
M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY

REVISION SOLUTIONS

(1) (a) Fix a monomial order. A finite subset G = {g1, . . . , gm} of an ideal I ⊂ k[x1, . . . , xn]

is called a Gröbner basis if

(LT(g1) , . . . ,LT(gm)) = (LT(I)),

where LT(gi) is the leading term of the polynomial gi with respect to the monomial

order, and

(LT(I)) = (LT(f) | f ∈ I)

is the monomial ideal generated by the leading terms of all polynomials f in I.

Given two polynomials f, g ∈ k[x1, . . . , xn], the S-polynomial S(f, g) is defined by

S(f, g) =
xα

LT(f)
f − xα

LT(g)
g,

where xα = lcm{LM(f) ,LM(g)} is the monomial in k[x1, . . . , xn] given by the least

common multiple of the leading monomials of f and g.

Given a finite set of generatorsG = {g1, . . . , gm} for an ideal I, G can be transformed

into a Gröbner basis as follows: We calculate the remainder S(gi, gj)
G

of S(gi, gj)

upon division by G, for each i 6= j; when the remainder is non-zero, we include it in

the set G to obtain a new set of generators G′ for I and repeat. After a finite number

of steps, this process will stabilise with a set G′′ all of whose S-polynomials have

remainder zero upon division by G′′. By Buchberger’s Criterion, G′′ is a Gröbner

basis for I.

(b) Let G = {x2 − y, x4 − 2x2y}. We have that

S(x2 − y, x4 − 2x2y) = x4 − x2y − x4 + 2x2y = x2y,

and x2y
G

= y2. So we set G′ = {x2 − y, x4 − 2x2y, y2}.
We know by construction that S(x2 − y, x4 − 2x2y)

G′
= 0. We consider the remain-

ing two S-polynomials.

S(x2 − y, y2) = x2y2 − y3 − y2x2 = −y3, and −y3
G′

= 0

S(x4 − 2x2y, y2) = x4y2 − 2x2y3 − x4y2 = −2x2y3, and −2x2y3
G′

= 0.

Hence, by Buchberger’s Criterion, G′ is a Grönber basis.
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(c) A Gröbner basis G is said to be minimal if LC(g) = 1 and LT(g) 6∈ (LT(G \ {g})),
for all g ∈ G. Our Gröbner basis in (b) is not minimal, since

LT
(
x4 − 2x2y

)
= x4 ∈ (LT

(
x2 − y

)
,LT

(
y2
)
) = (x2, y2).

A Gröbner basis G is said to be reduced if LC(g) = 1 and no monomial of g is

contained in (LT(G \ {g})), for all g ∈ G. Clearly any reduced Gröbner basis is

minimal, so our Gröbner basis in (b) is not reduced.

We can transform G = {x2 − y, x4 − 2x2y, y2} into a reduced Gröbner basis in a

finite number of steps as follows: For each g ∈ G we calculate g′ = gG\{g} and set

G′ = (G \ {g})∪ {g′}. The resulting set G′ is still a Gröbner basis for I. Repeating

until this process stabilises, we obtain (by construction) the reduced Gröbner basis

for I.

x2 − yx
4−2x2y,y2

= x2 − y

x4 − 2x2y
x2−y,y2

= 0

so we have G′ = {x2 − y, y2}, and

x2 − yy
2

= x2 − y

y2
x2−y

= y2.

Hence G′ = {x2 − y, y2} is the reduced Gröbner basis for I.

(2) (a) We define the i-th elimination ideal of I ⊂ k[x1, . . . , xn] to be the ideal in k[xi+1, . . . , xn]

given by

Ii := I ∩ k[xi+1, . . . , xn].

Let G be a Gröbner basis for I with respect to the usual lex order. Then, by the

Elimination Theorem,

Gi := G ∩ k[xi+1, . . . , xn]

is a Gröbner basis for Ii.

A lex-ordered Gröbner basis for the ideal I ⊂ C[x, y, z] generated by the given

system of equations is

G = {x2 − y − z, y3 + yz − 2y − z + 1, z2 − 3z + 2}.

