M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY
SOLUTIONS 4

(1) (a) Using lex order, calculated using MAGMA (in 0.010 seconds):

X3 +y2+2z72-1,

X"2%y"2 4+ x72%z72 - x"2 - y*4 - z"3 + 1,

X"2%z"4 + X"2%z"3 - 2%xx"2%z"2 - 1/6%x*z"10 - 2/3%x*z"9 - 1/4*x*z"8 +
T/6%x*z" T — 1/12%x%2"6 - x*¥2"5 + x*¥z"4 + 1/2%y~10%z"2 + 1/3xy"10*z -

...and an additional 30 lines of output.

Using grevlex order, calculated using MAGMA (in 0.000 seconds):

y°6 - yT4*z72 + x72%z74 + 2xx*y 2%z"2 + x"2%z"3 + y 2%z"3 + x*%z"4 - z75 -
2%x7T2%z72 - 2%yT2%z72 - x*z"3 - z74 - 2¥x*y"2 - 2%x*z"2 + z73 + y"2 +
3%z"2 + 2%x - 2,

X*¥y~4 + yT4 + 2%xyT2%z72 + x¥%273 + 274 - 2%y"2 - 2%272 - x + 1,

X"2%y"2 - yT4 + x72%z72 - 273 - x72 + 1,

x'3+y2+2z72-1

It’s very obvious that the grevlex basis is preferable.

(b) Using lex order, calculated using MAGMA (in 0.030 seconds):

X" 3+y3+2z72-1,

X"2%y"3 + xX72%z72 - x"2 - y°4 -z"3 + 1,

X"2%y*z - XT2%y + xX72*%z76 + 2%x72%z75 + 3*x72%z74 - 3*x"2*%z"3 - 3*x"2%z72 -
XT2%z + X72 + THxky 3%z - THxky~3 - 12¥xkyT2%z + 12*%x*y"2 -
62093/7776*x*xz~20 - 15037/243%x*z~19 - 1974401/7776%x*z~18 -

...and an additional 372 lines of output!!!

Using grevlex order, calculated using MAGMA (in 0.000 seconds):

y°6 + x*¥y"4 + 2%y 3%z72 + x¥%273 + z74 - 2%y"3 - 2%z272 - x + 1,

X"2%y"3 - y"4 + x72%z72 - 273 - x72 + 1,

x'3+y3+z72-1

(2) T checked the claim using MAGMA. In each case Grobner basis is very small.
> R<x,y,z,w>:=PolynomialRing(Rationals(),4,"grevlex");
> I:=ideal<R| [x" (n+1)-y*z" (n-1)*w,x*y" (n-1)-z"n,x " n*z-y n*w]> where n:=3;
> time GroebnerBasis(I);
L
z"10 - y~9*w,

x*z"7 - yoT*w,
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X"2%z"4 - y~bxw,
xX"4 - y*z"2%w,
X"3%z - y " 3*w,
x*xy~2 - z73
]
Time: 0.000
> I:=ideal<R| [z~ (n+1)-y*z~ (n-1)*w,x*y" (n-1)-z"n,x n*z-y " n*w]> where n:=4;

> time GroebnerBasis(I);

I
z717 - y~16x*w,
x*z"13 - y " 13*w,
X"2*%z"9 - y~10*w,
xX"3%z"5 - y T*xw,
x"5 - y*z"3%w,
X"4*xz - y 4*w,
x*y"3 - z74

]

Time: 0.000

> I:=ideal<R| [z~ (n+1)-y*z~ (n-1)*w,x*y" (n-1)-z"n,x"n*z-y " n*w]> where n:=5;
> time GroebnerBasis(I);

L
z726 - y~2b*w,
x*¥z"21 - y"21xw,
X"2*z716 - yT17*w,
x"3%z711 - y~13*w,
X"4%z"6 - y 9*w,
X"6 - y*z 4xw,
X"5*z - y 5w,
xxy~4 - z75

]

Time: 0.000

n2+1

It’s worth noting that z — y”gw is the first term in each case. (In fact this is true

for all n.) Redoing the calculation when n = 3 using lex order, we get:

> R<x,y,z,w>:=PolynomialRing(Rationals(),4,"lex");
> I:=ideal<R| [z~ (n+1)-y*z~ (n-1)*w,x*y" (n-1)-z"n,x n*z-y " n*w]> where n:=3;
> time GroebnerBasis(I);
[
X"4 - y*z"2%w,
X"3%z - y~3*w,

X"2%z"4 - y~bxw,



xxy~2 - z73,
x*z"7 - yoT*w,
y 9xw - z710

Time: 0.000

In this case the claim no-longer holds.

