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Preliminaries
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Toric degenerations

A toric degeneration of a variety X is a flat family F → A1 such that:

• the fiber Ft over t ∈ A1\{0} is isomorphic to X ;

• the fiber F0 over 0 is a toric variety.

• Toric degenerations have been studied in algebraic geometry,
representation theory, cluster algebra, and tropical geometry.

• The geometric invariants of X can be read from any fiber in the
degeneration, in particular from the toric fiber.
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Grassmannian and flag varieties

• The Grassmannian Gr(k, n) is the variety of k-dimensional linear
subspaces in Kn.

• The flag variety Fℓn is the variety of flags V0 ⊊ V1 ⊊ · · · ⊊ Vn, where
Vk ∈ Gr(k, n). The flag variety naturally lives in a product of
Grassmannians:

Fℓn ⊆ Gr(1, n)× Gr(2, n)× · · · × Gr(n − 1, n).

• The partial flag variety Fℓn(I), with [n] ⊃ I = {i1 < i2 < · · · < ik}, is
the variety of flags Vi1 ⊊ Vi2 ⊊ · · · ⊊ Viq , where Vij ∈ Gr(ij , n). The
partial flag variety lives in a product of Grassmannian:

Fℓn(I ) ⊆ Gr(i1, n)× Gr(i2, n)× · · · × Gr(ik , n).
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Plücker variables

• Gr(k, n) can be embedded in a projective space via the Plücker
coordinates:

Gr(k, n) → P(
n
k)−1

where coordinates of P(
n
k)−1 are labeled by k-subsets of [n].

pI = detX [I ] for I ∈

(
[n]

k

)

• Fℓn(I) can be embedded into a product of projective spaces

P(
n
i1)−1 × · · · × P(

n
ik
)−1, where coordinates are labeled by subsets of [n]:

pI = detX [I ] for I ⊆ [n], |I | ∈ I
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Toric degenerations from
tropical geometry
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Gröbner degenerations

• A classical way is via Gröbner degenerations.

• Let I ⊆ C[x0, . . . , xn] be a homogeneous ideal. Given w ∈ Rn+1 we can
define the ideal

inw (I ) = ⟨inw (f ) | f ∈ I ⟩

where
inw (f ) =

∑
α·w minimal

fαx
α.

Example. Let
f = p12p34 − p13p24 + p14p23 ∈ C[p12, p13, p14, p23, p24, p34]. Then

• for w = (1, 0, 0, 0, 0, 1) we have inw (f ) = −p13p24 + p14p23;
• for w = (1, 1, 1, 2, 3, 4) we have inw (f ) = p14p23.

• It is possible to generate a flat family of varieties over A1 such that the
special fiber corresponds to the ideal inw (I ).

• If inw (I ) is a toric ideal, we have a toric degeneration.
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Gröbner fan

• The Gröbner fan of I ⊆ C[x0, . . . , xn] is a fan in Rn+1 where w1 and w2 lie
in the same cone if and only if they give the same initial ideal.

• Not every point in the Gröbner fan gives a toric degeneration: a generic
weight w ∈ Rn+1 give rise to a monomial ideal inw (I ).

• inw (I ) needs to be binomial and prime

⇓

We restrict to the w in the fan such that inw (I ) contains no monomial.
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Gröbner fan of Gr(2, 4)

Example. Consider Gr(2, 4) = V (p12p34 − p13p24 + p14p23). The Gröbner fan
consists of 7 cones:

Idea: restrict to {w ∈ Rn+1 | min{α · w | fα ̸= 0} is achieved at least twice}.
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Tropicalization

This space is the tropicalization of X = V (I ):

trop(X ) =
⋂
f∈I

{w ∈ Rn+1 | min{α · w | fα ̸= 0} is achieved at least twice}

Example. For Gr(2, 4) we get 3 top-dimensional cones. All of them give rise to
toric degenerations of Gr(2, 4).
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Tropicalization and toric degenerations

Moreover inw (I ) needs to be binomial and prime.

