STUDENT'S NAME:	I.D #:
PROFESSOR'S NAME:	SECTION #:

DEPARTMENT OF MATHEMATICS & STATISTICS

MATH 1003

MID-TERM TEST

WEDNESDAY, OCTOBER 29, 2003

MARKS

1. Let
$$f(x) = \begin{cases} -x^2 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ x+1 & \text{if } x > 1 \end{cases}$$
.

(3) (a) Sketch the graph of f. What is the range of f?

(2) (b) For which values a is f discontinuous at x = a? Give a reason why f is not continuous at this value (or values).

(2) (c) At each value a where f is discontinuous, determine both $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$.

2. Find the derivatives of the following functions. You do not need to simplify your answers.

(4) (a)
$$y = (1+x^2)^{100}$$

(4) (b)
$$y = (x+1)\sin x$$

(4) (c)
$$y = \frac{\sqrt{1-x^2}}{x}$$

(4) (d)
$$y = (x^2 + 1)\sqrt[3]{x^2 + 2}$$

3. Evaluate the following limits:

(3) (a)
$$\lim_{x \to 25} \frac{\sqrt{x} - 5}{x - 25}$$

(3)
$$\lim_{x \to \infty} \frac{3x^3 - 2x^2}{x^3 + 3x - 1}$$

(3) (c)
$$\lim_{x \to 2^+} \frac{x^2 - 4}{x^2 - 4x + 4}$$

4. Let
$$f(x) = \sqrt{2x+1}$$
 and $g(x) = x^2$. Find

(2) (b)
$$f \circ g(x)$$
;

(2) (c) the domain of
$$f \circ g$$
.

- 5. Let $f(x) = x^3 3x^2 8x$.
- (3) (a) Find the equation of the tangent to the curve y = f(x) at the point (1, -10).

(3) (b) Find the values of x where the tangent line to y = f(x) has slope 1.

(2) 6. (a) State the definition of the derivative of the function f(x).

(4) (b) Let $f(x) = 3x - x^2$. Use the definition of the derivative to find f'(x). (We all know f'(x) = 3 - 2x. You must use the definition to receive credit!)