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» Toric potential
> Lie potential

» Birational equivalence of LG models
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Landau—Ginzburg models

A Landau—Ginzburg model (LG) is a pair (X, w) formed by a
variety X and a holomorphic function w: X — C (or P!) called
the superpotential.
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We consider both deformations of varieties and deformations of the
potential, combining them to describe deformations of LG models,
obtaining families

LGAnA~s LG

where LG and LG’ behave very differently dualitywise.
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LG models - examples

Especially well behaved LG models: Lefschetz fibrations!
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Topological Lefschetz fibration

Let Y be a complex variety. A smooth function f: Y — C (or P)
is a Topological Lefschetz fibration if:

» f has finitely many critical points of (holomorphic) Morse
type so that around each critical point

f(z0,...,20) = 20 + -+ 22

> f|Y—{singu/ar fibres} is |OC3||y trivial.
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Symplectic Lefschetz fibrations

A a topological Lefschetz fibration f: Y — C on a symplectic
manifold (Y,w) is a symplectic Letschetz fibration if:

» for every regular value p € C, the level Y} is a symplectic
submanifold of Y, and

» for each singular point Q; the symplectic form wq, is non
degenerate over the tangent cone of Yy, at Q.
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Examples from algebraic geometry

Donaldson proved that every symplectic 4 manifold has the
structure of Lefschetz pencil.

A TLF can be obtained from blowing-up the base locus of the
pencil.
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TLFs from pencils

Modify a Lefschetz pencil by blowing up the base locus
transforming it to a TLF.

X\B F | L%

I f

X/

I L

B removed CP!

Figure: Pencil to fibration.
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Symplectic Lefschetz fibrations via Lie theory

Let G be a complex semisimple Lie group with Lie algebra g and
Cartan subalgebra . Given the Hermitian form H on g, define the
symplectic form on g by

w(Xl, Xg) =im H (Xl, X2) .
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Symplectic Lefschetz fibrations via Lie theory

For Hy € h we consider the adjoint orbit:
O(Ho) = Ad(G) - Ho = {gHog ' € 9: g € G},

together with the symplectic form w.
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Minimal adjoint orbit

Let O, the adjoint orbit of Hy = Diag(n,—1,...,—1) in
sl(n+ 1,C), we call it the minimal adjoint orbit.
» The minimal adjoint orbit O, is diffeomorphic to the
cotangent bundle of the projective space P”.

» (O, is a nontoric Calabi—Yau manifold.
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Lefschetz fibrations on adjoint orbits

Theorem (Gasparim, Grama, San Martin)

Given Hy € h and H € br with H a regular element.
The “height function” fy : (O (Ho),w) — C defined by

fu(x) = (H,x)  x€0(H)|

has a finite number of isolated singularities and defines a
symplectic Lefschetz fibration.
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Minimal orbit of sl(n+ 1,C)

For

Hy = . Es[(n—i—l,(C),
-1
the orbit O(Hp) is diffeomorphic to T*P" and the potential
/"[_[(X):</‘I,X>7 XEO(HO)

has n+ 1 critical points.
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Example - Lie potencial on sl(n+ 1,C)

Let g =sl(n+ 1,C) and choose Hy such that the flag Fy, is the
projective space P". We take

n A1
-1 Ao
HO = . ; H=
-1 )\n+1
Then
fiy (ead(Y)ead(X)HO) _
= 2(!7 + 1) [tr(HHo)—l— ()\1 — )\2) X1y1+---+ ()\1 — )\nJrl)Xnyn]

which is a degree 2 polynomial.
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Local expression of the Lie potential

We call the expression of fy written on a chart around Hy the Lie
potential on O, C sl(n+ 1,C). It is given by

|fr(Ho) = tr(HHo) + (M — Aa)xays + -+ + (M — Anj1)Xa¥n-
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HMS for the adjoint orbit O; of sl (2, C)

Choose in s[(2,C) the elements

1 0
e (20

» Hence O; is the set of matrices in s[(2,C) with eigenvalues
+1.
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HMS for the adjoint orbit O; of sl (2, C)

Choose in s[(2,C) the elements
1 0
i (10).

