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1. Introduction

A key task in supervised machine learning is determining a good model from a class of
parameterized models.1 That is, find the element from

M = {fα : Rm → Rn | α ∈ Rp}

that maximizes some performance criterion p, given suitable amounts of data d ∈ Rm ×Rn:

max
fα∈M

p(fα,d).

Examples of model classes include:

1 linear, quadratic, logistic, whateveryoulikebest regression

2 graphical models

3 neural networks

and the performance criterion could be maximizing prediction accuracy on a set of data.

1Bishop, Pattern Recognition and Machine Learning, Springer, 2006
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In recent years, researchers in machine learning recognized that convolutional neural networks
contain a powerful inductive bias; their outputs are invariant under translations:

So mathematically, if S is a shifting map, and
f is the convolution map, then we have

f (Sx) = Sf (x)

That is, the diagram on the left commutes.
(Since both maps are linear, this states that S and

f are commuting matrices.)

2

2Figure from Kayhan (2020). URL: https://medium.com/@oskyhn77789/current-convolutional-neural-
networks-are-not-translation-equivariant-2f04bb9062e3
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This realization led to the desire to incorporate additional constraints explicitly into machine
learning models f : Rm → Rn, such as

1 invariance: f (Ax) = f (x), and

2 equivariance: f (Ax) = Bf (x).

Herein A and B are usually linear maps. See Cohen3 for an introduction to this area.

Many data augmentation strategies also try to realize these properties implicitly. These
come with an additional computational cost, as each training example could be subjected to
multiple transformations A.

3Cohen, Equivariant convolutional networks, PhD thesis, 2021.
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In this talk, we focus on simple tensor-based models for supervised learning.45

Here, the input data is first passed through a feature map

Φ : Rm → Rn1 × Rn2 × · · · × Rnk ,

as in a kernel method, and then supplied as input to a multilinear map

f : Rn1 × Rn2 × · · · × Rnk → Rnk+1

By imposing suitable structures on f , this map can be computed efficiently, comprising its
kernel trick.

4Stoudenmire, Schwab, Supervised Learning with Tensor Networks, 30th Conference on Neural Information
Processing Systems, 2016.

5Novikov, Trofimov, Oseledets, Exponential machines, Bull. Polish Acad. Sci.: Tech. Sci., 2018.
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Central question

How can we parameterize the multilinear maps

f : V1 × V2 × · · · × Vk → Vk+1

invariant under the action of chosen invertible linear maps M i
g : Vi → Vi :

f (M1
gx1,M

2
gx2, . . . ,M

k
g xk) = Mk+1

g f (x1, x2, . . . , xk), g = 1, . . . , s,

for all xi ∈ Vi .

Most of the work presented stems from our desire to understand prior work by Finzi, Welling
and Wilson.6

6Finzi, Welling, Wilson, A practical method for constructing equivariant multilayer perceptrons for arbitrary
matrix groups, Proceedings of the 38th International Conference on Machine Learning, 2021.
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2. Group-invariant tensors: Tensors

Let us first recall how multilinear maps could be parameterized.

Recall that a multilinear function is a map

f : V1 × V2 × · · · × Vk → Vk+1

from the vector spaces Vi to the vector space Vk+1 which is linear in each of its arguments:

f (x1, . . . , xi−1, α · xi + β · yi , xi+1, . . . , xk)

= α · f (x1, . . . , xk) + β · f (x1, . . . , xi−1, yi , xi+1, . . . , xk), i = 1, . . . , k.
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Because of the universal property of the tensor product,7 there is a bijection between
multilinear functions f and order-(k + 1) tensors

F ∈ (V ∗
1 ⊗ V ∗

2 ⊗ · · · ⊗ V ∗
k )⊗ Vk+1.

The notation V ∗
i means the dual space of Vi , i.e., the linear space of functions from Vi to the

base field (R).

7Greub, Multilinear Algebra, Springer, 1978.
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By exploiting the multilinearity of f and the tensor product ⊗, it can be shown that

F =

n1∑
j1

· · ·
nk∑

jd=1

e1∗j1 ⊗ · · · ⊗ ek∗jk ⊗ f (e1j1 , . . . , e
k
jk
),

where ei1, . . . , e
i
ni

forms an orthonormal basis of the ni -dimensional vector space Vi , and e∗ij
denotes the dual basis vector of eij ; that is,

e∗ij (e
i
j ′) = δjj ′ =

{
1 j = j ′

0 otherwise
.

(This is completely analogous to how a matrix represents a linear map.)
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One can represent this tensor F by a (k + 1)-array

F ≃ ∈ Rn1×···×nk×nk+1 .

You can think of F as containing the function evaluation f (e1i1 , . . . , e
k
ik
) at position (i1, . . . , ik)

in this array.

