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Horikawa surface

Definition

A Horikawa surface S is a smooth projective connected minimal
surface over C which is of general type and satisfying

K 2
S = 1, pg = h2(OS) = 2, q = h1(OS) = 0.

S

P(1, 1, 2)

Sc
birat.

|2KS |
deg. 2

2 : 1

I Sc = canonical model of S . (KSc ample, ADE sing’s.)

I Sc → P(1, 1, 2) is a 2 : 1 cover branched along V (F10(x , y , z)).

I Hence, Sc = V (w2 − F10(x , y , z)) ⊆ P(1, 1, 2, 5).
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Moduli of Horikawa surface

Theorem (Gieseker, 1977)

There exists a quasi-projective coarse moduli space MH

parametrizing the canonical models Sc of Horikawa surfaces.

Remark

The dimension of MH can be computed as follows:

dim(MH) = 36 (#monomials xaybzc s.t. a + b + 2c = 10)

− 1 (projective scaling)

− 7 (dimAut(P(1, 1, 2))

= 28.

Problem today. Compactify MH .
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The problem of compactifying MH

I Hodge Theory. The period domain for Horikawa surfaces is
not Hermitian symmetric =⇒ Baily–Borel and toroidal
compactification methods do not apply!

Remark. Work of Kato–Usui and Green–Griffiths–Laza–Robles
towards generalizing these techniques in the non-Hermitian
symmetric case.

I Other compactifications of MH attracted attention:

• Geometric Invariant Theory. MH ⊆M
GIT

H (Wen, 2021);

• Minimal Model Program. MH ⊆M
KSBA

H

due to Kollár, Shepherd-Barron, Alexeev.

Roughly, it is the analogue of the Deligne–Mumford, Knudsen
comp’s Mg ,n for moduli of higher dim. alg. var’s.
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KSBA compactification

For a moduli space M, the compactification M
KSBA

is

• geometric (paramet. stable varieties or stable pairs);

• modular (coarse moduli space);

• expected to have rich boundary structure.

Problems to investigate.

• In general, ∂M
KSBA

unknown, hard to study (MMP);

• Relation with other compactification methods?
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KSBA compactification

Definition

X variety, D Q-divisor with coefficients in [0, 1]. (X ,D) is stable if

I (X ,D) is semi-log canonical;

I KX + D is ample.

If (X , 0) is stable, then we say that X is a stable variety.

Theorem (Kollár, Shepherd-Barron, Alexeev, ...)

There exists a projective coarse moduli space parametrizing stable
pairs (X ,D) with certain fixed numerical invariants.

Example

Sc canonical model of a smooth Horikawa surface S .

I Sc is a stable surface;

I M
KSBA

H := {Sc and their stable degenerations}.
→ Irred. component parametrizing smooth Horikawa surfaces.
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M
KSBA

H : What is known

I Franciosi–Pardini–Rollenske (2017):

MH ( MGor
H ( M

KSBA

H

MGor
H := parametrizes stable surfaces with Gorenstein singularities.

They prove that:

• dim ∂MGor
H = 20, not pure.

• MGor
H parametrizes irreducible stable surfaces with at worst

elliptic singularities.

I Franciosi–Pardini–Rana–Rollenske (2022):

• D1,D2 ⊆M
KSBA

H divisors parametrizing irreducible stable
surfaces with a unique 1

4 (1, 1), 1
18 (1, 5) singularity.

Our work is complementary to the above.
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M
KSBA

H : Main results

Let Σ ∈ {E12, E13, E14, Z11, Z12, Z13, W12, W13}.
These indicate certain non-log canonical isolated surface
singularities (they will be described later).
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M
KSBA

H : Main results

Let Σ ∈ {E12, E13, E14, Z11, Z12, Z13, W12, W13}.

Theorem (Gallardo–Pearlstein–S–Zhang, 2022)

(i) ∃ 8 boundary divisors DΣ ⊆M
KSBA

, DΣ 6= D1,D2.
DΣ generically parametrizes stable surfaces SΣ = ỸΣ ∪ Z̃Σ.

(ii) M
KSBA

H 99K M
GIT

H , given by the identity of MH , extends to the
interior of DΣ mapping to orbits of stable points.

(iii) The limiting mixed Hodge structure of SΣ = ỸΣ ∪ Z̃Σ is pure.
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Construction of the divisors DΣ ⊆M
KSBA

H

Question. What are the simplest not log canonical isolated
singularities that a Horikawa surface can acquire degenerating?

