M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY
REVISION SOLUTIONS

(1) (a) Fix a monomial order. A finite subset G = {g1,...,9m} of anideal I C k[z1,...,xy)
is called a Grébner basis if

(LT(g1) ..., LT(gm)) = (LT(1)),

where LT(g;) is the leading term of the polynomial g; with respect to the monomial
order, and

(LT(1)) = LT(f) | f € 1)

is the monomial ideal generated by the leading terms of all polynomials f in [I.
Given two polynomials f, g € k[z1,...,x,], the S-polynomial S(f,g) is defined by

« «

LT(f)

where ¢ = lem{LM(f),LM(g)} is the monomial in k[z1, ..., z,] given by the least
common multiple of the leading monomials of f and g.

LT(g)”

S(f,9) = f

Given a finite set of generators G = {g1, ..., gm } for an ideal I, G can be transformed
into a Grobner basis as follows: We calculate the remainder S(g;, gj)G of S(gi, g5)
upon division by G, for each i # j; when the remainder is non-zero, we include it in
the set G to obtain a new set of generators G’ for I and repeat. After a finite number
of steps, this process will stabilise with a set G” all of whose S-polynomials have
remainder zero upon division by G”. By Buchberger’s Criterion, G” is a Grobner
basis for I.
(b) Let G = {z? — y,2* — 22%y}. We have that

S(z? —y, 2zt — 22%y) = 2t — 2%y — 2t + 222y = 2%y,

—G
and 22y = y2. So we set G' = {x? —y,z* — 2x2y,fg{,2}.

We know by construction that S(z2 — y, 24 — 222y) = 0. We consider the remain-
ing two S-polynomials.
S@® — ) = 2%y’ — o —yPa’ = P, and < =0
Szt — 222y, %) = aty? — 202 — 2ty? = —22%y3,  and WCI =0.
Hence, by Buchberger’s Criterion, G’ is a Gronber basis.
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(c)

A Grobner basis G is said to be minimal if LC(g) = 1 and LT (g) ¢ (LT(G \ {¢})),
for all g € G. Our Grébner basis in (b) is not minimal, since

LT (z* — 22%y) = 2" € (LT (2* — y) , LT (¢?)) = (2*,9%).

A Grobner basis G is said to be reduced if LC(g) = 1 and no monomial of g is
contained in (LT(G \ {g¢})), for all ¢ € G. Clearly any reduced Grébner basis is
minimal, so our Grébner basis in (b) is not reduced.

We can transform G = {2? — y,2* — 22%y,y?} into a reduced Grébner basis in a
finite number of steps as follows: For each g € G we calculate ¢’ = g&\M9} and set
G = (G\{g})U{g'}. The resulting set G’ is still a Grobner basis for I. Repeating
until this process stabilises, we obtain (by construction) the reduced Grébner basis
for I.

4 2 2
Tt —2x°y,y
2 —y =2y

y,y°

- 2
x4 — 2x2yx =0

so we have G/ = {2? — y,9y?}, and

——? 9
-y =2 -y

2y
=yt
Hence G’ = {x? — y,y?} is the reduced Grébner basis for 1.
We define the i-th elimination ideal of I C klx1,...,zy] to be theideal in k[z;41, ..., zy]
given by

I;:=1nN ]{,‘[J?Z'Jrl, ce ,xn].

Let G be a Grobner basis for I with respect to the usual lex order. Then, by the
Elimination Theorem,

Gi:=GNEk[zig1,..., )

is a Grobner basis for I;.
A lex-ordered Grobner basis for the ideal I C Clx,y, 2] generated by the given
system of equations is

G:{1‘2—y—z,y3+yz—2y—z—|—1,22—32+2}.

Hence Go = {2% —32+2} is a Grébner basis for I, = INC[z], so V(1) = {1,2} C C.

We use these two partial solutions to calculate
V() =V +yz—2y—2+1,2> — 32+ 2) C C°.

When z = 1 we have y(y? — 1) = 0, with solutions y = 0,£1. When z = 2 we have
y3 = 1, with solutions y = 1, ¢, ¢2. Hence

V(Il) = {(07 1)7 (_17 1)’ (17 1)’ (172)7 (<v2)’ (C2a2)} C (C2'
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Finally, we lift these partial solutions to find all solutions of V(I) C C3. We have,
for each partial solution respectively,

2 =1=1=+l,

P?=0=2= 0,

P?=2=z= :l:\/a,

?=3=z= i\/g,

?=24+(C=>0=4/2+¢
P?2=2+C=0=4y2+C2
Hence the system of equations has eleven solutions, given by the points
(£1,0,1), (0,—1,1), (£v2,1,1),
(£v3,1,2), (£v/24¢,¢,2), (V242 ¢2,2).

(b) We begin by computing a Grobner basis for I = (222 — y?, yx — x + 1) with respect
to the usual lex order:

G={vy—o+Laz+y®—y%y* — 203+ 4> - 2}.

