ci is the number of i-cells.

van den Dries, L. P. D. (1998). Tame topology and o-minimal structures (Vol. 248). Cambridge university press.



Semialgebraic Set (3)

• One of the main properties of semialgebraic sets is that they

admit a well-defined notion of Euler characteristics.

Theorem (van den Dries)

Each semialgebraic set K ⊆ Rm has a finite partition

K = C1 ∪ · · · ∪ Cj into cells Ci .

• Euler characteristic for semialgebraic set is (well) defined

similarly.

χ(K ) =
∞∑
i=0

(−1)ici

where ci is the number of i-cells.

van den Dries, L. P. D. (1998). Tame topology and o-minimal structures (Vol. 248). Cambridge university press.



Euler Integration

Additivity property: for semialgebraic sets A and B, we have

χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B).

Definition

Let X be a semialgebraic set in Rn. We call an integer-valued

function f : X → Z constructible if f −1(i) is semialgebraic

subset for every i ∈ Z. We denote the set of bounded compactly

supported constructible functions on X as CF(X ).

• For every f ∈ CF(X ), we define∫
X
f dχ :=

∑
i∈Z

i · χ
(
f −1(i)

)
.



Euler Integration

Additivity property: for semialgebraic sets A and B, we have

χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B).

Definition

Let X be a semialgebraic set in Rn. We call an integer-valued

function f : X → Z constructible if f −1(i) is semialgebraic

subset for every i ∈ Z. We denote the set of bounded compactly

supported constructible functions on X as CF(X ).

• For every f ∈ CF(X ), we define∫
X
f dχ :=

∑
i∈Z

i · χ
(
f −1(i)

)
.



Euler Curve Transform

• The Euler curve transform is an operator denoted as R that

maps from CF (Rn) to CF
(
Sn−1 × R

)
:

R(f )(v , r) =

∫
Rn

f (x) · 1x ·v≤r (x)dχ(x).

• For a simplicial complex K , if we put f = 1K ,

R (1K ) (v , r) =

∫
Rn

1{x∈K |x ·v≤r}dχ = χ (Kv ,r )

where Kv ,r := {x ∈ Rn | x · v ≤ r} ∩ K .



Euler Curve Transform

• The Euler curve transform is an operator denoted as R that

maps from CF (Rn) to CF
(
Sn−1 × R

)
:

R(f )(v , r) =

∫
Rn

f (x) · 1x ·v≤r (x)dχ(x).

• For a simplicial complex K , if we put f = 1K ,

R (1K ) (v , r) =

∫
Rn

1{x∈K |x ·v≤r}dχ = χ (Kv ,r )

where Kv ,r := {x ∈ Rn | x · v ≤ r} ∩ K .



Kv ,r := {x ∈ Rn | x · v ≤ r} ∩ K



Kv ,r := {x ∈ Rn | x · v ≤ r} ∩ K



Injectivity

Theorem (Ghrist et al., 2018)

The Euler curve transform R : CF(Rn)→ CF(Sn−1 × R) is

injective.

Therefore, instead of the original simplicial complex K , we can deal

with R(1K ).

Ghrist, R., Levanger, R., & Mai, H. (2018). Persistent homology and Euler integral transforms. Journal of

Applied and Computational Topology, 2, 55-60.



• To simplify notation, for each embedded simplicial complex

K , we define a function FK :

FK : Sn−1 −→ Map(R→ R)

v 7−→ (FK (v) : R −→ R)

r 7−→ χ(Kv ,r )

• Note that R(1K )(v , r) = χ(Kv ,r )

• For each direction v ∈ Sn−1, we will call the curve FK (v) the

Euler curve.

• By the injectivity, K1 6= K2 implies FK1 6= FK2 .



• To simplify notation, for each embedded simplicial complex

K , we define a function FK :

FK : Sn−1 −→ Map(R→ R)

v 7−→ (FK (v) : R −→ R)

r 7−→ χ(Kv ,r )

• Note that R(1K )(v , r) = χ(Kv ,r )

• For each direction v ∈ Sn−1, we will call the curve FK (v) the

Euler curve.

