M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY
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EXAM SOLUTIONS

Let I C k[x1,...,x,] be an ideal. Fix a monomial order. We say that a Grébner
basis G for I is reduced if LC(g) = 1 and no monomial of g is contained in
(LT(G'\ {g})), for all g € G.

The reduced Grobner basis of I is unique, hence two ideals I; and I are identical
if and only if their reduced Grobner bases agree.

Buchberger’s Criterion states that a finite generating set G = {¢1,...,gm} for an
ideal I C k[x1,...,x,] is a Grobner basis if and only if S(T,gj)G =0 for all 7 # j.

Using grlex order we have S-polynomials:
S(x? + 2xy, xy) = 22y,
S(x? + 22y, y* — x/2) = 2zy® + 272,
S(xy,y* —x/2) = 2*/2.

In each case, upon division by G we obtain remainder zero.
G is not reduced since zy € (zy). We have that

2
zy,yi—1/2
22 + 2zy =z

so we can transform G to G' = {22, 2y, y* — x/2}. This is also a Grobner basis, and
we see that it is reduced.
(i) Let G = {g1,-..,9m} be a Grobner basis for I with respect to the given
monomial order. The Division Algorithm gives us

f=aig1+...4+amgm +r,

where no term of r is divisible by any LT(¢1),...,LT(g). Suppose that
there exists some h € LT(I) such that a term of r is divisible by h. Since
G is a Grobner basis for I, we have that (LT(I)) = (LT(¢1),...,LT(gm)).
Hence LT(g;) | h for some i, which is a contradiction. Finally, setting g =
aig1 + ...+ amgm we notice that g € I (since I is an ideal).

(ii) Let G = {g1,...,9m} be a Grobner basis for I with respect to the given
monomial order, and suppose that f = g+r = ¢'+r'. Thenr—1' =g —g € I,
so if r # 1’ we have that LT (r — 7') € (LT(I)) = (LT(g1) ,...,LT(gm)). Hence
LT(r — ') is divisible by LT(g;) for some i. But this is impossible, since no
term of either r or 7/ is divisible by any of LT(¢1),...,LT(gy). We conclude
that r — 7 =0 and so r = r/.
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Since our choice of Grébner basis G in the proof of (ii) was arbitrary, the result
follows immediately.
Using lex order we calculate the remainder of 23 upon division by G in two different
ways:

?ﬂnzﬂl’iz%z = xy, and ﬁiwﬂzﬁxﬂy = 2.
Since the remainders do not agree, the order in which we list the elements of G
matters. Hence by (b) we conclude that G is not a Grobner basis with respect to
lex order.
Anideal I C k[z1,...,xy) is said to be radical if for each f € k[z1,...,g,],if fM €1
for some positive power m > 0 then f € I.
Given an ideal I C k[z1,...,z,] we define

VI:={feklxy,...,z,) | f™ e for some m > 0}.

We will prove that v/T is an ideal. First, suppose that f € v/I and g € k[zy,...,z,].
Then there exists some m > 0 such that f™ € I. Since I is an ideal, we see that
g™ f™ e I, and hence gf € v/I. Now suppose that fi, fo € V/I. Then there exists
some mj,mg > 0 such that f", fJ"* € I. Let m := max{m;, mo} and consider the

binomial expansion

(fr+ )" = fi™ + <2in>f12m_1f2 +...+ <21.n>f12m_if2i o

For each term of the expansion, either 2m—¢ > m or ¢ > m. In the first case we can
write the term in the form hf"™, where h = (21“) fImTEm gL klxy, ..., @), In the
second case we can write the term in the form A’ f5"?, where b/ = (QT) frm—iplmme ¢
k[z1,...,,]. Since I is an ideal, we conclude that (f; + f2)?™ € I, and hence that
fi+ f2e VI

Notice that I = (2% + y* + 2zy, 2% + y* — 2zy) = ((z + y)?, (x — y)*). In particular
we see that z +y,2 —y € VI, and hence z,y € VI. Since 1 & I, we conclude that
VI = (2,y).

Let I = (2% — 1,y(z + 2)) C Clz,y]. We see that V(I) = V(z* —1)NV(y(z +2)) C
C2?. Now V(22 —1) = V(z + 1) UV(x — 1) is given by the union of the two lines
==l V(y(z+2)) =V(y) UV(z+2) is the union of the lines y = 0 and z = —2.
Hence V(I) = {(£1,0)}. The Nullstellensatz tells us that

VI =I(V(D) = I({(1,0)}) = (2* ~ L,y).

Let I C k[xi1,...,x,] be an ideal. We say that I is prime if whenever f,g €
klxy,...,zy] are such that fg € I, then either f € I or g € I. We say that I
is mazimal if I # klx1,...,z,] and for any ideal J O I, either J = I or J =

k[xl, ce ,xn].
Let I # k[zq,...,zy,] be an ideal. We will prove the contrapositive: if I is not prime
then I is not maximal. For suppose there exist polynomials f, g € k[z1,...,z,] with
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fgel, f,g ¢ I, and consider the ideal (f) + I. Clearly I C (f) + I. Furthermore,
since f ¢ I we see that I # (f)+ 1. If (f) +1 = klx1,...,2,) then 1 € (f) + I,
hence 1 = ¢f + h for some ¢ € k[z1,...,x,] and h € I. Multiplying through by ¢
gives

g=-cfg-+ hg.
But fg € I by assumption, and hg € I by construction. Hence g € I; a contradic-
tion. Hence (f) + I # k[x1,..., 2] and so I is not maximal.
First we consider (z2+1) C C[z]. Since 22 +1 = (x —i)(z +1i), we see that (z%+1)
is not prime, and hence cannot be maximal.
Now we consider (22 4+ 1) C R[z]. Suppose that J C R[z] is an ideal containing
(2 + 1). Since R[z] is a principal ideal domain, we can write J = (f) for some
f € R[z]. Since 22 + 1 € (f), we have that f | 22 + 1. But 2 + 1 is irreducible,
hence, up to multiplication by a non-zero constant, f = 1 or f = x? + 1. Since in
the first case we have that J = R[z], and in the second case that J = (22 + 1), we
conclude that (z? + 1) is maximal.
Let I C R[zy,...,z,] be maximal, and suppose that V(I) # (). Then there exists
some point (ay,...,a,) € V(I) C R™. In particular, I C (z1 — a,...,Tn — ap).
Clearly (1 —a1,...,zn — an) # Rlz,...,zy], so by maximality of I we have that
I=(z1—ai,...,zy —ay). Hence V(I) = V(21 —a1,...,zp —an) = {(a1,...,an)}.



