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EXAM SOLUTIONS 2014

(1) (i) Let G = {g1, . . . , gm} be a set of generators for the ideal I ⊂ k[x1, . . . , xn], and fix

a monomial order. Then G is a Gröbner basis for I if

(LT(I)) = (LT(g1) , . . . ,LT(gm)).

Buchberger’s Criterion states that G is a Gröbner basis if and only if the remainder

S(gi, gj)
G

is zero for all i 6= j.

(ii) We split the calculation up into four cases.

a 6= 0, b 6= 0: The S-polynomial is S(−ax2 +y,−by3 +z) = x2z
b −

y4

a . The remainder

upon division by {y − ax2, z − by3} is 0, hence this is a Gröbner basis.

a = 0, b 6= 0: The S-polynomial is S(y,−by3 + z) = z
b . The remainder is z

b , hence

this is not a Gröbner basis.

a 6= 0, b = 0: The S-polynomial is S(−ax2 + y, z) = −yz
a . The remainder is 0, hence

this is a Gröbner basis.

a = 0, b = 0: The S-polynomial is S(y, z) = 0, so this is a Gröbner basis.

Thus {y−ax2, z−by3} is a Gröbner basis for all values a, b except when a = 0, b 6= 0.

(iii) A Gröbner basis G is said to be reduced if, for all g ∈ G, LC(g) = 1 and no monomial

of g lies in (LT(G \ {g})).
Using our results in (ii) we know that the set is a Gröbner basis in all cases except

when a = 0, b 6= 0, which is easy enough to fix. We have the reduced Gröbner bases:

{x− y/a, y3 − z/b} when a 6= 0, b 6= 0;

{y, z} when a = 0, b 6= 0;

{x− y/a, z} when a 6= 0, b = 0;

{y, z} when a = 0, b = 0.

(iv) For a given monomial order, the reduced Gröbner basis is unique. Thus we make

use of our results in (iii) and see that the two ideals are equal iff a1 = a2 and b1 = b2,

or a1 = a2 = 0 and b1, b2 free.

(2) (i) (a) Let f, g ∈ Il. Then f, g ∈ I and f, g ∈ C[xl+1, . . . , xn]. Hence f + g ∈ I

and f + g ∈ C[xl+1, . . . , xn], and so f + g ∈ Il. Now suppose that f ∈ Il,

g ∈ C[xl+1, . . . , xn]. Then f ∈ I and g ∈ C[x1, . . . , xn], hence gf ∈ I. Since

f ∈ C[xl+1, . . . , xn] we have gf ∈ C[xl+1, . . . , xn], and so gf ∈ Il.
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(b)

f ∈ Il+1 ⇐⇒ f ∈ I ∩ C[xl+2, . . . , xn]

⇐⇒ f ∈ (I ∩ C[xl+1, xl+2, . . . , xn]) ∩ C[xl+2, . . . , xn]

⇐⇒ f ∈ Il ∩ C[xl+2, . . . , xn]

(ii) Extension Theorem: Let I = (f1, . . . , fs) ⊂ C[x1, . . . , xn] be an ideal. For each

1 ≤ i ≤ s, write fi in the form

fi = gi(x2, . . . , xn)xNi
1 + terms in which x1 has degree < Ni,

where Ni ≥ 0 and gi ∈ C[x2, . . . , xn] is non-zero. Let (a2, . . . , an) ∈ V(I1) be a

partial solution. If (a2, . . . , an) 6∈ V(g1, . . . , gs) then there exists a1 ∈ C such that

(a1, a2, . . . , an) ∈ V(I).

The result follows immediately from the Extension Theorem: Since gi = c 6= 0 im-

plies V(g1, . . . , gs) = ∅, we have (a2, . . . , an) 6∈ V(g1, . . . , gs) for all partial solutions.

(iii) Let G = {x2−xz+1, y−z2 +1} be the lex-ordered Gröbner basis. The Elimination

Theorem tells us that G ∩ C[y, z] = {y − z2 + 1} is a Gröbner basis for I1, and

G ∩ C[z] = ∅ is a Gröbner basis for I2. Hence V(I2) = C and every partial

solution can be extended via a trivial application of (ii). Continuing, we have

V(I1) = {(t2 − 2, t) | t ∈ C}, and once more (ii) tells us that every partial solution

can be extended. Finally, we have that

V(I) =
{( t

2
+

1

2

√
t2 − 4,t2 − 2, t

)
| t ∈ C

}
∪{( t

2
− 1

2

√
t2 − 4, t2 − 2, t

)
| t ∈ C

}
is the set of solutions to the system of equations.

Since any paramaterisable variety is irreducible, we see that V(I) has two compo-

nents.

(3) (i) V(I) := {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ I}.
Let (a1, . . . , an) ∈ V(I2). Then f(a1, . . . , an) = 0 for all f ∈ I2. But I1 ⊆ I2 by

assumption, hence f(a1, . . . , an) = 0 for all f ∈ I1, and so (a1, . . . , an) ∈ V(I1).

(ii) Let I1 = (y−x2, z−x3) and I2 = ((y−x2)2+(z−x3)2). Since I2 ⊂ I1, we have that

V(I1) ⊂ V(I2). Conversely let (a, b, c) ∈ V(I2) ⊂ R3, so that (b−a2)2+(c−a3)2 = 0.

The only possibility is that both b − a2 = 0 and c − a3 = 0 (since we’re working

over R), hence (a, b, c) ∈ V(I1). Hence V(I1) = V(I2).