• By the injectivity, K1 6= K2 implies FK1 6= FK2 .



Euler Curves

Figure 6: An example of FK : S2 → Map(R→ R)



Properties (1)

Proposition

Let K be an embedded simplicial complex in R3. Then, for

R ∈ O(3) and w ∈ R3,

FRK+w (v)(r) = FK (Rv)(r − v · w).

That is, the transform is O(3)-equivariant, and if the embedded

simplicial complex is translated, then the resulting function is also

translated.

Paik, T. (2023). Invariant Representations of Embedded Simplicial Complexes. arXiv preprint arXiv:2302.13565.



Properties (2)

Proposition

Assume that there are translation-invariant functionals {Di}mi=1

on the set Map(R→ R), that is, if there exist t ∈ R such that

f (x) = g(x + t) for every x, then Di f = Dig ∈ R for every

1 ≤ i ≤ m. Let DFK be a function

DFK : S2 −→ Rm

v 7−→ {D1 ◦ FK (v), . . . ,Dm ◦ FK (v)}.

Then, DF∗ is O(3)-equivariant, subdivision-invariant, and

translation-invariant on the set of embedded simplicial complexes.

Paik, T. (2023). Invariant Representations of Embedded Simplicial Complexes. arXiv preprint arXiv:2302.13565.



Translation-Invariant Operator (1)

• One of the simplest translation-invariant functionals for

Map(R→ R) is the maximum functional, i.e.,

max{f (x) : x ∈ R}.

• However, the maximum functional cannot capture the various

features of a function.



Translation-Invariant Operator (1)

• One of the simplest translation-invariant functionals for

Map(R→ R) is the maximum functional, i.e.,

max{f (x) : x ∈ R}.

• However, the maximum functional cannot capture the various

features of a function.



Translation-Invariant Operator (2)

• Instead, we can stack several translation-equivariant operators
and apply the max functional at the end to get various
invariant features.

• Let Tc(f ) denote the translation operator by c , that is, the

function f (x − c) where c is a constant.

• Let {Gi : Map(R→ R)→ Map(R→ R)}ni=1 be

translation-equivariant operators.

• Let H be the maximum functional on Map(R→ R).

• For a function f ∈ Map(R→ R),

H ◦ Gn ◦ · · · ◦ G1 ◦ Tc(f ) = H ◦ Gn ◦ · · · ◦ Tc ◦ G1(f )

= · · ·
= H ◦ Tc ◦ Gn ◦ · · · ◦ G1(f )

= H ◦ Gn ◦ · · · ◦ G1(f ).



Translation-Invariant Operator (2)

• Instead, we can stack several translation-equivariant operators
and apply the max functional at the end to get various
invariant features.

• Let Tc(f ) denote the translation operator by c , that is, the

function f (x − c) where c is a constant.

• Let {Gi : Map(R→ R)→ Map(R→ R)}ni=1 be

translation-equivariant operators.

• Let H be the maximum functional on Map(R→ R).

• For a function f ∈ Map(R→ R),

H ◦ Gn ◦ · · · ◦ G1 ◦ Tc(f ) = H ◦ Gn ◦ · · · ◦ Tc ◦ G1(f )

= · · ·
= H ◦ Tc ◦ Gn ◦ · · · ◦ G1(f )

= H ◦ Gn ◦ · · · ◦ G1(f ).



Translation-Invariant Operator (2)

• Instead, we can stack several translation-equivariant operators
and apply the max functional at the end to get various
invariant features.

• Let Tc(f ) denote the translation operator by c , that is, the

function f (x − c) where c is a constant.

• Let {Gi : Map(R→ R)→ Map(R→ R)}ni=1 be

translation-equivariant operators.

• Let H be the maximum functional on Map(R→ R).

• For a function f ∈ Map(R→ R),

H ◦ Gn ◦ · · · ◦ G1 ◦ Tc(f ) = H ◦ Gn ◦ · · · ◦ Tc ◦ G1(f )

= · · ·
= H ◦ Tc ◦ Gn ◦ · · · ◦ G1(f )

= H ◦ Gn ◦ · · · ◦ G1(f ).