I Consider isolated surface singularities of modality 1 which are
not log canonical and that can be realized at

[1 : 0 : 0 : 0] ∈ S0 = V (w2 − F10(x , y , z)) ⊆ P(1, 1, 2, 5).

I There are eight such singularities with germs in A3
y ,z,w given by

E12 w2 = z3 + y7 E13 w2 = z3 + y5z
E14 w2 = z3 + y8 Z11 w2 = yz3 + y5

Z12 w2 = yz3 + y4z Z13 w2 = yz3 + y6

W12 w2 = z4 + y5 W13 w2 = z4 + y4z
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E12 E13 E14

Z11 Z12 Z13

W12 W13

Pictures realized using the software SURFER from www.imaginary.org
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Construction of the divisors DΣ ⊆M
KSBA

H : general strategy

I For each Σ, we:

• Find the general 1-parameter smoothing

S0 ⊆ S → ∆ = Spec(C[[t]]).

• Compute the stable replacement S ′
0 ⊆ S ′ → ∆′

of the central fiber S0 ⊆ S → ∆.
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Construction of the divisors DΣ ⊆M
KSBA

H : general strategy

I For each Σ, we:

• Find the general 1-parameter smoothing

S0 ⊆ S → ∆ = Spec(C[[t]]).

• Compute the stable replacement S ′
0 ⊆ S ′ → ∆′

of the central fiber S0 ⊆ S → ∆.

Definition

DΣ ⊆M
KSBA

H is the Zariski closure of the subset of points
parametrizing stable surfaces S ′

0 as above.

• Show that DΣ ⊆M
KSBA

H is 27-dimensional, hence a divisor.
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The 1-parameter smoothings S0 ⊆ S → ∆

Remark. If S0 ⊆ S → ∆ is just any smoothing, then in general it
could be quite hard to find the stable replacement S ′

0 ⊆ S ′ → ∆′.

Strategy. We construct specific 1-parameter smoothings
S0 ⊆ S → ∆ for which we show that:

• the stable replacement S ′
0 ⊆ S ′ → ∆′ is obtained after a single

weighted blow up S ′ → S and no base changes, so ∆′ = ∆.

• S ′
0 depend on 27 parameters. So DΣ ⊆M

KSBA

H is a divisor.

In the next slide we illustrate the construction of S0 ⊆ S → ∆.
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The 1-parameter smoothings S0 ⊆ S → ∆

(1) Introduce wtΣ : {xaybzc | a + b + 2c = 10} → Z such that:
for general h(x , y , z) of degree 10, if h = h− + h0 + h+, then

S0 := V (w2 − (h0 + h+)) ⊆ P(1, 1, 2, 5)

has precisely one singularity at [1 : 0 : 0 : 0], and this is of type Σ.

Example. Σ = E12. Recall the germ is w2 = z3 + y7. Define

wtΣ(xaybzc) = 6b + 14c − 42.

Note that x4z3 and x3y7 are the only monomials of weight zero.

(2) If wtΣ(xaybzc) < 0, then let

t ? xaybzc := t−wtΣ(xaybzc )xaybzc .

We define t ? h− extending by linearity.

(3) S := V (w2 − (t ? h− + h0 + h+)) ⊆ P(1, 1, 2, 5)×∆.
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The stable replacements S ′0 ⊆ S ′ → ∆′

Consider S ′ → S appropriate weighted blow up at [1 : 0 : 0 : 0]:

• ỸΣ := exceptional divisor of S ′ → S.

• Z̃Σ := strict transform of S0.
Example. Σ = E12.

S

P(1, 1, 2, 5)×∆ X ′

S ′ ỸE12

P(1, 6, 14, 21)
(t42, y7, z3,w2)

⊇

⊇

ỸE12 ⊆ P(1, 6, 14, 21) degree 42 hypersurface, hence it is an ADE K3.
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The stable replacements S ′0 ⊆ S ′ → ∆′

Consider S ′ → S appropriate weighted blow up at [1 : 0 : 0 : 0]:

• ỸΣ := exceptional divisor of S ′ → S.

• Z̃Σ := strict transform of S0.

The very first result that we prove is then

Theorem (Gallardo–Pearlstein–S–Zhang, 2022)

The reducible surface ỸΣ ∪ Z̃Σ is stable.
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Thank you for your attention!
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