» Hence O; is the set of matrices in s[(2,C) with eigenvalues
+1.

» O; forms a submanifold of s[(2,C) of real dimension 4 (a
complex surface).
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HMS for the adjoint orbit O; of sl (2, C)

Choose in s[(2,C) the elements
1 0
i (10).

» Hence O; is the set of matrices in s[(2,C) with eigenvalues
+1.

» O; forms a submanifold of s[(2,C) of real dimension 4 (a
complex surface).

» In this case the Weyl group is W = {£1}.
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HMS for the adjoint orbit O; of sl (2, C)

Choose in s[(2,C) the elements

1 0
e (20

» Hence O; is the set of matrices in s[(2,C) with eigenvalues
+1.

» O; forms a submanifold of s[(2,C) of real dimension 4 (a
complex surface).

» In this case the Weyl group is W = {£1}.

» Therefore, the potential fy =: O1 — C has two singularities,
namely +Hp.
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Fukaya—Seidel category for LG(2) = (Ox, fy)

Lemma
The Fukaya—Seidel category Fuk(L.G(2)) is generated by two
Lagrangians Ly and Ly with morphisms:

ZOZ-1] i<y
HOIIl(L,'7 Lj) ~ <7 i:_j (1)
0 P>
where we think of Z as a complex concentrated in degree 0 and

Z|—1] as its shift, concentrated in degree 1, and the products my
all vanish except for mo(-,1) and mo(l, ).
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Theorem (Ballico, Barmeier, Gasparim, Grama, San Martin)

» LG(2) has no projective mirrors.

» LG(2) has no projective mirrors.

This means:

For any projective variety X we have

DP Coh(X) # Fuk(LG(2)).
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Potentials on T*P"

Starting with a Hamiltonian action of T = C* on T*P" expressed
in the open chart Vy = {xo # 0} by

T- Vo ={[L, a0 (s t"yn) }
we obtain a Hamiltonian vector field T*P”
X(X1ye ooy Xny Yooy ¥n) = (—=X1, ooy —NXny Y1, - ., NYp).

and a potential
h. = Z —2ixjyi + c.

Bruno Suzuki Birationally Equivalent Landau—Ginzburg models



Toric Potential

We call
he = Z —2ixjy; + ¢

a toric potential on T*P".
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Mirrors from Linear data

Linear data associated to a toric Landau—Ginzburg model

» Div: encodes the divisor of the character-to-divisor map.

» Mon: describes infinitesimal action on monomials.

The dual toric Landau-Ginzburg model is obtained by exchanging
Div and Mon, that is

Div(X) = Mon(f"), Div(X") = Mon(f).

Bruno Suzuki Birationally Equivalent Landau—Ginzburg models



The Selfdual model LGq

The LG model
x

2
LGy = <T*P1,x+y+y )

is dual to itself. Selfduality of this LG model is verified by simply
pointing out that in this case the toric data is

Mon = Div= | —

o~
= N O
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Example - Selfdual LG model
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A nontrivial duality

Consider the Landau—Ginzburg models

1 1
(X’f): <]P)27X+y++>a
Xy

Xy
Since the Div matrix is given by the inward normals of the moment
polytope, we have:

1
(Y7g) = <P1 X Pl)x+y+) .

Divy= 0 1|, Divy=
1 -1 0
0 -1

To see that (Y, g) is dual to (X, f) just observe that
Mon, = Divx, and Divy = Mon¢.
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A nontrivial duality
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Deformation family

A (commutative) deformation family of a Landau—Ginzburg model
(X, w) is a smooth family of Landau—Ginzburg models (X;, w;),
with t € D C C" an open ball containing 0, such that

(X(), W()) = (X, W).

We call X; a deformation of Xy, denoted by

(Xo, wo)N\ANAS (X, we).

