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EXAM SOLUTIONS 2013

(1) (i) Let G = {g1, . . . , gm} be a set of generators for the ideal I ⊂ k[x1, . . . , xn], and fix

a monomial order. Then G is a Gröbner basis for I if

(LT(I)) = (LT(g1) , . . . ,LT(gm)).

Buchberger’s Criterion states that G is a Gröbner basis if and only if the remainder

S(gi, gj)
G

is zero for all i 6= j.

(ii) S(−x + y2,−y2 + z4) = (xy2 − y4) − (xy2 − xz4) = xz4 − y4. Upon division by G

we obtain zero. Hence {−x+ y2,−y2 + z4} is a Gröbner basis for I.

(iii) Our result in (ii) is not reduced, since the leading coefficients are −1 in both cases.

Moving to G′ = {x − y2, y2 − z4} we see that this still isn’t reduced, since y2 ∈
(LT

(
y2 − z4

)
). Now x− y2y

2−z4
= x− z4, so we set G′′ = {x− z4, y2− z4}. We see

that this is reduced.

(iv) There are a number of ways of seeing that the output from the computer is wrong.

Here are two: First, notice that the Gröbner basis given by the computer is reduced,

but the reduced Gröbner basis is unique and so the computer is wrong. Second,

notice (from (iii)) that the curve V(I) can be paramaterised as (t4, t2, t), t ∈ k, but

t6 − t4 6= 0.

(2) (i) Moving to the ideals, we have an ascending chain

I(V1) ⊆ I(V2) ⊆ . . .

By the Ascending Chain Condition this must stabilise for some N with

I(VN ) = I(VN+1) = . . . .

But V(I(V )) = V , so VN = VN+1 = . . ..

(ii) Suppose for a contradiction that V cannot be written as a finite union of irreducible

varieties. Since V cannot be irreducible by assumption, so there exists U,W ⊂ kn,

U 6= V , W 6= V , and V = U ∪ W . But then at least one of U and W cannot

be written as a finite union of irreducible varieties; without loss of generality we

assume U is such. By induction we obtain a descending chain

V % U % U ′ % . . .

of affine varieties, each of which cannot be written as a finite union of irreducible

varieties. But this contradicts (i).
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(iii) Let a = (a1, . . . , an) ∈ V(f, g). Then f(a) = 0 and g(a) = g1(a)g2(a) = 0. Hence

a ∈ V(f, g1) ∪ V(f, g2). Conversely let a ∈ V(f, g1) ∪ V(f, g2). Then f(a) = 0 and

either g1(a) = 0 or g2(a) = 0. In either case, g(a) = 0 and so a ∈ V(f, g).

(iv) Notice that x(z− y) + z(z− y) = (z− y)(z+x). By repeated application of (iii) we

obtain:

V(y2 − x2,(z − y)(z + x))

= V (y − x, (z − y)(z + x)) ∪ V (y + x, (z − y)(z + x))

= V(y − x, z − y) ∪ V(y − x, z + x) ∪ V (y + x, (z − y)(z + x))

= V(y − x, z − y) ∪ V(y − x, z + x) ∪ V(y + x, z − y) ∪ V(y + x, z + x).

In each case the curve is paramaterised by, respectively, (t, t, t), (t, t,−t), (−t, t, t),
and (−t, t, t). Hence we have an irreducible decomposition into three distinct factors

(the final two factors are equal).

(3) (i) Notice that f = 0 if and only if at least one of the factors (x− ai)ri vanishes. But

(x − ai)ri = 0 if and only if x = ai, hence V(f) = {a1, . . . , ad} = V(fred). Hence

I(V(f)) = I(V(fred)) ⊇ (fred). Conversely suppose that g ∈ I(V(f)). In particular,

g(ai) = 0 for all 1 ≤ ai ≤ d, so we can factor g as

g = h
d∏
i=1

(x− ai)

for some h ∈ C[x]. In particular g = 1
chfred, so g ∈ (fred). Hence I(V(f)) = (fred).

(ii)
√
I = {f ∈ k[x1, . . . , xn] | fm ∈ I for some m ∈ Z>0}.

Let k be an algebraically closed field, I ⊂ k[x1, . . . , xn] an ideal. The Nullstellensatz

states that I(V(I)) =
√
I.

(iii) The variety is given by the line x = 0. By applying the Nullstellensatz we see that√
I = (x).

(4) (i) If xβ = xγxα for some xα ∈ I then xβ ∈ I by the definition of an ideal. Conversely

suppose that xβ ∈ I, so that

xβ =
m∑
i=1

hix
αi , for some hi ∈ k[x1, . . . , xn], αi ∈ A.

Expanding the right-hand side as a sum of monomials, we see that each monomial

is divisible by xαi for some αi ∈ A. Hence the same must be true of the left-hand

side.

(ii) Notice that y(x3 − 2xy)− x(x2y − 2y2 + x) = −x2, hence x2 ∈ LT(I). But clearly

x2 6∈ (x3, x2y), hence the supposition is false.

(iii) By assumption there exists some f ∈ I such that LT(f) 6∈ (LT(f1) , . . . ,LT(fm)).

By applying the Division Algorithm we that f
f1,...,fm 6= 0 (since the leading term

will not cancel).

2



(5) Mastery Question.

(i) If f
G

= 0 then the Division Algorithm gives

f = a1g1 + . . .+ amgm + 0,

where whenever aigi 6= 0 we have that multideg (f) ≥ multideg (aigi). Hence f →G

0.

(ii) By the Division Algorithm we see that xy2−x = y · (xy+1)+0 · (y2−1)+(−x−y),

i.e. the remainder is non-zero. But xy2 − x = 0 · (xy + 1) + x · (y2 − 1) and so

f →G 0.

(iii) Without loss of generality we will assume that we have multiplied f and g through

by non-zero constants such that LC(f) = LC(g) = 1. Writing f = LM(f) + p and

g = LM(g) + q, for some p, q ∈ k[x1, . . . , xn], we see that

S(f, g) = LM(f) LM(g) + pLM(g)− LM(f) LM(g)− qLM(f)

= pLM(g)− qLM(f)

= p(g − q)− q(f − p)

= pg − qf.

We have that LM(pg) = LM(p) LM(g) and LM(qf) = LM(q) LM(f). Since LM(f)

and LM(g) are coprime, and since LM(p) < LM(f) and LM(q) < LM(g), we con-

clude that LM(p) LM(g) 6= LM(q) LM(f). Hence the leading monomials do not can-

cel, so multideg (S(f, g)) = max{multideg (pg) ,multideg (qf)}. Thus S(f, g)→G 0.

(iv) Our result in (iii) means that we can avoid performing the S-polynomial compu-

tation for pairs f, g ∈ G whenever the leading monomials are coprime; in those

cases we know a priori that S(f, g) →G 0. This is a significant improvement over

the traditional Buchberger’s Criterion, since the computation S(f, g)
G

involving the

Division Algorithm is expensive.

(v) Notice that x3 and yz are coprime, as are x3 and z4. Thus the only pair we need

to check is yz + y and z4. In this case S(yz + y, z4) = yz3. Suppose that

yz3 = p(x3 + y) + q(yz + y) + rz4, p, q, r ∈ k[x, y, z].

In order for yz3 →G 0 we require that the multidegree of each term is at most yz3.

From this we conclude that r = 0 and p ∈ k. We see that no solution is possible,

hence this is not a Gröbner basis.
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