M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY SOLUTIONS 1

- (1) We proceed by induction on n. Let f ∈ ℝ[x], and assume f(a) = 0 for all a ∈ ℝ. If f ≠ 0 then f has at most deg f roots, contradicting the assumption. Hence f = 0. Suppose f ∈ ℝ[x₁,...,x_n, x_{n+1}], and f(a₁,...,a_n, a_{n+1}) = 0 for all (a₁,..., a_n, a_{n+1}) ∈ ℝⁿ⁺¹. For any α ∈ ℝ, define g_α(x₁,...,x_n) = f(x₁,...,x_n, α). Then g_α ∈ ℝ[x₁,...,x_n] vanishes for all (a₁,...,a_n) ∈ ℝⁿ, so by the inductive hypothesis g_α = 0. Since α was arbitrary, it follows that f = 0.
- (2) (a) First notice that $0^2 = 0$ and $1^2 = 1$. Thus if either x or y is 0, so $x^2y + y^2x$ vanishes. The only remaining possibility is x = y = 1, but then we have $1 \cdot 1 + 1 \cdot 1 = 0$.
 - (b) $x^2yz + xyz^2$ vanishes at all points in \mathbb{F}_2^3 . More generally, for $n \ge 2$,

$$(x_1 + x_n) \prod_{i=1}^n x_i \in \mathbb{F}_2[x_1, \dots, x_n]$$

vanishes at all points in \mathbb{F}_2^n .

(3) First suppose that $f_1, \ldots, f_m \in I$, and let $g \in (f_1, \ldots, f_m)$. Then

$$g = \sum_{i=1}^{m} h_i f_i,$$
 for some $h_i \in k[x_1, \dots, x_n].$

Since $f_i \in I$, so $h_i f_i \in I$, and hence $g \in I$. So $(f_1, \ldots, f_m) \subseteq I$.

Conversely, suppose that $(f_1, \ldots, f_m) \subseteq I$. Then $f_i \in (f_1, \ldots, f_m) \subseteq I$ for each $1 \leq i \leq m$ and we're done.

(4) $\mathbb{V}(x^n, y^m) = \{(a, b) \in k^2 \mid a^n = 0 \text{ and } b^m = 0\}$. But k is an integral domain, so $a^n = 0$ iff a = 0, and $b^m = 0$ iff b = 0. Hence $\mathbb{V}(x^n, y^m) = \{(0, 0)\} = \mathbb{V}(x, y)$, and so

$$\mathbb{I}(\mathbb{V}(x^n, y^m)) = \mathbb{I}(\mathbb{V}(x, y)) \supseteq (x, y).$$

Conversely, consider any $f \in \mathbb{I}(\mathbb{V}(x, y))$. Then f(0, 0) = 0, and so the constant term of f must be zero. Hence either $f = x^l g$ for some l > 0, $g \in k[x, y]$, in which case $f \in (x) \subset (x, y)$, or $f = y^{l'}g'$ for some l' > 0, $g' \in k[x, y]$, in which case $f \in (y) \subset (x, y)$. In either case $f \in (x, y)$, and so

$$\mathbb{I}(\mathbb{V}(x^n, y^m)) = \mathbb{I}(\mathbb{V}(x, y)) \subseteq (x, y).$$

(5) (a) $x^2 - x = x(x-1)$. Clearly this vanishes at 0 and at 1. Similarly for $y^2 - y$. Hence $(x^2 - x, y^2 - y) \subseteq I$.

a.m.kasprzyk@imperial.ac.uk

http://magma.maths.usyd.edu.au/~kasprzyk/.

(b) Let $f \in \mathbb{F}_2[x, y]$. We can write

$$f = \sum_{i \in S} p_i(x) y^i$$
, where $p_i \in \mathbb{F}_2[x]$ are non-zero.

Applying the division algorithm to the p_i , we see

$$p_i = q_i(x^2 - x) + r_i$$

where $r_i = 0$ or deg $r_i < \text{deg}(x^2 - 2) = 2$. Hence

$$f = (x^{2} - x) \sum_{i \in S} q_{i}(x)y^{i} + \sum_{i \in S} r_{i}(x)y^{i}.$$

Since each r_i is either 0 or deg $r_i \leq 1$, we can write

$$\sum_{i \in S} r_i(x)y^i = g(y)x + h(y), \quad \text{for some } g, h \in \mathbb{F}_2[y].$$

Hence

$$f = A(x,y)(x^2 - x) + g(y)x + h(y), \qquad \text{for some } A \in \mathbb{F}_2[x,y].$$

Now we apply the division algorithm to g and h:

$$g = q_1(y^2 - y) + r_1$$
, where $r_1 = 0$ or $\deg r_1 < 2$,
 $h = q_2(y^2 - y) + r_2$, where $r_2 = 0$ or $\deg r_2 < 2$.