Hence, the unconstrained model space of multilinear functions can be parameterized as

M = {f : V1 × · · · × Vk → Vk+1 multilinear} ≃ Rn1×···×nk×nk+1 ≃ Rn1···nk+1 .
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2. Group-invariant tensors: Invariant multilinear maps

For neural networks, Cohen and Welling8 introduced the concept of G -invariance for groups
G . In our setting, we want to consider the maps f that satisfy

∀xi ∈ Vi : f (M1
gx1, . . . ,M

k
g xk) = Mk+1

g f (x1, x2, . . . , xk), g = 1, . . . , s,

for the fixed tuples, which we call invariance relations,

Mg := (M1
g , . . . ,M

k+1
g ) ∈ Aut(V1)× · · · ×Aut(Vk+1)

for g = 1, . . . , s.

Recall that Aut(Vi ) is the subspace of bijective linear maps from Vi into itself.

8Cohen, Welling, Group equivariant convolutional networks, Proceedings of the 33rd International
Conference on Machine Learning (ICML), 2016.
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Lemma

Let G denote the set of all invariance relations satisfied by f subject to the previously
imposed invariance relations. Then, (G , ◦) is a group.

Indeed, if Mg ,Mh ∈ G , then

f (M1
hM

1
gx1, . . . ,M

k
hM

k
g xk) = Mk+1

h f (M1
gx1, . . . ,M

k
g xk) = Mk+1

h Mk+1
g f (x1, . . . , xk),

so that Mh ◦Mg := (M1
hM

1
g , . . . ,M

k+1
h Mk+1

g ) ∈ G .

Moreover, we have for all Mg ∈ G that

Mk+1
g f ((M1

g )
−1x1, . . . , (M

k
g )

−1xk) = f (M1
g (M

1
g )

−1x1, . . . ,M
k
g (M

k
g )

−1xk) = f (x1, . . . , xk),

which implies that M−1
g :=

(
(M1

g )
−1, . . . , (Mk+1

g )−1
)
∈ G .
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Moreover, it is immediately verified that the projection maps

πi : G → Aut(Vi ), (M1, . . . ,Mk+1) 7→ M i

are group homomorphisms. That is,

1 πi ((IdV1 , . . . , IdVk+1
)) = IdVi

, and

2 πi (Mh ◦Mg ) = M i
hM

i
g = πi (Mh)πi (Mg ).

A map ρ : G → Aut(V ) that maps an abstract group G homomorphically into the group of
automorphisms on a vector space V is called a group representation of G on V .
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All of the foregoing entails that multilinear maps satisfying

f (M1
gx1,M

2
gx2, . . . ,M

k
g xk) = Mk+1

g f (x1, x2, . . . , xk), g = 1, . . . , s,

are G -invariant (with representations ρi : G → Vi ) for the group G = ⟨M1, . . . ,Ms⟩.9
That is, the above equation holds for all Mg ∈ G , not only for the generators.

Note that conversely one could start from an abstract group along with suitable
representations and impose G -invariance in this way on f .

9Lang, Algebra, 3rd ed., Springer, 2002.
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2. Group-invariant tensors: Invariant tensors

We saw that a natural way of imposing invariance relations on a multilinear map f leads to f ’s
G -invariance. What does this entail for the associated tensor F ?

Assume we have linear maps U∗
i : V ∗

i → V ∗
i , i = 1, . . . , k , and Uk+1 : Vk+1 → Vk+1. Let

F =

n1∑
j1=1

· · ·
nk+1∑

jk+1=1

Fj1,...,jk+1
e1∗j1 ⊗ · · · ⊗ ek∗jk ⊗ ek+1

jk+1
.

Then, the multilinear multiplication of these maps with F is defined as10

(U∗
1 ⊗· · ·⊗U∗

k ⊗Uk+1)(F ) :=

n1∑
j1=1

· · ·
nk+1∑

jk+1=1

Fj1,...,jk+1
(U∗

1e
1∗
j1 )⊗· · ·⊗(U∗

ke
k∗
jk
)⊗(Uk+1e

k+1
jk+1

).

10Greub, Multilinear Algebra, Springer, 1978
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Proposition (Sprangers, Vannieuwenhoven, 2022)

Let f : V1 × · · · ×Vk → Vk+1 be a multilinear map, F ∈ V ∗
1 ⊗ · · · ⊗V ∗

k ⊗Vk+1 the associated
tensor, G = ⟨g1, . . . , gs⟩ a finitely-generated group, and ρi : G → Aut(Vi ) representations.
Then, f is G-invariant if and only if

F = (ρ∗1(g)⊗ · · · ⊗ ρ∗k(g)⊗ ρk+1(g))(F ), ∀g ∈ {g1, . . . , gs},

where ρ∗(g) =
(
ρ(g)

)−⊤
is the dual representation.