(iii) Let I = (f1, . . . , fm) ⊂ R[x1, . . . , xn] be an ideal, and set

g = f2
1 + . . . + f2

m.

The ideal I ′ = (g) is contained in I, and so V(I) ⊂ V(I ′). Conversely let (a1, . . . , an) ∈
V(I ′), so that

f1(a1, . . . , an)2 + . . . + fm(a1, . . . , an)2 = 0.
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Since we’re working over R, it much be that fi(a1, . . . , an) = 0 for each 1 ≤ i ≤ m.

Hence (a1, . . . , an) ∈ V(I) and so V(I ′) ⊂ V(I). We conclude that V(I) = V(I ′), as

required.

(iv) If V(f1, . . . , fs) = V(g) then
√

(f1, . . . , fs) =
√

(g) by the Nullstellensatz. Consider

the radical ideal (x, y), and suppose that (x, y) =
√

(g) for some g ∈ C[x, y]. Then

xn = hg for some n ∈ Z>0 and h ∈ C[x, y], and we see that g is a power of x.

Similarly ym = h′g, and so g is a power of y. Hence g ∈ C, which is a contradiction.

(4) (i) Given an ideal I ⊂ k[x1, . . . , xn] we define
√
I := {f ∈ k[x1, . . . , xn] | fm ∈ I for some m > 0}.

Let I ⊂ C[x1, . . . , xn] be an ideal. Then I(V(I)) =
√
I.

(ii) Let I =
(
x2 − x− 2, x(y2 − 1)

)
⊂ C[x, y]. We see that V(I) = V(x2 − x − 2) ∩

V(x(y2 − 1)) ⊂ C2. Now V(x2 − x− 2) = V(x− 2)∪V(x + 1) is given by the union

of the two lines x = 2 and x = −1. V(x(y2 − 1)) = V(x) ∪ V(y − 1) ∪ V(y + 1) is

the union of the three lines x = 0 and y = ±1. Hence V(I) equals the four points

{(−1,±1), (2,±1)}. The Nullstellensatz tells us that
√
I = I(V(I)) =

(
(x + 1)(x− 2), y2 − 1

)
.

That y2 − 1 ∈
√
I is immediate.

(iii) If f ∈
√
∩iIi then fm ∈ ∩iIi for some integer m > 0. Since fm ∈ Ii, we have that

f ∈
√
Ii. Hence f ∈ ∩i

√
Ii.

Conversely let f ∈ ∩i
√
Ii. Then, for each i ∈ Γ, there exist mi > 0 such that

fmi ∈ Ii. Let m := max{mi | i ∈ Γ}. Then fm ∈ Ii for all i ∈ Γ, and hence

f ∈
√
∩iIi.

(iv) Notice that

(f) =
d⋂

i=1

((x− ai)
ri) .

Since
√

((x− ai)ri) = (x− ai), the result follows immediately from (iii).

(5) Mastery Question.

(i) Let g1, g2 ∈ I : (f∞). Then there exists m1,m2 ∈ Z>0 such that fm1g1 ∈ I and

fm2g2 ∈ I. Setting m := max{m1,m2} we see that f2mg1g2 = fmg1 ·fmg2 ∈ I, and

so g1g2 ∈ I : (f∞). Now let g ∈ I : (f∞), h ∈ C[x1, . . . , xn]. Then fmg ∈ I and so

fmgh ∈ I, hence gh ∈ I : (f∞).

(ii) Given two ideals I, J ⊂ C[x1, . . . , xn], the colon ideal is the set

I : J := {g ∈ C[x1, . . . , xn] | fg ∈ I for all f ∈ J}.

Since (fm) is principal, we have that I : (fm) = {g ∈ C[x1, . . . , xn] | fmg ∈ I}.
Suppose that g ∈ I : (fm). Then fmg ∈ I, and so fm+1g ∈ I. Hence g ∈ I : (fm+1),

and we have an ascending chain of ideals.

By the Ascending Chain Condition there exists some N ∈ Z>0 such that this sta-

bilises, i.e. such that I : (fm) = I : (fm+1) for all m ≥ N . We will show that
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I : (f∞) = I : (fN ). Clearly I : (fN ) ⊆ I : (f∞) by definition of the saturation.

Let g ∈ I : (f∞). Then there exists some m ∈ Z>0 such that fmg ∈ I, hence

g ∈ I : (fm), hence g ∈ I : (fN ).

(iii) Let g ∈ I : (f∞). By (ii) we have that fNg ∈ I ⊂ Ĩ. Write

1 = fNyN + (1− fNyN ) = fNyN + (1− fy)(1 + fy + . . . + fN−1yN−1).

Multiplying through by g we obtain

g = fNgyN + (1− fy)(1 + fy + . . . + fN−1yN−1)g.

Since fNg, 1− fy ∈ Ĩ and g ∈ C[x1, . . . , xn] we conclude that g ∈ Ĩ ∩C[x1, . . . , xn].

Conversely suppose that g ∈ Ĩ ∩ C[x1, . . . , xn]. Then

g =
s∑

i=1

pifi + q(1− yf)

for some pi, q ∈ C[x1, . . . , xn, y]. Setting y = 1/f gives g =
∑s

i=1 pi(x1, . . . , xn, 1/f)fi.

Clearing out the denominators by multiplying through by a sufficiently large power

m of f gives fmg =
∑s

i=1 Pi(x1, . . . , xn)fi, where the Pi ∈ C[x1, . . . , xn]. Hence

fmg ∈ I, and so g ∈ I : (f∞).
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