M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY
EXAM SOLUTIONS 2014

(1) (i) Let G = {g1,...,9m} be a set of generators for the ideal I C k[z1,...,x,], and fix
a monomial order. Then G is a Grébner basis for I if

(LT()) = (LT(g1) , - -, LT(gm))-

Buchberger’s Criterion states that GG is a Grobner basis if and only if the remainder
-G
S(gi,gj) s zero for all i # j.
(ii) We split the calculation up into four cases.
a # 0,b # 0: The S-polynomial is S(—az?+y, —by> +2) = ””QTZ — %. The remainder

2 2 —by3} is 0, hence this is a Grobner basis.

upon division by {y — ax

a =0,b # 0: The S-polynomial is S(y, —by® + z) = %. The remainder is %, hence

this is not a Grobner basis.

a # 0,b = 0: The S-polynomial is S(—ax? +y,z2) = —%. The remainder is 0, hence

this is a Grobner basis.

a = 0,b=0: The S-polynomial is S(y, z) = 0, so this is a Grobner basis.

Thus {y—ax?, z—by3} is a Grébner basis for all values a, b except when a = 0,b # 0.
(iii) A Grobner basis G is said to be reduced if, for all g € G, LC(g) = 1 and no monomial

of g lies in (LT(G \ {g¢}))-

Using our results in (ii) we know that the set is a Grébner basis in all cases except

when a = 0, b # 0, which is easy enough to fix. We have the reduced Grobner bases:

{x —y/a,y® — z/b} when a # 0,b # 0;
{y, 2} when a = 0,b # 0;
{x —y/a,z} when a # 0,b = 0;
{y, 2} when a = 0,b = 0.

(iv) For a given monomial order, the reduced Grobner basis is unique. Thus we make
use of our results in (iii) and see that the two ideals are equal iff a1 = a9 and by = by,
or a; = ag = 0 and by, by free.

(2) (i) (a) Let f,g € I;. Then f,g € I and f,g € Clzj41,...,2,]. Hence f+g € I
and f 4+ g € Clxj41,...,2,], and so f + g € I;. Now suppose that f € I,
g € Clzi41,...,2,). Then f € I and g € Clzy,...,x,], hence gf € I. Since
f € Clziyq,...,zy) we have gf € Clzyyq,...,2,], and so gf € 1.
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(i)

(iii)

(iii)

(b)
f 6[[+1 <:>f€ImC[l‘l+2,...,$n]
— fe (INClxyr1, a0, ..., xp)) NClzyia, ..., Ty

— fe [NClzia,. .., T

Extension Theorem: Let I = (fi,...,fs) C Clz1,...,2,] be an ideal. For each
1 <4 <s, write f; in the form

fi=gi(xa,..., xn)x]lvl + terms in which z1 has degree < N;,

where N; > 0 and g; € Clzg,...,xy] is non-zero. Let (ag,...,a,) € V(I1) be a
partial solution. If (ag,...,a,) & V(g1,...,9s) then there exists a; € C such that
(a1,a2,...,a,) € V(I).

The result follows immediately from the Extension Theorem: Since g; = ¢ # 0 im-
plies V(g1,...,9s) = 0, we have (az,...,a,) € V(g1,...,gs) for all partial solutions.
Let G = {#? —x2+1,y— 22 +1} be the lex-ordered Grobner basis. The Elimination
Theorem tells us that G N Cly, 2] = {y — 22 + 1} is a Grébner basis for 7, and
G N Clz] = @ is a Grobner basis for Io. Hence V(I3) = C and every partial
solution can be extended via a trivial application of (ii). Continuing, we have
V() = {(t* = 2,t) | t € C}, and once more (ii) tells us that every partial solution
can be extended. Finally, we have that

V(I) = {<%+%\/t2—4,t2—2,t) |te<c}u
{(%—%m,tz—zt) \tec}

is the set of solutions to the system of equations.

Since any paramaterisable variety is irreducible, we see that V(I) has two compo-
nents.

V() :={(a1,...,an) € k" | f(a1,...,a,) =0 for all f € I}.

Let (a1,...,a,) € V(I2). Then f(ai,...,a,) = 0 for all f € Is. But I} C Iy by
assumption, hence f(ay,...,a,) =0 for all f € I, and so (ai,...,a,) € V(I1).

Let [ = (y—22,z—23) and I, = ((y —22)?>+ (2 —23)?). Since Iy C I1, we have that
V(1) C V(I2). Conversely let (a,b,c) € V(I3) C R?, so that (b—a?)?+(c—a?)? = 0.
The only possibility is that both b — a?> = 0 and ¢ — a® = 0 (since we're working
over R), hence (a,b,c) € V(I1). Hence V(I;) = V(I3).