Note that the inversion and transposition make sense in the dual representation11 because if
f : V → W then

f −1 : W → V , f ⊤ : W ∗ → V ∗, so f −⊤ : V ∗ → W ∗

11Lang, Algebra, 3rd ed., Springer, 2002.
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Example

Consider the case of a linear map F : V → W that satisfies the following equality

∀v ∈ V : LF v = F Mv

for L ∈ Aut(W ) and M ∈ Aut(V ).

As this holds for all v, we have equality of linear maps: LF = F M. Hence, equivalently,

LF M−1 = F .

Vectorizing, this is equivalent to

(M−⊤ ⊗ L)(vec(F )) = vec(F ),

having used a standard property of the Kronecker product.
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3. Efficiently constructing group-invariant tensors

Inspecting the definition of G -invariant tensors, we see that for all g ∈ G :

F = (ρ∗1(g), . . . , ρ
∗
k(g), ρk+1(g), . . . , ρd(g)) · F

:= (ρ−⊤
1 (g)⊗ · · · ⊗ ρ−⊤

k (g)⊗ ρk+1(g)⊗ · · · ⊗ ρd(g))(F ),

where ⊗ can be interpreted as the Kronecker product.

This is an interesting simultaneous eigenvector problem in which F is the common
eigenvector corresponding to eigenvalue 1 of the tensor-structured matrices

ρ−⊤
1 (g)⊗ · · · ⊗ ρ−⊤

k (g)⊗ ρk+1(g)⊗ · · · ⊗ ρd(g), g ∈ G

Corollary

The G-invariant tensors form a linear subspace of V ∗
1 ⊗ · · · ⊗ V ∗

k ⊗ Vk+1 ⊗ · · · ⊗ Vd .
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In the remainder, we consider orthogonal group representations. The results can be extended
to normal group representations as well.

Orthogonal representation

Let h be an inner product on V . A representation is orthogonal if ρ(g) : V → V is an
isometry ∀g ∈ G .

For orthogonal representations ρ−⊤(g) = ρ(g), so we can simplify the notation.
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Returning to our eigenvalue problem, we have

ρ1(g)⊗ · · · ⊗ ρd(g) = (U1 ⊗ · · · ⊗ Ud)(Λ1 ⊗ · · · ⊗ Λd)(U1 ⊗ · · · ⊗ Ud)H

where U i is a unitary matrix and Λi is a diagonal matrix containing the (complex) eigenvalues
such that

ρi (g) = U iΛi (U i )H .

Let
U1
⋆ ⊙ · · · ⊙ Ud

⋆ = [u1i1 ⊗ · · · ⊗ udid ]i1,...,id

be the matrix of eigenvectors corresponding to eigenvalue 1, i.e.,

Λ1
i1,i1 · · ·Λ

d
id ,id

= 1.
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The space of G -invariant tensors is a subspace of U1
⋆ ⊙ · · · ⊙ Ud

⋆ , so that

F = (U1
⋆ ⊙ · · · ⊙ Ud

⋆ )v

for some v. Plugging this into our eigenvalue problem, we get

v = (U1
⋆ ⊙ · · · ⊙ Ud

⋆ )
H︸ ︷︷ ︸

UH
⋆

(ρ1(g)⊗ · · · ⊗ ρd(g))︸ ︷︷ ︸
Bg

(U1
⋆ ⊙ · · · ⊙ Ud

⋆ )︸ ︷︷ ︸
U⋆

v, ∀g ∈ G .

This tensor-structured matrix can be computed efficiently.
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Our key result is that the projected simultaneous eigenproblem can be reduced to a single
eigenproblem. This result can be viewed as a version of the first projection formula in
representation theory more suitable for tensor product representations.12

Proposition (Sprangers, Vannieuwenhoven, 2022)

Let Bg ∈ Cm×m be unitary matrices whose rightmost eigenvalue is real. Let U⋆ ∈ Cm×n be a
matrix with orthogonal columns, i.e., UH

⋆ U⋆ = In. Let Ag = UH
⋆ BgU⋆. Then,

A1v = λ1v, . . . , Asv = λsv

if and only if 1
s (

1
λ1
A1 + · · ·+ 1

λs
As)v = v.

12Fulton, Harris, Representation Theory: A First Course, Springer, 2004.
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With these ingredients, we propose the following algorithm.

Input: Normal representation matrices Bk
i of ρk(gi ) for G = ⟨g0, g1, . . . , gs⟩.

1 Compute for k = 1, . . . , d the small-scale eigendecompositions

ρk(g0) = Bk
0 = UkΛk(Uk)H .

2 Find all indices (i1, . . . , id) such that Λ1
i1,i1

· · ·Λd
id ,id

= 1 and set Uk
⋆ = [ukik ]ik .

3 Compute

A =
1

s

s∑
i=1

(
(U1

⋆ )
HB1

i U
1
⋆

)
⊛ · · ·⊛

(
(Ud

⋆ )
HBd

i U
d
⋆

)
.