Translation-Invariant Operator (2)

• Instead, we can stack several translation-equivariant operators
and apply the max functional at the end to get various
invariant features.

• Let Tc(f ) denote the translation operator by c , that is, the

function f (x − c) where c is a constant.

• Let {Gi : Map(R→ R)→ Map(R→ R)}ni=1 be

translation-equivariant operators.

• Let H be the maximum functional on Map(R→ R).

• For a function f ∈ Map(R→ R),

H ◦ Gn ◦ · · · ◦ G1 ◦ Tc(f ) = H ◦ Gn ◦ · · · ◦ Tc ◦ G1(f )

= · · ·
= H ◦ Tc ◦ Gn ◦ · · · ◦ G1(f )

= H ◦ Gn ◦ · · · ◦ G1(f ).



Translation-Invariant Operator (2)

• Instead, we can stack several translation-equivariant operators
and apply the max functional at the end to get various
invariant features.

• Let Tc(f ) denote the translation operator by c , that is, the

function f (x − c) where c is a constant.

• Let {Gi : Map(R→ R)→ Map(R→ R)}ni=1 be

translation-equivariant operators.

• Let H be the maximum functional on Map(R→ R).

• For a function f ∈ Map(R→ R),

H ◦ Gn ◦ · · · ◦ G1 ◦ Tc(f ) = H ◦ Gn ◦ · · · ◦ Tc ◦ G1(f )

= · · ·
= H ◦ Tc ◦ Gn ◦ · · · ◦ G1(f )

= H ◦ Gn ◦ · · · ◦ G1(f ).



Cross-Correlation

Definition

For a bounded measurable function f and a bounded compact

supported measurable function g , the cross-correlation is defined

as:

(f ? g)(τ) ,
∫ ∞
−∞

f (t + τ)g(t) dt.

For c ∈ R, we have

(Tc(f ) ? g)(τ) =

∫ ∞
−∞

Tc(f )(t + τ)g(t) dt

=

∫ ∞
−∞

f (t + τ − c)g(t) dt

= (f ? g)(τ − c) = Tc(f ? g)(τ).



1D-Convolution

• CNN(Convolutional Neural Network):

• Discretization of the cross-correlation.

• CNN can be used to approximate a translation-equivariant

operator

Figure 7: How 1D-CNN works

https://ai.stackexchange.com/questions/28767/what-does-channel-mean-in-the-case-of-an-1d-convolution



• So far, we have defined

FK : S2 → Map(R→ R)

and

DFK : S2 → Ra.

• Properties:

• DFK+v = DFK for v ∈ R3.

• DFRK = R∗(DFK ) for R ∈ O(3).

• But, we cannot process all the data in practice, and need to

discretize.



• So far, we have defined

FK : S2 → Map(R→ R)

and

DFK : S2 → Ra.

• Properties:

• DFK+v = DFK for v ∈ R3.

• DFRK = R∗(DFK ) for R ∈ O(3).

• But, we cannot process all the data in practice, and need to

discretize.



• So far, we have defined

FK : S2 → Map(R→ R)

and

DFK : S2 → Ra.

• Properties:

• DFK+v = DFK for v ∈ R3.

• DFRK = R∗(DFK ) for R ∈ O(3).

• But, we cannot process all the data in practice, and need to

discretize.



In practice:

1. Draw n points from S2 as uniformly as possible:

{x1, x2, . . . , xn} = X ⊂ S2.

2. For each point, we obtain a discretized Euler curve

FK : X → Rd .

(where d is a predetermined resolution of the Euler curves.)

3. Using CNNs, activation functions, and a max pooling layer,

we obtain

DFK : X → Ra.



In practice:

1. Draw n points from S2 as uniformly as possible:

{x1, x2, . . . , xn} = X ⊂ S2.

2. For each point, we obtain a discretized Euler curve

FK : X → Rd .

(where d is a predetermined resolution of the Euler curves.)

3. Using CNNs, activation functions, and a max pooling layer,

we obtain

DFK : X → Ra.



