M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY SHEET 3

- (1) Let $I = (x^{\alpha} \mid \alpha \in A) \subset k[x_1, \ldots, x_n]$ be a monomial ideal, where $A \subset \mathbb{Z}_{\geq 0}^n$, and fix a monomial order. Let S be the set of all exponents $\beta \in \mathbb{Z}_{\geq 0}^n$ that occur as a monomial $x^{\beta} \in I$. Prove that the smallest element in S lies in A.
- (2) A set of monomial generators $\{x^{\alpha_1}, \ldots, x^{\alpha_s}\}$ for a monomial ideal I is said to be *minimal* if $x^{\alpha_i} \nmid x^{\alpha_j}, i \neq j$. Prove that every monomial ideal has a unique minimal set of generators.
- (3) Let $I = (x^{\alpha_1}, \dots, x^{\alpha_s}) \subset k[x_1, \dots, x_n]$ be a monomial ideal. For any polynomial $f \in k[x_1, \dots, x_n]$, prove that $f \in I$ if and only if $\overline{f}^{x^{\alpha_1}, \dots, x^{\alpha_s}} = 0$.
- (4) Compute S(f,g) using lex order, where:
 - (a) $f = 4x^2z 7y^2$, $g = xyz^2 + 3xz^4$.

(b)
$$f = x^4y - z^2, g = 3xyz^2 - y.$$

- (c) $f = xy + z^3, g = z^2 3z$.
- (5) Let $I = (x^4y^2 z^5, x^3y^3 1, x^2y^4 2z) \subset \mathbb{C}[x, y, z]$. Using greex order, is $\{x^4y^2 z^5, x^3y^3 1, x^2y^4 2z\}$ a Gröbner basis for I?
- (6) Let $f, g \in k[x_1, \ldots, x_n]$ and x^{α}, x^{β} be monomials. Show that

$$S(x^{\alpha}f, x^{\beta}g) = x^{\gamma}S(f, g)$$

where

$$x^{\gamma} = \frac{\operatorname{lcm}\left\{x^{\alpha} \operatorname{LM}\left(f\right), x^{\beta} \operatorname{LM}\left(g\right)\right\}}{\operatorname{lcm}\left\{\operatorname{LM}\left(f\right), \operatorname{LM}\left(g\right)\right\}}$$

(7) (a) Let $V, W \subset k^n$ be affine varieties. Prove that $V \subsetneq W$ if and only if $\mathbb{I}(V) \supseteq \mathbb{I}(W)$. (b) Let

$$V_1 \supset V_2 \supset V_3 \supset \ldots$$

be a descending chain of affine varieties. Show that there exists some $N \ge 1$ such that $V_N = V_{N+1} = \dots$

- (c) Let $f_1, f_2, \ldots \in k[x_1, \ldots, x_n]$ be an infinite collection of polynomials and let $I = (f_1, f_2, \ldots)$ be the ideal they generate. Prove that there exists some $N \ge 1$ such that $I = (f_1, \ldots, f_N)$.
- (d) Given polynomials $f_1, f_2, \ldots \in k[x_1, \ldots, x_n]$, let $V = \mathbb{V}(f_1, f_2, \ldots) \subset k^n$. Show that there exists some $N \ge 1$ such that $V = \mathbb{V}(f_1, \ldots, f_N)$.

a.m.kasprzyk@imperial.ac.uk

http://magma.maths.usyd.edu.au/~kasprzyk/.