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Main goal

Description of a (birationally) interesting wall-crossing
~ Wall-crossing can be more complicated than was previously
known.

~~ Failure of the wall-crossing/MMP correspondence.

(Big picture: description of some classical moduli spaces)



Notation /Definition

X a smooth projective variety.  v: a class (e.g. Chern character).

» An object E € D?(X) = DP(Coh(X)) is (semi)-stable with
respect to the "slope" p, if u(F)(<) < u(E) fo any sub-object
FCE.

» Stab(X): stability "manifold" of all stability conditions on X,
[Bridgeland] (sometimes, we call it stability space)

> M, (v): space of o-stable objects of class v in D?(X) .

» For a non-singular 3-fold X, we define a
Pandharipande-Thomas stable pair (F,s) where F is a sheaf
supported on curves in X with zero-dimensional cokernel of
the sections s: Ox — F.

» For a category C, we define the Grothendieck group Ky(C) to
be a free abelian group (usually not f.g.) generated by the
objects in C with relations A+ B = E for any short exact
sequence A > E — B.



Minimal Model Program (MMP)

Let M be a smooth projective variety.

Definition. A Minimal Model Program (MMP) is a sequence of
divisorial contractions or flips

M=My--> M -—=> My -—» ............ --» My

such that each M; is at least Q — factorial (i.e. any Weil divisor is
Q — Cartier) and My is either a minimal model (Kjy, is nef) or has
a Mori fiber space structure.

We refer to each step in the sequence as "MMP step".



Stability manifold and wall-chamber decomposition

Stab (X)

M C.: )
{
J/law) =/1/{7(u)

!

MOdluli space
o} 3-stable ob\jer&
with respect o v

wall :lomﬂd— inite coolim=] sub-manifuld

Chamber: Complement of the walls



Wall-Crossing/MMP correspondence

Let X be a variety, and M = M,(X) the moduli space of stable
objects associated to a chamber in Stab(X).

Stob ) Mov (M)




Question

Is there a correspondence between the Bridgeland
wall-crossing in Stab(X) and the Mori wall-crossing in
Mov(M)?



Surfaces

The answer is affirmative for most of the cases :

(some examples:)
» X=K3 surface [Bayer-Macri('14)]

» X=P? [ Arcara-Bertram-Coskun-Huizenga('13);
Bertram-Martinez-Wang ('14); Li-Zhao ('18)]

» X=Enriques Surface [Neur-Yoshioka('19 ); Beckmann('20)]

» M=Smooth projective surface [Toda('13)]



MMP /Wall-crossing correspondence on surfaces

S: K3 surface, and v a primitive class.

Theorem [Bayer-Macri] Let 0,9 be generic stability conditions
with respect to v. Then the two moduli spaces M, (v) and M;(v)
of Bridgeland-stable objects are birational to each other.

*Identify the Néron-Severi groups of M, (v) and M;(v).
*C a chamber; the main result of [Bayer-Macri] gives a natural map

Ic: C— NS(Mc(v))

to the Néron-Severi group of the moduli space, whose image is
contained in the ample cone of M¢(v).



(MMP /Wall-crossing correspondence on surfaces)

Theorem [Bayer-Macri] Fix a base point o € Stab(5).
(a) Under the identification of the Néron-Severi groups, the maps
Ic glue to a piece-wise analytic continuous map

L: Stab(S) — NS(Mo(v)).

(b) The map L is compatible, in the sense that for any generic
o’ € Stab(S), the moduli space M,/(v) is the birational model
corresponding to L(c”). In particular, every smooth K-trivial
birational model of M, (v) appears as a moduli space M ¢(v) of
Bridgeland stable objects for some chamber C C Stab(S5).

*Part (b) says MMP can be run via wall-crossing:
Any birational model can be reached after wall-crossing as a moduli
space of stable objects.



threefolds

For P3:
» For some cases, the answer is "partially" affirmative.

» Hilbert scheme of twisted cubics in P3
[Schmidt (2015); Xia (2016)]

» Hilbert scheme of elliptic quartics in P3
[Gallardo-Huerta-Schmidt(2016)]

* Both Hilbert schemes have 2 irreducible components.
* Wall-Crossing = MMP
* Wall-Crossing <= MMP

> We exhibit an example for which both directions are false.



Very rough idea of "Bridgeland stability conditions":

t-structure,
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Then we can define "slope(E)": = %

~~ compare the slopes and define (semi-)stability.