4 Compute a Schur decomposition A = QTQH , where T is upper triangular, and extract
the eigenspace Q corresponding to eigenvalue 1.

Output: The orthonormal basis (U1
⋆ ⊙ · · · ⊙ Ud

⋆ )Q.
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4. Group-invariant tensor train networks

Recall our supervised learning setup where we compose

Φ : Rm → Rn1 × · · · × Rnk ≃ Rn1+···+nk+1 and f : Rn1 × · · · × Rnk → Rnk+1

where Φ was called a kernel map and f is multilinear. Mathematically, this is equivalent to

f ◦ Φ = F ◦ ⊗ ◦ Φ,

where F is the tensor representing f . This emphasizes that ⊗◦Φ maps into a high-dimensional
space. And F ∈ (Rn1×···×nk )∗ ⊗ Rnk+1 is a linear map F : Rn1×···×nk → Rnk+1 .

This has all the hallmarks of a kernel method. Except: we need a kernel trick because
applying a linear map to vectors in Rn1×···×nk is too costly (in memory and time)!
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We say that F ∈ Rn1×n2×···×nk+1 admits a tensor trains decomposition13 with bond
dimensions (r1, . . . , rk) if each entry of the tensor is a contracted matrix chain
multiplication, like so

fi1,i2,...,ik ,ik+1
= · · ·F1 F2 Fk Fk+1

i1

i2

ik

ik+1

Graphically, the above is represented as

13Fannes, Nachtergaele, Werner, Comm. Math. Phys. 144, pp. 443–490, 1992.
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In the case where F ∈ (V ∗
1 ⊗ · · · ⊗ V ∗

k )⊗ Vk+1 represents a multilinear function with one
output vector space Vk+1, we have

Vk+1

V ∗
1

. . . . . . . . . V ∗
k

F1 F2 . . . Fk−1 Fk

Note that you can play with the location of the output vector space Vk+1.
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To impose G -invariance on multilinear maps that correspond to tensor trains decompositions
with small bond dimensions no new theoretical developments are needed.
Singh, Pfeifer, and Vidal14 namely proved the following result.

Proposition (Singh, Pfeifer, Vidal, 2010)

There exists a tensor trains decomposition with minimal bond dimensions of a G-invariant
tensor in which all core tensors are themselves G-invariant.

14Singh, Pfeifer, Vidal, Phys. Rev. A: At. Mol. Opt. Phys., 82, 2010.
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5. Experimental results: Basis construction performance
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5. Experimental results: G -invariant networks for transcription prediction

We applied group-invariant tensor train networks to a supervised learning task: Binary
prediction whether a transcription factor (protein) will bind to a DNA sequence.

A data set with 3 transcription factors (MAX, CTCF, SPI1) was curated by Zhou, Shrikumar
and Kundaje,15 along with 10, 000 DNA strands per transcription factor. The dataset is
already partitioned 40%/30%/30% into a training, test, and validation set.

DNA strands are reverse complement symmetric (Zhou, Shrikumar, Kundaje, 2020):

Complement invariance arises from the nucleobase pairings in the double helix (A ↔ T,
and G ↔ C).

Reverse invariance occurs because if a transcription factor binds to a DNA strand, then
it also binds on the same strand rotated by π radians by rotating the protein likewise.

15Zhou, Shrikumar, Kundaje, Benchmarking reverse-complement strategies for deep learning models in
genomics, bioRxiv:2020.11.04.368803, 2020.
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The tensor trains network has 1001 cores with output
in the middle. All cores have bond dimension b.
The nucleobases are one-hot encoded as a length-4
binary vector.

The complement invariance can be modeled as the
group G (G , ∗) = (Z2,+2)
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The training setup was as follows:

100 epochs with batch size of 100,

binary cross-entropy loss and 2-regularization on the variational parameters,

softmax activation function at output node,

stochastic gradient descent with Nesterov momentum with a fraction of 0.2

The optimal hyperparameters (found by non-exhaustive manual experimentation) vary
depending on the prediction task:
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Average* results over 5 runs of our model together with the results from the state-of-the-art
convolutional neural network introduced by Mallet and Vert16, which in addition to reverse
complement symmetry also takes into account a translation invariance, are as follows:

16Mallet, Vert, Reverse-Complement Equivariant Networks for DNA Sequences, NeurIPS, 2021.
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6. Conclusions

Invariance relationships are naturally modeled with groups, leading to the concept of
group-invariant tensor train networks. A new algorithm was proposed for constructing a basis
of G -invariant tensors, outperforming the state of the art by several orders of magnitude.

For more details, see:
B. Sprangers and N. Vannieuwenhoven,
Group-invariant tensor train networks for supervised learning,
arXiv:2206.15051, 2022.
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