Hence G2 = {z2−3z+2} is a Gröbner basis for I2 = I∩C[z], so V(I2) = {1, 2} ⊂ C.

We use these two partial solutions to calculate

V(I1) = V(y3 + yz − 2y − z + 1, z2 − 3z + 2) ⊂ C2.

When z = 1 we have y(y2 − 1) = 0, with solutions y = 0,±1. When z = 2 we have

y3 = 1, with solutions y = 1, ζ, ζ2. Hence

V(I1) =
{

(0, 1), (−1, 1), (1, 1), (1, 2), (ζ, 2), (ζ2, 2)
}
⊂ C2.
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Finally, we lift these partial solutions to find all solutions of V(I) ⊂ C3. We have,

for each partial solution respectively,

x2 = 1⇒ x = ±1,

x2 = 0⇒ x = 0,

x2 = 2⇒ x = ±
√

2,

x2 = 3⇒ x = ±
√

3,

x2 = 2 + ζ ⇒ x = ±
√

2 + ζ,

x2 = 2 + ζ2 ⇒ x = ±
√

2 + ζ2.

Hence the system of equations has eleven solutions, given by the points

(±1, 0, 1), (0,−1, 1), (±
√

2, 1, 1),

(±
√

3, 1, 2), (±
√

2 + ζ, ζ, 2), (±
√

2 + ζ2, ζ2, 2).

(b) We begin by computing a Gröbner basis for I = (x2z− y2, yx− x+ 1) with respect

to the usual lex order:

G = {xy − x+ 1, xz + y3 − y2, y4 − 2y3 + y2 − z}.

Figure 1. The curve cut out by the intersection of the surfaces x2z − y2 = 0

and yx− x+ 1 = 0 in R3.

As in (a) we make use of the Elimination Theorem. Notice that I2 is the zero ideal, so

be begin by considering I1 ⊂ R[y, z]. This has Gröbner basis G2 = {y4−2y3+y2−z},
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so

V(I1) = {(t, t4 − 2t3 + t2) | t ∈ R}.

We now attempt to lift these partial solutions. First we consider the equation

xz + y3 − y2 = 0. We obtain:

x(t4 − 2t3 + t2) + t3 − t2 = 0

⇒ t2
(
x(t− 1)2 + (t− 1)

)
= 0

⇒ t = 0 and x is free

or t = 1 and x is free

or t 6= 0, 1 and x =
1

1− t
.

Now we consider the equation xy − x + 1 = 0. This tells us that t 6= 1, and that

when t 6= 1 we have x = 1
1−t . Combining these results we find that:

V(x2z − y2, yx− x+ 1) =

{(
1

1− t
, t, t4 − 2t3 + t2

) ∣∣∣ t ∈ R \ {1}
}
.

The curve is illustrated in Figure 1.

Let π1 : R3 → R2 be the projection map along the x-axis onto the (y, z)-plane. The

image π1(C) of the curve C = V(x2z − y2, yx− x+ 1) ⊂ R3 is{
(t, t4 − 2t3 + t2) | t ∈ R \ {1}

}
⊂ R2,

where the point (1, 0), corresponding to t = 1, has been removed. This is illustrated

in Figure 2. The Closure Theorem tells us that

V(I1) = {(t, t4 − 2t3 + t2) | t ∈ R} ⊃ π1(C)

is the smallest affine variety containing π1(C).

(3) (a) An ideal I ⊂ k[x1, . . . , xn] is called a monomial ideal if there exists a (possibly

infinite) subset Λ ⊂ Zn≥0 such that

I =

{∑
α∈Λ

hαx
α
∣∣∣ hα ∈ k[x1, . . . , xn] and finitely many hα 6= 0

}
.

We write I = (xα | α ∈ Λ).

Suppose that xβ is a multiple of xα for some α ∈ Λ. Then xβ ∈ I by definition of

an ideal. Conversely suppose that xβ ∈ I. Then

xβ =

m∑
i=1

xαihi, where αi ∈ Λ and hi ∈ k[x1, . . . , xn].