⇓

We restrict to the cones giving prime initial ideals, which we call prime
cones.
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Tropicalization of Grassmannian and flag varieties

Computing points in top-dimensional cones of the tropicalization of a variety is
not trivial:

• trop(Gr(3, 6)) is a 3-dimensional fan with 1005 maximal cones. They
merge into 7 symmetry classes, 6 of which give non-isomorphic toric
degenerations.

• trop(Gr(3, 7)) is a 5-dimensional fan with 252000 maximal cones. They
merge into 125 cones modulo S7, 69 of which give non-isomorphic toric
degenerations.

• trop(Fℓ5) has 69780 maximal cones, 536 modulo the action of S5 × Z2.
180 give toric degenerations.

12



Matching fields and
combinatorial mutations
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Matching fields

We want ways to generate points in the tropicalization of these varieties.

A matching field for Gr(k, n) is a map

Λ :

(
[n]

k

)
→ Sk .

A matching field for Fℓn(I) is a map

Λ : {I ⊂ [n] | |I | ∈ I} →
⊔
k∈I

Sk .

A matching field is coherent is there exists a matrix M ∈ R(n−1)×n such that
for every I ⊂ [n], |I | = k

Λ(I ) = argminσ∈Sk

k∑
i=1

Mi,σ(i)

and the minimum is attained at a unique σ ∈ Sk .
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Matching field weight and polytope

Fix a coherent matching field Λ for Fℓn(I). We associate:

• the weight vector wΛ

wΛ =

(
min
σ∈Sk

k∑
i=1

(MΛ)i,σ(i)

)
I⊂[n],|I |=k∈I

• If Λ is a matching field for Gr(k, n), the polytope Pk
Λ is

Pk
Λ = conv

(
Eσ | σ = Λ(I ) for some I ∈

(
[n]

k

))

where (Eσ)ij =

1 if j = σ(i)

0 otherwise.

• For a partial flag variety FℓIn :

PI
Λ = P i1

Λ + · · ·+ P ik
Λ

• Proposition. The matching field polytope PΛ is normal.
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A matching field polytope for Gr(2, 4)

Consider the matching field Λ :
(
[4]
2

)
→ S2 defined by

MΛ =

(
0 0 0 0
4 2 3 1

)

The weight vector is
wΛ = (2, 3, 1, 2, 1, 1)

and the polytope is given by

PΛ = conv

((
1 0 0 0
0 1 0 0

)
,

(
1 0 0 0
0 0 1 0

)
,

(
1 0 0 0
0 0 0 1

)
,(

0 0 1 0
0 1 0 0

)
,

(
0 1 0 0
0 0 0 1

)
,

(
0 0 1 0
0 0 0 1

))

Note that

inw (I2,4) = inw (p12p34 − p13p24 + p14p23) = (p12p34 + p14p23).
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Matching fields and toric degenerations

• Not every matching field defines a toric degeneration: the ideal inwΛ(I )

might not be prime.

• There is a different way to construct a toric degeneration from a matching
field. Λ defines a monomial map

ϕΛ : C[pI ] → C[xij ]

sending pI to the monomial of the determinant of XI corresponding to
Λ(I ).

• ker(ϕΛ) is a toric ideal, i.e. it is binomial and prime. It is possible to prove
that

inwΛ(I ) ⊆ ker(ϕΛ)

• The toric variety defined by ker(ϕΛ) is

C[pI ]/ ker(ϕΛ) = C[Cone(PΛ) ∩ Zm ×Z].
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Matching fields and toric degenerations

Theorem 1. Let Λ be a matching field for Fℓn(J). If PΛ is combinatorial
mutation equivalent to the Gelfand-Tsetlin polytope, then Λ gives rise
to a toric degeneration of Fℓn(J).

Let N be a lattice and M = N∗. Let w ∈ M be a primitive vector and
F ⊆ w⊥ ⊂ NR a lattice polytope. The tropical map

φw,F : MR → MR, x 7→ x − umin(x)w

umin = min{⟨x , f ⟩ | f ∈ F}, is a combinatorial mutation of a lattice polytope
P ⊂ MR if φw,F (P) is convex.