Finally, we see that

$$f = A(x^{2} - x) + B(y^{2} - y) + r_{1}x + r_{2}$$

= $A(x^{2} - x) + B(y^{2} - y) + axy + bx + cy + d.$

(c) Consider r(x, y) = axy + bx + cy + d, and suppose that r vanishes at every point in \mathbb{F}_2^2 . Then:

$$r(0,0) = d \qquad \Rightarrow d = 0$$

$$r(0,1) = c + d \qquad \Rightarrow c = 0$$

$$r(1,0) = b + d \qquad \Rightarrow b = 0$$

$$r(1,1) = a + b + c + d \qquad \Rightarrow a = 0$$

Hence r is the zero polynomial.

(d) Let $f \in I$. Since $f \in \mathbb{F}_2[x, y]$ we can write

$$f = A(x^2 - x) + B(y^2 - y) + axy + bx + cy + d.$$

We have already seen that $x^2 - x, y^2 - y \in I$, hence

$$f - A(x^2 - x) - B(y^2 - y) = axy + bx + cy + d \in I.$$

Since this vanishes at every point in \mathbb{F}_2^2 , by our previous result we have that a = b = c = d = 0. Hence $f = A(x^2 - x) + B(y^2 - y) \in (x^2 - x, y^2 - y)$. It follows that $I = (x^2 - x, y^2 - y)$.

(e) $x^2y + y^2x = y(x^2 - x) + x(y^2 - y)$ since 2xy = 0xy = 0.

- (6) Suppose that (x, y) = (f) for some $f \in k[x, y]$. In particular, $f \mid x$ and so f is either a constant which implies that (f) = k[x, y] and so is impossible or f = cx for some $c \in k$. Similarly since $f \mid y$ we see that f = dy for some $d \in k$. It follows that c = d = 0 and so (f) = (0), a contradiction.
- (7) We proceed by induction on m. When m = 2 the result is trivial. Let $h = \gcd\{f_2, \ldots, f_m\}$. Since $h \mid f_i, 2 \le i \le m$, we have that $f_i \in (f_1, h)$ and so $(f_1, h) \supseteq (f_1, \ldots, f_m)$.

Conversely set $h' = \gcd\{f_3, \ldots, f_m\}$. By the inductive hypothesis, $(f_2, h') = (f_2, f_3, \ldots, f_m)$. Since $h = \gcd\{f_2, h'\}$, so $(h) = (f_2, h') = (f_2, \ldots, f_m)$. Now let $f \in (f_1, h)$. Then $f = k_1 f_1 + k_2 h$ for some $k_1, k_2 \in k[x]$. Then - since $(h) = (f_2, \ldots, f_m)$ - there exist $g_i \in k[x]$ such that $f = k_1 f_1 + k_2 g_2 f_2 + \ldots + k_2 g_m f_m$, and so $f \in (f_1, f_2, \ldots, f_m)$ and so $(f_1, h) \subseteq (f_1, \ldots, f_m)$. The result follows.

- (8) Use a computer.
- (9) Notice that 2 is a root of all three generators:

$$x^{3} + x^{2} - 4x - 4 = (x - 2)(x^{2} + 3x + 2)$$

$$x^{3} - x^{2} - 4x + 4 = (x - 2)(x^{2} + x - 2)$$

$$x^{3} - 2x^{2} - x + 2 = (x - 2)(x^{2} - 1) = (x - 2)(x - 1)(x + 1)$$

Now 1 is a root of $x^2 + x - 2$ but not of $x^2 + 3x + 2$, and -1 is a root of $x^2 + 3x + 2$ but not of $x^2 + x - 2$. Hence

$$\gcd\left\{x^3 + x^2 - 4x - 4, x^3 - x^2 - 4x + 4, x^3 - 2x^2 - x + 2\right\} = x^2 - 2$$

and so

$$(x^{3} + x^{2} - 4x - 4, x^{3} - x^{2} - 4x + 4, x^{3} - 2x^{2} - x + 2) = (x - 2).$$

Finally, notice that $x^2 - 4 = (x - 2)(x + 2)$, hence $x^2 - 4 \in (x - 2)$.