FIGURE 1. The curve cut out by the intersection of the surfaces 2z — y% = 0

and yr —x +1 =0 in R3,

Asin (a) we make use of the Elimination Theorem. Notice that I3 is the zero ideal, so

be begin by considering I; C R[y, z]. This has Grébner basis Go = {y*—2y3+3% -2},
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SO
V(L) = {(t,t* = 2t3 +1°) | t € R}.
We now attempt to lift these partial solutions. First we consider the equation
zz 4y —y? = 0. We obtain:
z(tt =283 + )+ 12 -2 =0
=t (2t -1+ (t—-1)) =0
=t =0 and z is free

ort=1and zx is free

1
t#0,1and x = —.
ort##0,1and x T—¢
Now we consider the equation zy — z + 1 = 0. This tells us that ¢ # 1, and that
when ¢ # 1 we have ¢ = ﬁ Combining these results we find that:

1
V(z?z =y yz —z +1) = {(H,t,t4—2t3+t2> ‘tER\{l}}.

The curve is illustrated in Figure 1.
Let m; : R? — R? be the projection map along the z-axis onto the (y, z)-plane. The
image 71(C) of the curve C = V(2?2 — 3%, yz —x + 1) CR3 is

{(t,t" =2t + %) |t e R\ {1}} C R?,

where the point (1,0), corresponding to ¢ = 1, has been removed. This is illustrated
in Figure 2. The Closure Theorem tells us that

V(L) = {(t,t* =23 +t3) | t e R} D 1, (O)

is the smallest affine variety containing 71 (C).
An ideal I C E[xi,...,z,] is called a monomial ideal if there exists a (possibly
infinite) subset A C Z%, such that

I= {Z hox® ‘ ha € k[z1,...,zy,] and finitely many h, # O} .
a€A

We write [ = (2% | a € A).

Suppose that z? is a multiple of z® for some o € A. Then z? € I by definition of

an ideal. Conversely suppose that 2% € I. Then

m
2P = Zxaihi, where a; € A and h; € k[x1,...,x,].
i=1

Expand each h; as a linear combination of monomials. We see that every term on
the right-hand side of the expression is divisible by some x%. Hence the left-hand

side must also be divisible by some %, o € A, and we are done.
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F1GURE 2. The projection of the curve onto the (x,y)-plane. Notice how the
image is missing the point (1,0) corresponding to ¢ = 1 in the parameterisation.

(b) The monomials in J are sketched in Figure 3. The terms appearing in the remainder
upon performing the division algorithm are given by k-linear sums of monomials
outside of the shaded region; i.e. 5o C@J,‘B where cg € k and

={(i,7) |1 €{0,1},5 €{0,1,2,3,4}} U

{(2,5) 17 €{0,1,2}}u

{(i,5) i €{3,4},7 €{0,1}}U
{(5,0)}.
(c) Using lex order we have remainder 223 + 322y.

(4) (a) Let I = (fi,-- s fry1—wf) C k[zy,...,2z,]. From the proof of the Nullstellensatz
we have that 1 € T only if f™ € I for some m. Hence f € v/I. Conversely suppose
that f € VI. Then f™ € I for some m, and so f™ € I. Since 1 — wf € I by
definition, we see that

L= w™f™ 4 (1 - w™ ")
=w"f" 4+ (1—wf) (1 +wf4+w?f>+.. . ™ fm el

(b) Using lex order, the reduced Grobner basis for I is {1}. Hence, by (a), f € L

To determine the smallest power m such that f™ € I we begin by calculating the
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A XXX X X X X X XX
A XXX X X X X X XX
A XXX X X X X X XX
A XXX X X X X X XX
A XX X X X X X X X X

(0.5) XX X XX X XX
X X XXX X X X X X
X X XXX XX XX
X X X X X X X
X X X X X X X
X X X

(0,0) (6,0)

FIGURE 3. The monomials in the ideal .J, where z%° <+ (a,b) € ZQZO.

reduced Grobner basis for I (again using lex order):
G = {z* —22% +1,9°}.
We now calculate the remainder fT”G for successive values of m:
= ty+1,
72 = —22%y 12y,
79—,

Hence m = 3.

Define
/

af 9f "
ged{f, 9. 5}
Then VI = (freq). We find that f..q = zy(2? +y — 1) + »2, and so
VI = (zy(z® +y— 1) +¢7°).

fred =

We begin by calculating the partial derivatives:

of 37,4 4 2
— = + -2

- 895(1' y) Ty,
0] 3.4 4 2

- = + -2 .
Dy Sy(fU y) 'y

The ideal I = ((z* + y*)? — 2%y?, 823 (2 + y*) — 2292, 8y3 (2! + y*) — 22%y) has re-
duced Grobner basis
2
G= {x7 - %,xzy - 4y7,wy3,y8}

6



with respect to the usual lex order. By the Elimination Theorem we have partial
solution V(y®) = {0}; i.e. y = 0. Extending this we see that z = 0. We conclude
from the definition of singularity that f = 0 has only one singular point, when

z=y=0.

In this case the partial derivatives are:
0
29— Gt + 2¢°,
ox
0
99 _ IOJICy4 + 10yz4,
Ay
0
99 _ —12222% + 20y223.
0z

We obtain the lex-ordered reduced Grobner basis
5223 5
G= {$223 - y3 7'7;y4 + yZ4, I‘Z4 - %7 y7, y623a y224, yZS} .

We have the partial solutions V(y”, %23, 3224, y2®%) = V(y); i.e. there is a line of

partial solutions parameterised by (0,¢). We now attempt to lift these solutions.

4

First we consider the equation xz* — % = 0. This gives us zt* = 0, implying that

either t = 0 or z = 0. The equation xy* + yz* = 0 tells us nothing new (since

2.3
3 51’% = 0. Hence we see that

y = 0). Similarly for 22z
V(I) = V(y,2) UV(z,y) = {(5,0,0)} U{(0,0,8)},

so there are two lines of singularities, corresponding to the z-axis and to the z-axis.