Stability on abelian categoties

A an abelian category. A pair (A, Z) is stability conditions if Z is a
group homomorphism, called a central charge Z: Ko(A) — C
where Ko(A) is the Grothendieck group of A, such that
» For each non-zero object E in A, we have Im(Z(E)) > 0 and
if Im(Z(E)) =0, then Re(Z(E)) <0,
» (Harder-Narasimhan filtration) For any non-zero object E in
A, there is a

filtration
O=FCE CEC..CE,=E

where E; are objects in A and A;: = E;j/E;_1 are semistable
objects with p(A;) > p(Ai—1) for each i.
Example. Let C be a projective curve, and define Z as
Z(€): = —deg(&) + i.rk(E), for any object £ in Coh(C).
Therefore (Coh(C), Z) defines stability conditions.



Stability conditions on higher dimensional varieties

Issue: We cannot define any central charge for A = Coh(X) when
dim(X) > 2.

Solution: Try to find another abelian category in D?(X).

*A torsion pair in an abelian category A is a pair T, F of full
additive subcategories with (1) Hom(T,F) =0. (2) For all E € A
there exists a short exact sequence 0 - T — E — F — 0 where
TeT,FeF.

*A heart of a bounded t-structure A on DP(X) is a full additive
subcategory of D?(X) such that

» Hom(A[i],B[j]) =0 forall A,B € Aandi>j.

» Harder-Narasimhan property.

* Ais an abelian category, and Ko(A) = Ko(X) = Ko(DP(X)).
*Fix a finite rank lattice A and a group homomorphism

v: Ko(X) — A, such that the central charge factor via this
morphism.



Bridgeland stability conditions

Let X be a variety of dimension n. A pair o = (A, Z) is a
Bridgeland stability conditions on D®(X) if

» A is a heart of a bounded t-structure,

» The central charge Z: A — C, is an additive homomorphism,
(A finite rank lattice)

» For any non-zero object E in the heart, we have
Z(v(E)) € HUR,q, where H is the upper half plane in C,

» Support property.

Support property ~» Stab(X) admits a chamber decomposition,
depending on v, such that:

(i) for a chamber C, the moduli space M,(v) = M¢(v) is
independent of the choice of o € C, and

(i) walls consist of stability conditions with strictly semistable
objects of class v ([Bayer-Macri]).



Stability conditions on P3

Bridgeland stability conditions does exist on P3 ([Macri],
[Bayer-Macri-Toda], [Bayer-Macri-Stellari]):

» Double tilting Coh(P3) =< T, F >
~+ new heart of a bounded t-structure

» Central charge
» Support property satisfied

*There exist a wall-chamber structre on Stab(P3)



Back to the problem/example

Setup

Recall: A smooth non-hyperelliptic genus 4 curve C embeds into
P3 as a (2,3)-complete intersection curve.

Question: How to compactify this 24-dimensional space?

Classical Answer Hilbert scheme of such curves.

However: Many irreducible components.
Hard to even list all the irreducible components!

Instead: Bridgeland stability conditions on D?(P3) give better
compactifications, depending on a choice of a stability condition

o € Stab(P?) gives M,(1,0,—6,15), the moduli space of o-stable
complexes E with Ch(E) = Ch(Z¢).



Approach

Following a path along the space of stability conditions to
understand how M,(1,0, —6,15) changes:

» beginning of the path: Efficient compactification, given by a
P15-bundle (choice of cubic) over P? ( choice of quadric),
parametrising some non-torsion free sheaves in addition to
ideal sheaves.

» Large-volume limit Recovers the Hilbert scheme.

» Intermediate step: moduli space of PT stable pairs.

» Second wall-crossing: Detailed analysis of wall-crossing gives
novel features, as explained in the following.



Theorem 1 ([R20]). Fix v =(1,0,—6,15). There is a
wall-crossing M,_(v) — M, (v) such that:

» M, (v) is a smooth and irreducible variety.

> M, (v) = My (v) UM, where M, ( ) is birational to

M, _(v) and M’ is a new irreducible component.

» There is a diagram (where og is on the wall)

P

\/l ( /\/l ( v )

small divisorial
contraction (¢) contraction (1))

where both ¢ and v have relative Picard rank 1. In particular,

M, _(v) is not Q—factorial.



How to prove Theorem 17

The components before and after crossing the wall:
» M, (v): a blow-up of a P*>-bundle over P?
> M'’: a PY-bundle over Gr(2,4) x Fl, where Fl, is the space
parametrizing flags Zo C P C P2 where P is a plane and Z, a
zero dimensional subscheme of length 2.