In practice:

1. Draw n points from S2 as uniformly as possible:

{x1, x2, . . . , xn} = X ⊂ S2.

2. For each point, we obtain a discretized Euler curve

FK : X → Rd .

(where d is a predetermined resolution of the Euler curves.)

3. Using CNNs, activation functions, and a max pooling layer,

we obtain

DFK : X → Ra.



O(3)-Equivariant Operator

• The only thing left to do is to build an O(3)-invariant

operator.

• As before, to get a O(3)-invariant operator, we can stack

several O(3)-equivariant operators first, and then stack an

O(3)-invariant operator using a pooling layer.

• Now we need to make an operator

T : Map(X → Rm1)→ Map(X → Rm2)

that can approximate an O(3)-equivariant operator:

“T (R∗f ) ' R∗(T (f ))”.



O(3)-Equivariant Operator

• The only thing left to do is to build an O(3)-invariant

operator.

• As before, to get a O(3)-invariant operator, we can stack

several O(3)-equivariant operators first, and then stack an

O(3)-invariant operator using a pooling layer.

• Now we need to make an operator

T : Map(X → Rm1)→ Map(X → Rm2)

that can approximate an O(3)-equivariant operator:

“T (R∗f ) ' R∗(T (f ))”.



O(3)-Equivariant Operator

• The only thing left to do is to build an O(3)-invariant

operator.

• As before, to get a O(3)-invariant operator, we can stack

several O(3)-equivariant operators first, and then stack an

O(3)-invariant operator using a pooling layer.

• Now we need to make an operator

T : Map(X → Rm1)→ Map(X → Rm2)

that can approximate an O(3)-equivariant operator:

“T (R∗f ) ' R∗(T (f ))”.



Schema

We are going to make T via a graph neural network:

1. Predetermined r > 0 and uniform samples X ⊂ S2.

2. Construct a graph

• Consider the points X = {x1, . . . , xn} as nodes of a graph.

• Connect the points where the distance between two points is

less than r .

3. Consider the function DFK : X → Ra as node features.

4. We perform a graph neural network on the graph.



Figure 8: Subdivision of the icosahedron



Graph Convolutional Network (1)

• Graph Convolutional Network (GCN) is a type of neural

network that operates on graph structures.

• GCN is an operator that updates feature vectors for each node

in a graph by modeling interactions between neighboring

nodes and using both the graph structure and node features.



Graph Convolutional Network (2)

Neighborhood of v0

• Node feature f : V → Rk .

• New updated node feature T (f ):

T (f )(v) = Mean{Wθ·f (u) : u ∈ Ñ (v)}

where Ñ (v) = {v} ∪ N (v).



Extension

• Now, we need to show

“T (R∗f ) ' R∗(T (f ))”

for a function f ∈ Map(X → Rm1), but this does not make

sense. (∵ T : Map(X → Rm1)→ Map(X → Rm2))

• Thus, we extend T :

T ′ : Map(S2 → Rm1)→ Map(S2 → Rm2)

where T ′(f )(x) = Mean{Wθ · f (u) : ‖x − u‖ < r , u ∈ X}.
Obviously, T ′(f )

∣∣
X

= T (f
∣∣
X

).

• Now, the statements T ′ (R∗f ) and R∗(T ′(f )) make sense.



Extension

• Now, we need to show

“T (R∗f ) ' R∗(T (f ))”

for a function f ∈ Map(X → Rm1), but this does not make

sense. (∵ T : Map(X → Rm1)→ Map(X → Rm2))

• Thus, we extend T :

T ′ : Map(S2 → Rm1)→ Map(S2 → Rm2)

where T ′(f )(x) = Mean{Wθ · f (u) : ‖x − u‖ < r , u ∈ X}.
Obviously, T ′(f )

∣∣
X

= T (f
∣∣
X

).

• Now, the statements T ′ (R∗f ) and R∗(T ′(f )) make sense.