Expand each hi as a linear combination of monomials. We see that every term on

the right-hand side of the expression is divisible by some xαi . Hence the left-hand

side must also be divisible by some xα, α ∈ Λ, and we are done.
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Figure 2. The projection of the curve onto the (x, y)-plane. Notice how the

image is missing the point (1, 0) corresponding to t = 1 in the parameterisation.

(b) The monomials in J are sketched in Figure 3. The terms appearing in the remainder

upon performing the division algorithm are given by k-linear sums of monomials

outside of the shaded region; i.e.
∑

β∈Γ cβx
β where cβ ∈ k and

Γ := {(i, j) | i ∈ {0, 1}, j ∈ {0, 1, 2, 3, 4}}∪

{(2, j) | j ∈ {0, 1, 2}}∪

{(i, j) | i ∈ {3, 4}, j ∈ {0, 1}}∪

{(5, 0)} .

(c) Using lex order we have remainder 2x3 + 3x2y.

(4) (a) Let Ĩ = (f1, . . . , fr, 1 − wf) ⊂ k[x1, . . . , xn]. From the proof of the Nullstellensatz

we have that 1 ∈ Ĩ only if fm ∈ I for some m. Hence f ∈
√
I. Conversely suppose

that f ∈
√
I. Then fm ∈ I for some m, and so fm ∈ Ĩ. Since 1 − wf ∈ Ĩ by

definition, we see that

1 = wmfm + (1− wmfm)

= wmfm + (1− wf)(1 + wf + w2f2 + . . .+ wm−1fm−1) ∈ Ĩ .

(b) Using lex order, the reduced Gröbner basis for Ĩ is {1}. Hence, by (a), f ∈ I.
To determine the smallest power m such that fm ∈ I we begin by calculating the

5



(6,0)

(0,5)

(0,0)

Figure 3. The monomials in the ideal J , where xayb ↔ (a, b) ∈ Z2
≥0.

reduced Gröbner basis for I (again using lex order):

G = {x4 − 2x2 + 1, y2}.

We now calculate the remainder fm
G

for successive values of m:

f
G

= −x2 + y + 1,

f2
G

= −2x2y + 2y,

f3
G

= 0.

Hence m = 3.

(c) Define

fred :=
f

gcd
{
f, ∂f∂x ,

∂f
∂y

} .
Then

√
I = (fred). We find that fred = xy(x2 + y − 1) + y2, and so

√
I =

(
xy(x2 + y − 1) + y2

)
.

(5) (a) We begin by calculating the partial derivatives:

∂f

∂x
= 8x3(x4 + y4)− 2xy2,

∂f

∂y
= 8y3(x4 + y4)− 2x2y.

The ideal I =
(
(x4 + y4)2 − x2y2, 8x3(x4 + y4)− 2xy2, 8y3(x4 + y4)− 2x2y

)
has re-

duced Gröbner basis

G =

{
x7 − xy2

4
, x2y − 4y7, xy3, y8

}
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with respect to the usual lex order. By the Elimination Theorem we have partial

solution V(y8) = {0}; i.e. y = 0. Extending this we see that x = 0. We conclude

from the definition of singularity that f = 0 has only one singular point, when

x = y = 0.

(b) In this case the partial derivatives are:

∂g

∂x
= −6xz4 + 2y5,

∂g

∂y
= 10xy4 + 10yz4,

∂g

∂z
= −12x2z3 + 20y2z3.

We obtain the lex-ordered reduced Gröbner basis

G =

{
x2z3 − 5y2z3

3
, xy4 + yz4, xz4 − y5

3
, y7, y6z3, y2z4, yz8

}
.

We have the partial solutions V(y7, y6z3, y2z4, yz8) = V(y); i.e. there is a line of

partial solutions parameterised by (0, t). We now attempt to lift these solutions.

First we consider the equation xz4 − y5

3 = 0. This gives us xt4 = 0, implying that

either t = 0 or x = 0. The equation xy4 + yz4 = 0 tells us nothing new (since

y = 0). Similarly for x2z3 − 5y2z3

3 = 0. Hence we see that

V(I) = V(y, z) ∪ V(x, y) = {(s, 0, 0)} ∪ {(0, 0, t)},

so there are two lines of singularities, corresponding to the x-axis and to the z-axis.
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