Bruno Suzuki Birationally Equivalent Landau—Ginzburg models



Deformation of LG models - Example 1

Consider T*P* with coordinates ([1,x], y) and the
Landau—Ginzburg models

2
LG0:<T*1P>1,x+y+y ) LGy = (TP, 2x)

x
Using the potential
%
we = (1 — t)2x+t<x+y+)
X

on X; = T*P! we obtain the deformation

LGo s LGy .
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Deformation of LG models - Example 2

Our next objective is to describe how duality works for the
deformation family

LGy = (T*PY, ho)Arnns LGy = (O, fy).

We will use the deformation of the Hirzebruch surfaces 5 to Fy,
extending it to a deformation of partially compactified
Landau—Ginzburg models.

(F2, h) Ao (Fo, f).
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Deformation of LG models - Example 2

We will make use of the following result:

Lemma
F> deforms to Fy.

|l

Figure: F, deforms to Fy
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Deformation of LG models - Example 2

This induces the deformation T*PlA~A~~O;.

>
-
-
-
AVAVAV 2 -
-
-
-
-~
. . =
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Deformation of LG models - Example 2

The deformation of LG models:
(T*PL, ) ~~ons (O, )

is obtained from the deformation [F» to [Fy.

|
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Deformation of LG models - Example 3

Combining the deformations
LGog "N~ LGy, LGy AN LGy,

we obtain a new deformation that changes both the variety and
the potential, namely

LGo "N LG, .

We then wish to compare the mirrors of LGg and LG, and we will
see that they behave very differently. Since T*P! is a toric variety,
we can use toric duality for LGg.
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Comparing the Lie potential and the toric potential

On the open chart Vy = {xg # 0} of T*P" we have defined two
potentials:

Toric potential:
he = —-2x3y1 — ... — 2nxpyp + €

Lie potential:
fy=<-H>

Bruno Suzuki Birationally Equivalent Landau—Ginzburg models



Birationally equivalent LG models

Theorem (S., 2023)

For each n € N, there exist matrices H, Hy € s{(n+1,C) and a
constant ¢ € C such that the Lie potential on the minimal adjoint
orbit O, and the toric potential on the cotangent bundle T*P"
coincide on dense open charts, that is fy = hc.
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Take

o D?ag(—
Diag (—
and ¢ = —n? — n.

S S

€sl(n+1,C),

-1

., —4,-2,0,2,4,...,n) if nis even,
,—=3,-1,1,3,...,n) if nis odd
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Proof (cont.)

On the Lie side, we have:
f(Ho) = tr(HH) + (A1 — X2)xuys + - - - 4+ (A1 — Ans1) XV,
where the eigenvalues of H = Diag(A1, ..., Ant1) satisfy
AL— )= —2( — 1),

so that
fH(Ho) = —I‘l2 — n — 2X1y1 — e — 2nx,,y,,.

On the toric side,

he =c—2x3y1 — ... — 2nXp¥n

= —n? —n—2x1y1 — - — 20XV
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Birational equivalence

Two Landau—Ginzburg models are called birationally equivalent if
their domains are birationally equivalent varieties and their
potentials coincide on Zariski open sets.
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Birational Equivalence

A rigorous version of our result may be stated as:

Theorem (S., 2023)

For each n € N, there exist matrices H, Hy € s{(n+ 1,C) and a
constant ¢ € C such that the LG models (O,, fy) and (T*P", h¢)
are birationally equivalent.

Proof.
The expressions of f; and h, for the potentials fy and h. coincide
on Zariski open sets. ]
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Example - Duality vs. deformation

We consider T*P! with coordinates ([1, x], y) and the family of

potentials
2

we = (1— 1) <x+y+yx) + t(2x).

Then we have that the initial LG model LGy is selfdual, while the
final LG model is defined by LGy = ( T*P!,2x) which has the toric

data

10
Div= -1 2|, Mon=(10).
0 1
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Example - Duality vs. deformation

Now, inverting the matrices by toric duality gives us the LG model

Div=(10) Mon= | —

(N e

0
2
1
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Example - Duality vs. deformation

Now, inverting the matrices by toric duality gives us the LG model

Div=(10) Mon= | —

(N e

0
2
1

We conclude that this family takes a selfdual LG model to another
very far from selfdual.

LGo — LG1
I %
LGy — LGY
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Obrigado! ~A Thank you!
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