Extension

• Now, we need to show

“T (R∗f ) ' R∗(T (f ))”

for a function f ∈ Map(X → Rm1), but this does not make

sense. (∵ T : Map(X → Rm1)→ Map(X → Rm2))

• Thus, we extend T :

T ′ : Map(S2 → Rm1)→ Map(S2 → Rm2)

where T ′(f )(x) = Mean{Wθ · f (u) : ‖x − u‖ < r , u ∈ X}.
Obviously, T ′(f )

∣∣
X

= T (f
∣∣
X

).

• Now, the statements T ′ (R∗f ) and R∗(T ′(f )) make sense.



O(3)-Equivariance

Theorem

Let f be a bounded measurable function on S2. Assume that

x1, x2, . . . , xn are independent identically distributed random

variables from the uniform distribution on S2. Then, for

R ∈ O(3) and ε > 0,

P
[
‖R∗T ′(f )(x)− T ′(R∗f )(x)‖∞ > ε

]
−→ 0

for every x ∈ S2 as n goes to infinity.

• Using several GCN layers, activation layers, and a pooling layer

at the end, we can approximate an O(3)-invariant operator.

Paik, T. (2023). Invariant Representations of Embedded Simplicial Complexes. arXiv preprint arXiv:2302.13565.



Summary

• First, sample points X = {x1, . . . , xn} ⊂ S2 uniformly.

1 K ⊂ R3

3 DFK : X → Rm

2 FK : X → Rd

4 P(DFK ) ∈ Rk

R
ep

re
se

nt
at

io
n

1D
 C

N
N

Po
ol

in
g

G
N

N

Po
ol

in
g

FC

Figure 9: Simplified structure of the proposed architecture



Discretization Error

• Dealing with discretized Euler curves and using CNNs instead

of the cross-correlation.

• The theorem for the GCN is about what happens as n goes to

infinity, but we don’t know how large the error will be for

finite n.

• By stacking multiple neural network layers with discretization

errors, there is a possibility that the discretization error could

be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.



Discretization Error

• Dealing with discretized Euler curves and using CNNs instead

of the cross-correlation.

• The theorem for the GCN is about what happens as n goes to

infinity, but we don’t know how large the error will be for

finite n.

• By stacking multiple neural network layers with discretization

errors, there is a possibility that the discretization error could

be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.



Discretization Error

• Dealing with discretized Euler curves and using CNNs instead

of the cross-correlation.

• The theorem for the GCN is about what happens as n goes to

infinity, but we don’t know how large the error will be for

finite n.

• By stacking multiple neural network layers with discretization

errors, there is a possibility that the discretization error could

be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.



Discretization Error

• Dealing with discretized Euler curves and using CNNs instead

of the cross-correlation.

• The theorem for the GCN is about what happens as n goes to

infinity, but we don’t know how large the error will be for

finite n.

• By stacking multiple neural network layers with discretization

errors, there is a possibility that the discretization error could

be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.



Experiment



ANIM (ANimals in Motion)

• The dataset I used

• 229 mesh data

• 8 classes

http://people.csail.mit.edu/sumner/research/deftransfer/data.html



Training Details

• Train the model to converge on the

vertices of a regular octagon for

each class.

Elephant

Flamingo Camel

Horse

Lion

CatFace

Head

• Randomly picked 5 for each class

to train.

Whole data set

About 20%

Train



Test Details

• Apply a random isometric

transformation to each data

three times, to obtain three

new data sets, which are

then used as inputs to the

neural network.

(a)

(b)

Train

(c)

: Random isometric transform

Inputs for
testing



Experimental Results

(a) (b) (c)

Figure 10: The outcomes for 3 datasets.



Discussion

• Theoretical error bound of each layer

• Computational cost

• Usage of persistent homology/cohomology techniques



Discussion

• Theoretical error bound of each layer

• Computational cost

• Usage of persistent homology/cohomology techniques



Discussion

• Theoretical error bound of each layer

• Computational cost

• Usage of persistent homology/cohomology techniques



Discussion

• Theoretical error bound of each layer

• Computational cost

• Usage of persistent homology/cohomology techniques



Thank You


	Preliminaries
	Proposed Approach
	Experiment