The Gelfand-Tsetlin polytope is the polytope PGT associated to the matching
field ΛGT :

ΛGT : I 7→ id
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Proof of theorem 1

Theorem 1. Let Λ be a matching field for Fℓn(J). If PΛ is combinatorial
mutation equivalent to the Gelfand-Tsetlin polytope, then Λ gives rise
to a toric degeneration of Fℓn(J).

Idea of proof.

• Hilbert function of Fℓn(J) = Hilbert function of C[PI ]/ inGT (I ) =
= Ehrhart polynomial of PGT = Ehrhart polynomial of PΛ =
= Hilbert function of C[PI ]/ ker(ϕΛ).

• Hilbert function of Fℓn(J) = Hilbert function of C[PI ]/ inwΛ(I ).
Then inwΛ(I ) = ker(ϕΛ), in particular

inwΛ(I ) is toric.
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A family of matching fields

Goal. Define a large family of matching fields and prove that the corresponding
polytopes are combinatorial mutation equivalent to the GT polytope.

Let σ ∈ Sn and consider the matching field Λσ associated to the matrix:

Mσ =



0 0 . . . 0
σ(1) σ(2) . . . σ(n)

Nn N(n − 1) . . . N
...

...
...

Nk−2(n − 1) Nk−2(n − 1) . . . Nk−2


for N ≥ n + 1.

Note that with this notation, the Gelfand-Tsetlin polytope is associated to the
permutation w0 = (n n − 1 . . . 2 1).

20



Matching field polytopes are mutation equivalent

Theorem 2. If σ ∈ Sn is a permutation that avoids the pattern 4123,
3124, 1423 and 1324, then the polytope PJ

σ associated to the matching
field Λσ for the partial flag variety Fℓn(J), is combinatorial mutation
equivalent to the Gelfand-Tsetlin polytope PGT = Pw0 .

Idea of proof.

• We just need to prove it for Grassmannians.

• We construct combinatorial mutations

Pσ → Pσ1 → Pσ2 → · · · → Pσm = P(n n−1 ... 1) = PGT

where σi+1 = (ℓ ℓ+ 1)σi .

Example. Consider σ = (6 2 3 5 4 1). Then the combinatorial mutations from
Pσ to Pw0 will follow the sequence:

(6 2 3 5 4 1) → (6 2 4 5 3 1) → (6 3 4 5 2 1) → (6 3 5 4 2 1) → (6 4 5 3 2 1) → w0
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Example of combinatorial mutation

Consider Pσ with σ = (6 2 4 3 5 1) for Gr(3, 6). We want to construct a
(sequence of) combinatorial mutations to Pτ where τ = (6 2 5 3 4 1).

It is possible to construct w1,w2 and F1,F2 such that

Pτ = φ−w1,F1 ◦ φw2,F2 ◦ φw1,F1(Pσ).

The polytope Q = φw2,F2 ◦ φw1,F1(Pσ) is not a lattice polytope. It corresponds
to the non-prime cone in Gr(3, 6).

• Can we generalize this construction to other permutations containing
forbidden patterns? Can we generalize it to higher Grassmannians?
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Computational results

We can generalize the matching fields Mσ to Mc
σ by multiplying the

second row by c .

Considering the matching fields Mc
σ we get:

• for Gr(3, 6) all the 6 possible toric degenerations.

• for Gr(3, 7), 40 out of 69 possible toric degenerations.

• for Fℓ4 all the 4 possible toric degenerations.

• for Fℓ5, 22 out of 180 possible toric degenerations.

Oliver Clarke, Fatemeh Mohammadi, Francesca Zaffalon
Toric degenerations of partial flag varieties and combinatorial mutations
of matching field polytopes
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Open problems

• Do combinatorial mutation always move points from one cone to an
adjacent one?

• Do we only move along facets of one maximal cone via combinatorial
mutations?

• How can we describe the remaining toric degenerations?

Thank you!
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