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M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY
SOLUTIONS 3

Let S:={B|2% €I} C ZY. Slnce we are using a monomial order, S has a smallest
element v € S. Then 27 € I, so there exists some o € A such that z® | 7. Hence a < 7.
But a € S by construction, so a = 7.

First we show existence. By Dickson’s Lemma we can write I = (z1,.

..,x%) for some
finite set of generators A = {a1,...,as} C Z%,. Suppose that there exist a;, o € A,
i # j, such that % | %. Then A’ := A\_{ozj} is such that (z* | a € A") = I
Proceeding by induction we see that this process must terminate (since A is finite) with
a minimal generating set.

Now for uniqueness. Suppose for a contradiction that {z,...,z%} and {1, ... 25}

are two different minimal generating sets. Without loss of generality we may take
Pt g {x™, .. 2%}, Since 2% € (2®1,...,2%), so there exists some «a; such that
z% | 291, But 2% € (2%1,...,2%), so there exists some $3; such that % | x%. Hence
2% | 1. By minimality j = 1, hence oy = By.
Suppose that f € I. Then f =37 | hja® for some h; € k[z1,...,xy]. So each term of f
is divisible by some 2%. Hence f*"'»%"" = (0. Conversely suppose that f**'»"* =,
This means (by the Division Algorithm) that there exist h; € k[z1,...,x,] such that
f=>7_1hiz*, and so f € I.
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zyz> 2y 2>

(zy + 2%) — 2 (22— 32) = zyz? + 2% — 2y2® + 3ayz

= 3xyz + 23.

a.m.kasprzyk@imperial.ac.uk

http://magma.maths.usyd.edu.au/~kasprzyk/.



(5) We use Buchberger’s Criterion.
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= —yz5 + .
But —yz5 + xG = —y2z° 4 x, so this is not a Grobner basis.
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(7) (a) Let I =1I(V) and I, = I[(W). Since V and W are both affine varieties, V(I;) =V
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(d)

and V(Iz) = W. By the Hilbert Basis Theorem there exists f1, ..., fs € k[z1,..., 2]
such that I1 = (f1,..., fs)-

Suppose that V' C W. Then for any f € I, we have that f(a,...,a,) = 0 for all
(a1,...,an) € W DV, so f € I;. Hence Iy C I;. Now suppose V' C W, so that
there exists some (ay,...,a,) € W\ V. Then f;(a1,...,a,) # 0 for some 1 <1i <s
(since otherwise (ai,...,a,) € V), hence f; & Is, so Iy C 1.

Conversely suppose first that Is C I;. Then for every (aq,...,a,) € V we have that
f(ay,...,a,) =0 for all f € I . Since Iy C I} we see that (ai,...,a,) € W and so
V C W. Suppose now that Is C I;. Then f; & I, for some 1 < i < s (since otherwise
I = I). But if V.= W then fi(ai,...,a,) =0 for all (a1,...,a,) € V =W, so
fi € Io. Hence V.C W.

Let Vi 2 V4 D ... be a descending chain of affine varieties. Then I(V;) CI(V2) C ...
is a ascending chain of ideals. But we saw in the proof of the Hilbert Basis Theorem
that any such chain stabilises, so that I(Vy) = I(Vy41) = ... for some N > 1. By
out previous result, so Vy = Vi1 =....

Let I; := (f1,..., fi). Then we have an ascending chain of ideals Iy C I, C .... As
observed above, this must eventually stabilise, giving (f1, f2,...) = (f1,..., f~).
Let V; := V(f1,...,fi) C k™ Then Vi 2O V5, D ... is a descending chain of affine
varieties. By above this stabilises, giving V(f1, fo,...) = V(f1,..., fn).



