M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY SHEET 5

(1) Let $f \in k[x_1, \ldots, x_n]$. Recall that a point $a = (a_1, \ldots, a_n) \in k^n$ such that f(a) = 0 is said to be *singular* if the partial derivatives

$$\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$$

simultaneously vanish at a.

- (a) Show that (0,0) is the only singular point of $y^2 = x^3$.
- (b) Find all singular points of the curve $y^2 = cx^2 x^3$, where c is a constant.
- (c) Show that the circle $x^2 + y^2 = a^2$ has no singular points.
- (2) Recall that the variety $\mathbb{V}(y x^2, z x^3) \subset \mathbb{R}^3$ is called the *twisted cubic*.
 - (a) Prove that $\mathbb{V}((y-x^2)^2+(z-x^3)^2)$ is also the twisted cubic.
 - (b) Let $I \subset \mathbb{R}[x_1, \ldots, x_n]$ be an ideal. Show that any variety $\mathbb{V}(I) \subset \mathbb{R}^n$ can be defined by a single equation.
- (3) Given a field k (not necessarily algebraically closed), show that $\sqrt{(x^2, y^2)} = (x, y)$. More generally, show that $\sqrt{(x^n, y^m)} = (x, y)$ for any positive integers n and m.
- (4) For the following polynomials f and ideals I, determine whether $f \in \sqrt{I}$. If so, also determine the smallest positive power m such that $f^m \in I$.
 - (a) f = x + y, $I = (x^3, y^3, xy(x + y))$.
 - (b) $f = x^2 + 3xz$, $I = (x + z, x^2y, x z^2)$.
- (5) Prove that if I is a proper ideal of $\mathbb{C}[x_1, \ldots, x_n]$ (that is, $I \neq \mathbb{C}[x_1, \ldots, x_n]$), then

$$\sqrt{I} = \bigcap_{\substack{J \text{ prime}\\I \subseteq J}} J.$$

- (6) Let $I = (xz y^2, z^3 x^5) \subset \mathbb{C}[x, y, z]$. Express $\mathbb{V}(I) \subset \mathbb{C}^3$ as a finite union of irreducible varieties.
- (7) Let $V, W \subset k^n$ be affine varieties such that $V \subset W$. Show that each irreducible component of V is contained in an irreducible component of W.

 $[\]verb+a.m.kasprzyk@imperial.ac.uk+$

http://magma.maths.usyd.edu.au/~kasprzyk/.