M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY SOLUTIONS 3

- (1) Let $S := \{\beta \mid x^{\beta} \in I\} \subset \mathbb{Z}_{\geq 0}^{n}$. Since we are using a monomial order, S has a smallest element $\gamma \in S$. Then $x^{\gamma} \in I$, so there exists some $\alpha \in A$ such that $x^{\alpha} \mid x^{\gamma}$. Hence $\alpha \leq \gamma$. But $\alpha \in S$ by construction, so $\alpha = \gamma$.
- (2) First we show existence. By Dickson's Lemma we can write $I = (x^{\alpha_1}, \ldots, x^{\alpha_s})$ for some finite set of generators $A = \{\alpha_1, \ldots, \alpha_s\} \subset \mathbb{Z}_{\geq 0}^n$. Suppose that there exist $\alpha_i, \alpha_j \in A$, $i \neq j$, such that $x^{\alpha_i} \mid x^{\alpha_j}$. Then $A' := A \setminus \{\alpha_j\}$ is such that $(x^{\alpha} \mid \alpha \in A') = I$. Proceeding by induction we see that this process must terminate (since A is finite) with a minimal generating set.

Now for uniqueness. Suppose for a contradiction that $\{x^{\alpha_1}, \ldots, x^{\alpha_s}\}$ and $\{x^{\beta_1}, \ldots, x^{\beta_r}\}$ are two different minimal generating sets. Without loss of generality we may take $x^{\beta_1} \notin \{x^{\alpha_1}, \ldots, x^{\alpha_s}\}$. Since $x^{\beta_1} \in (x^{\alpha_1}, \ldots, x^{\alpha_s})$, so there exists some α_i such that $x^{\alpha_i} \mid x^{\beta_1}$. But $x^{\alpha_i} \in (x^{\beta_1}, \ldots, x^{\beta_r})$, so there exists some β_j such that $x^{\beta_j} \mid x^{\alpha_i}$. Hence $x^{\beta_j} \mid x^{\beta_1}$. By minimality j = 1, hence $\alpha_i = \beta_1$.

- (3) Suppose that $f \in I$. Then $f = \sum_{i=1}^{s} h_i x^{\alpha_i}$ for some $h_i \in k[x_1, \ldots, x_n]$. So each term of f is divisible by some x^{α_i} . Hence $\bar{f}^{x^{\alpha_1}, \ldots, x^{\alpha_s}} = 0$. Conversely suppose that $\bar{f}^{x^{\alpha_1}, \ldots, x^{\alpha_s}} = 0$. This means (by the Division Algorithm) that there exist $h_i \in k[x_1, \ldots, x_n]$ such that $f = \sum_{i=1}^{s} h_i x^{\alpha_i}$, and so $f \in I$.
- (4) (a)

$$\frac{x^2yz^2}{4x^2z}(4x^2z - 7y^2) - \frac{x^2yz^2}{xyz^2}(xyz^2 + 3xz^4) = x^2yz^2 - \frac{7}{4}y^3z - x^2yz^2 - 3x^2z^4$$
$$= -3x^2z^4 - \frac{7}{4}y^3z.$$

(b)

$$\frac{x^4yz^2}{x^4y}(x^4y-z^2) - \frac{x^4yz^2}{3xyz^2}(3xyz^2-y) = x^4yz^2 - z^4 - x^4yz^2 + \frac{1}{3}x^3y$$
$$= \frac{1}{3}x^3y - z^4.$$

(c)

$$\frac{xyz^2}{xy}(xy+z^3) - \frac{xyz^2}{z^2}(z^2 - 3z) = xyz^2 + z^3 - xyz^2 + 3xyz$$
$$= 3xyz + z^3.$$

a.m.kasprzyk@imperial.ac.uk

http://magma.maths.usyd.edu.au/~kasprzyk/.