(3) (a) First we calculate I N k[y] via the technique of calculating a Grébner basis for I

using lex order with x < y. We use MAGMA to calculate the Grobner basis:
> R<x,y>:=PolynomialRing(Rationals(),2,"lex");
> I:=ideal<R| [x"2+2%y~2-3,x " 2+x*y+y~2-3]>;

> GroebnerBasis(I);

[
xX"2 + 2%y"2 - 3,
X*y - y°2,
y3-y

]

Hence:

INkly =’ —y).

In order to calculate I N k[z] we need to exchange the order of x and y — i.e. we
calculate lex order using y < x:

> R<y,x>:=PolynomialRing(Rationals(),2,"lex");

> I:=ideal<R| [x"2+2*%y~2-3,x " 2+x*y+y~2-3]>;

> GroebnerBasis(I);

[
y + 1/2%x"3 - 3/2*x,
x"4 - 4%x"2 + 3

]

Hence:

INklz] = (z* — 422 + 3).

(b) We should try to minimise our work by using the simpler of the two bases we found

in part (a). To my mind that looks like the case when y < x, so I'll use that. I see
immediately that:

(2 = 1)(x?=3)=0 = r==41orz=+V3
Substituting into y = %x(S — 2?) gives four solutions:

(=1, —1),(1,1), (£3,0).

(c) Clearly only the first two solutions are contained in Q2.
(d) Set k = Q[v/3]. Notice that this really is a field, since 1/v/3 = v/3/3 € Q[v/3].
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(4)

(6)

Taking a hint from the previous question, I computed two lex Grébner bases: one with
x < y and one with y < z. The second one looks better to me, so I used that. The
resulting Grobner basis is:

3 3 8 4
G = {y+4x3—2mx4—3x2+3}

Solving for x I get:
(22 -2)(322—=2)=0 =  z=4V2o0rz=+2/3.
Substituting into y = 32(2 — 2?) gives the four solutions:
(£v2,0), (v/2/3,V/2/3), (=v/2/3,—/2/3).

The standard lex-ordered Grober basis is:

3 1
G_{x+2z3—3z,y2—22—1,z4—2z2+2}.

This corresponding Grobner bases for the elimination ideals are:

2 2
Gﬂk[z]:{z‘l—ng—F;}.

Solving for z we obtain:

1
GNkly,z = {y2—22—1,24—3z2+},

1 1
2(2—1)<z—7)20 = z==xlor z=+——.
2 \/i

Since we’re only interested in rational solutions, we restrict to the cases z = +1. Substi-
tuting into y? = 22 + 1 gives y? = 2 in both cases, hence there are no rational solutions.
(a) We calculate the lex Grébner basis for I = (219 — 25y + 1,22 — 22+ 1) C Clx,y, 2]:

G={2?—zz+1,y—2°+525 -5z}
Hence we obtain bases for I; and I given by, respectively,

GNCly,z] = {y — 2° +52° — 52}
GNClz] =0

That I = (0) is immediate.
(b) Since Iy = (0), we have that V(I3) = C. The generator of I; can be written in the

form
Loy' + (=25 + 523 — 52),
hence the Elimination Theorem tells us to consider when solutions a € V(I3) = C

are contained in V(1) = (). Since this is never so, we conclude that every partial

solution in V(I3) extends to a solution (a® — 5a® + 5a,a) € V(1) C C2.
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The generators of I can be written in the form:
12?4 (—22 +1),
(y — 25 +52° — 52) - 2°.

Hence we consider V(1,y—2°+523—5z) = (). So, again by the Elimination Theorem,
we see that every partial solution (a5 — 5a3 + 5a, a) € V(1) extends to a solution
in V(7). Hence we conclude that each partial solution in V(I2) extends to a solution
in V(I), as desired.

(¢) Let (a® —5a®+ ba,a) € V(I;), a € R. Then x satisfies 22 — az + 1 = 0. This
has real solutions if and only if a®> —4 > 0. In other words, a partial solution
(y,2) € V(I1) C R? extends to solutions V(I) C R? if and only if 2 > 2 or 2 < —2.
This doesn’t contradict the Extension Theorem, since R is not algebraically closed.

(d) We've basically already done the work (and the real part is sketched below):

V(I) = {(%(ai Va2 —4),d% — 543 +5a,a> ’ ac (C} cC3.