Let W is the wall between M, _(v) and M, (v). Then we have
W = (Z;(-1),tp,(Z2,)"(-5)), where L is a line, P a plane, Z, a
zero-dimensional subscheme of length 2, and tp: P < P3 is the
inclusion map.



¢ is small

Description of destabilizing locus:

Proposition ([R20]) The destabilizing locus in M,_(v) when
crossing W is of dimension 10, and it contains the exceptional
locus of ¢: M,_(v) = Mgy(v) of dimension 8 which is a
P!-bundle over its 7-dimensional image under ¢.

Corollary ([R20]) ¢ is a small contraction.



Key step to prove 9 is divisorial

Description of the intersection of the 2 components:

—_—

Theorem 2 ([R20]). The intersection M,_(v) N M’ is the
exceptional divisor of the contraction map 1. This exceptional
locus contains an open subset U such that 9|y is a P*3-bundle over
a 10-dimensional base. It degenerates to a 14-dimensional cone
over a quartic with the vertex a P?-bundle as a fiber over a
7-dimensional base.



Idea of the proof of Theorem 2

1.
2.
3.

Subtle Ext-computations.

Technical lemmas.

The new component contains stable pairs whose underlying
curve is the union of a plane quintic with a line intersecting
this quintic, along with two marked points on the quintic.

L

<~




(Idea of the proof of Theorem 2)

4. The stable pairs arise as the degeneration of the ideal sheaf of
(2,3)-complete intersection curves <= the quintic has two
nodes that are colinear with the intersection point with the
line, and if the two marked points are the nodes.

L




(Idea of the proof of Theorem 2)

4.1. (Partial) Normalization ~~ canonical genus four curve C’
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(Idea of the proof of Theorem 2)

Degeneration of the normalization
4.2. Construct a family C = Blo(C’ x A!) of normalized curves C’:
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(Idea of the proof of Theorem 2)

4.3. The plane quintic arises as the projection of a (2,3)-complete
intersection curve in P3 from the intersection point with the
line.

5. Construct as many objects as possible in the limit of the
P3-bundle to recover the 14-dimensional cone in its closure.
5.1. degenerate Cs U L to C4 U D, where C4 a plane quartic and D

a thickened line

e




(Idea of the proof of Theorem 2)

5.2. 12 (choice of C4) + 2 (2 parameters for infinitesimal
thickening direction)= 14-dimensional cone.

infinitesimal parameters:
» proportion of the deformations of L and Cs
» deformation of the plane P’ (containing L)

»
L, |
/,ﬁ%
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Corollary of Theorem 2
After giving a description of the singular locus of M’, and then
using Theorem 2 we will get:

~+ Singular locus of M, (v)
= Intersection of the two components of M, (v)
= Exceptional locus of v

Corollary (of Theorem 2). 1) is a divisorial contraction.

_/{/{&(v)

small \9 Y divisorial

Contraction Contraction

M é,f)



|dea of the proof of relative Picard rank=1

» The relative Picard rank of ¢ is one: Non-trivial fibers of ¢
are P's which are all numerically equivalent (they occur in a
connected family).

» The relative Picard rank of ¢ is one: Enough to show the
fibers have 1—dimensional Ny (numerical group of 1-cycles):

» P13: Projective contraction.

» 14-dim cone: Extend the method in [Fulger-Lehmann] from a
cone with point vertex to the one with the P? vertex
(using the relation between Ny (X), Ni(Y), Ni(Z), No(Y)):

©Z blow- P of

Xad' n’

;il»mfy
4
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Proof of non-Q-factoriality of M, _(v)

If it was Q-factorial,
> 1 is a divisorial contraction

> 1 is a of relative Picard rank one

P

> M, (v) is the image of M, _(v) under ¢
= (1) My,(v) would also be Q-factorial ([Kollar-Mori]).
On the other hand, M, (v) is the image of the Q-factorial variety

M _(v) under a small contraction,

= (2) My,(v) cannot be Q—factorial.

(1), (2) = contradiction.



—_ —

Birational relationship between M, _(v) and M,_(v)
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(Birational relationship between M, _(v) and M, _(v))
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Movable cone of the blow-up of M, (v)
N Flip of M, (v)

N': Blow-up of N
N Blow-up of M, (v)

flipping

M, (v)

N N

@
Mo (V) My, (v) N

divisorial



Stob (P) Mov(N')=Mov(N")
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Figure 14: Correspondence fails



Thank you for your attention!