Let I = (f1,...,fm) C Rlz1,...,zy,] be an ideal, and set

g=fi+.. . +f2.

The ideal I = (g) is contained in I, and so V(I) C V(I’). Conversely let (a1, ...,a,) €
V(I"), so that

fl(al,...,an)2+.-.+fm(01,---aan)2:O‘
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Since we're working over R, it much be that f;(ai,...,a,) =0 for each 1 <i < m.
Hence (a1, ...,a,) € V(I) and so V(I') C V(I). We conclude that V(I) = V(I'), as
required.

(iv) EV(f1,..., fs) = V(g) then \/(f1,-.., fs) = \/(g) by the Nullstellensatz. Consider
the radical ideal (z,y), and suppose that (x,y) = /(g) for some g € C[z,y]. Then
"™ = hg for some n € Z~o and h € Clz,y], and we see that g is a power of x.
Similarly y™ = h'g, and so g is a power of y. Hence g € C, which is a contradiction.

(4) (i) Given an ideal I C k[x1,...,zy] we define

VI :={fecklzi,...,z,] | f™ eI for some m > 0}.

Let I C Clzy,...,z,) be an ideal. Then I(V(I)) = /1.

(ii) Let I = (2?2 —2—2,2(y* — 1)) C Clz,y]. We see that V(I) = V(2? — 2 — 2) N
V(z(y? —1)) € C2. Now V(22 — 2 —2) = V(z — 2) UV(x + 1) is given by the union
of the two lines * = 2 and = —1. V(z(y? — 1)) = V() UV(y — 1) UV(y + 1) is
the union of the three lines x = 0 and y = +1. Hence V(I) equals the four points
{(—1,£1),(2,+£1)}. The Nullstellensatz tells us that

VI=1(V(I)) = ((z +1)(z - 2),y> — 1)

That y2 — 1 € /T is immediate.

(iii) If f € /N;I; then f™ € N;I; for some integer m > 0. Since f™ € I;, we have that
f € VI;. Hence f € Ni\/T;.
Conversely let f € N;v/I;. Then, for each i € T, there exist m; > 0 such that
fm e I;. Let m := max{m; | i € I'}. Then f™ € I; for all i € I', and hence
feVniL.

(iv) Notice that
d
ﬂ T —a;)

Since /((x — a;)™) = (z — ai)7 the result follows immediately from (iii).
(5) Mastery Question.

(i) Let g1,92 € I : (f*°). Then there exists mi,ma € Zso such that f™g; € I and
fm2gy € I. Setting m := max{m1, ma} we see that f>"g1g2 = f™g1- f™g2 € I, and
s0 g1g2 € I : (f>°). Now let g € I : (f*°), h € C[z1,...,z,]. Then fg € I and so
f™gh € I, hence gh € I : (f>).

(ii) Given two ideals I, J C C[zy,...,zy,], the colon ideal is the set

I:J:={g€Clzxy,...,z,] | fge I forall feJ}

Since (f™) is principal, we have that I : (f™) = {g € Clz1,...,z,] | f™g € I}.
Suppose that g € I : (f™). Then f™g € I, and so f™*1g € I. Hence g € I : (f™*1),
and we have an ascending chain of ideals.

By the Ascending Chain Condition there exists some N € Zsq such that this sta-

bilises, i.e. such that I : (f™) = I : (f™*!) for all m > N. We will show that
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I:(f°)=1:(fN). Clearly I : (fV) C I: (f°°) by definition of the saturation.
Let g € I : (f*°). Then there exists some m € Zsg such that f"g € I, hence
gel:(f™), hencegel: (fN).

(i) Let g € I : (f*). By (ii) we have that fNg € I C I. Write

L= YN+ (= ™) = YN + (U= fy) A+ fy+ o+ AN,
Multiplying through by g we obtain

g=fNgyN + (1= f)(L+ fy+...+ NV g

Since fNg,1— fy eI and g € Clzy,...,x,] we conclude that g € TNClxy, ..., z,).
Conversely suppose that g € I N Clzy,...,z,]. Then

S
g9=>Y_pifi+ad—yf)
i=1
for some p;, ¢ € Clxy, ..., 2y, y]. Settingy = 1/f givesg = >0 pi(z1,..., 20,1/ f) fi.
Clearing out the denominators by multiplying through by a sufficiently large power
m of f gives fMg = > | Pi(x1,...,2,)fi, where the P, € Clzy,...,2,]. Hence
fMgel,andsogel:(f).