(5) We use Buchberger's Criterion.

$$S(x^{4}y^{2} - z^{5}, x^{3}y^{3} - 1) = \frac{x^{4}y^{3}}{x^{4}y^{2}}(x^{4}y^{2} - z^{5}) - \frac{x^{4}y^{3}}{x^{3}y^{3}}(x^{3}y^{3} - 1)$$
$$= x^{4}y^{3} - yz^{5} - x^{4}y^{3} + x$$
$$= -yz^{5} + x.$$

But $\overline{-yz^5 + x}^G = -yz^5 + x$, so this is not a Gröbner basis. (6)

$$\begin{split} S(x^{\alpha}f, x^{\beta}g) &= \frac{x^{\delta}}{x^{\alpha}\mathrm{LT}(F)}x^{\alpha}f - \frac{x^{\delta}}{x^{\beta}\mathrm{LT}(g)}x^{\beta}g\\ & \text{where } \delta := \mathrm{lcm}\Big\{x^{\alpha}\mathrm{LM}(f)\,, x^{\beta}\mathrm{LM}(g)\Big\}\\ &= \frac{x^{\delta}}{\mathrm{LT}(F)}f - \frac{x^{\delta}}{\mathrm{LT}(g)}g\\ &= x^{\delta-\epsilon}\left(\frac{x^{\epsilon}}{\mathrm{LT}(f)}f - \frac{x^{\epsilon}}{\mathrm{LT}(g)}g\right)\\ & \text{where } \epsilon := \mathrm{lcm}\{\mathrm{LM}(f)\,, \mathrm{LM}(g)\} \end{split}$$

$$= x^{\delta - \epsilon} S(f, g).$$

(7) (a) Let $I_1 = \mathbb{I}(V)$ and $I_2 = \mathbb{I}(W)$. Since V and W are both affine varieties, $\mathbb{V}(I_1) = V$ and $\mathbb{V}(I_2) = W$. By the Hilbert Basis Theorem there exists $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$ such that $I_1 = (f_1, \ldots, f_s)$.

Suppose that $V \subseteq W$. Then for any $f \in I_2$ we have that $f(a_1, \ldots, a_n) = 0$ for all $(a_1, \ldots, a_n) \in W \supseteq V$, so $f \in I_1$. Hence $I_2 \subseteq I_1$. Now suppose $V \subsetneq W$, so that there exists some $(a_1, \ldots, a_n) \in W \setminus V$. Then $f_i(a_1, \ldots, a_n) \neq 0$ for some $1 \leq i \leq s$ (since otherwise $(a_1, \ldots, a_n) \in V$), hence $f_i \notin I_2$, so $I_2 \subsetneq I_1$.

Conversely suppose first that $I_2 \subseteq I_1$. Then for every $(a_1, \ldots, a_n) \in V$ we have that $f(a_1, \ldots, a_n) = 0$ for all $f \in I_1$. Since $I_2 \subseteq I_1$ we see that $(a_1, \ldots, a_n) \in W$ and so $V \subseteq W$. Suppose now that $I_2 \subsetneq I_1$. Then $f_i \notin I_2$ for some $1 \leq i \leq s$ (since otherwise $I_1 = I_2$). But if V = W then $f_i(a_1, \ldots, a_n) = 0$ for all $(a_1, \ldots, a_n) \in V = W$, so $f_i \in I_2$. Hence $V \subsetneq W$.

- (b) Let $V_1 \supseteq V_2 \supseteq \ldots$ be a descending chain of affine varieties. Then $\mathbb{I}(V_1) \subseteq \mathbb{I}(V_2) \subseteq \ldots$ is a ascending chain of ideals. But we saw in the proof of the Hilbert Basis Theorem that any such chain stabilises, so that $\mathbb{I}(V_N) = \mathbb{I}(V_{N+1}) = \ldots$ for some $N \ge 1$. By out previous result, so $V_N = V_{N+1} = \ldots$
- (c) Let $I_i := (f_1, \ldots, f_i)$. Then we have an ascending chain of ideals $I_1 \subseteq I_2 \subseteq \ldots$ As observed above, this must eventually stabilise, giving $(f_1, f_2, \ldots) = (f_1, \ldots, f_N)$.
- (d) Let $V_i := \mathbb{V}(f_1, \ldots, f_i) \subset k^n$. Then $V_1 \supseteq V_2 \supseteq \ldots$ is a descending chain of affine varieties. By above this stabilises, giving $\mathbb{V}(f_1, f_2, \ldots) = \mathbb{V}(f_1, \ldots, f_N)$.