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1 Polynomials in One Variable

The study of systems of polynomial equations in many variables requires a
good understanding of what can be said about one polynomial equation in
one variable. The purpose of this lecture is to provide some basic tools on
this matter. We shall consider the problem of how to compute and how to
represent the zeros of a general polynomial of degree d in one variable x:

p(x) = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0. (1)

1.1 The Fundamental Theorem of Algebra

We begin by assuming that the coefficients ai lie in the field Q of rational
numbers, with ad 6= 0, where the variable x ranges over the field C of complex
numbers. Our starting point is the fact that C is algebraically closed.

Theorem 1. (Fundamental Theorem of Algebra) The polynomial p(x)
has d roots, counting multiplicities, in the field C of complex numbers.

If the degree d is four or less, then the roots are functions of the coefficients
which can be expressed in terms of radicals. The command solve in maple

will produce these familiar expressions for us:

> solve( a2 * x^2 + a1 * x + a0, x );

2 1/2 2 1/2

-a1 + (a1 - 4 a2 a0) -a1 - (a1 - 4 a2 a0)

1/2 ------------------------, 1/2 ------------------------

a2 a2

> lprint( solve( a3 * x^3 + a2 * x^2 + a1 * x + a0, x )[1] );

1/6/a3*(36*a1*a2*a3-108*a0*a3^2-8*a2^3+12*3^(1/2)*(4*a1^3*a3

-a1^2*a2^2-18*a1*a2*a3*a0+27*a0^2*a3^2+4*a0*a2^3)^(1/2)*a3)

^(1/3)+2/3*(-3*a1*a3+a2^2)/a3/(36*a1*a2*a3-108*a0*a3^2-8*a2^3

+12*3^(1/2)*(4*a1^3*a3-a1^2*a2^2-18*a1*a2*a3*a0+27*a0^2*a3^2

+4*a0*a2^3)^(1/2)*a3)^(1/3)-1/3*a2/a3
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The polynomial p(x) has d distinct roots if and only if its discriminant is
nonzero. Can you spot the discriminant of the cubic equation in the previous
maple output? In general, the discriminant is computed from the resultant
of p(x) and its first derivative p′(x) as follows:

discrx(p(x)) =
1

ad
· resx(p(x), p

′(x)).

This is an irreducible polynomial in the coefficients a0, a1, . . . , ad. It follows
from Sylvester’s matrix for the resultant that the discriminant is a homoge-
neous polynomial of degree 2d− 2. Here is the discriminant of a quartic:

> f := a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 :

> lprint(resultant(f,diff(f,x),x)/a4);

-192*a4^2*a0^2*a3*a1-6*a4*a0*a3^2*a1^2+144*a4*a0^2*a2*a3^2

+144*a4^2*a0*a2*a1^2+18*a4*a3*a1^3*a2+a2^2*a3^2*a1^2

-4*a2^3*a3^2*a0+256*a4^3*a0^3-27*a4^2*a1^4-128*a4^2*a0^2*a2^2

-4*a3^3*a1^3+16*a4*a2^4*a0-4*a4*a2^3*a1^2-27*a3^4*a0^2

-80*a4*a3*a1*a2^2*a0+18*a3^3*a1*a2*a0

This sextic is the determinant of the following 7× 7-matrix divided by a4:

> with(linalg):

> sylvester(f,diff(f,x),x);

[ a4 a3 a2 a1 a0 0 0 ]

[ ]

[ 0 a4 a3 a2 a1 a0 0 ]

[ ]

[ 0 0 a4 a3 a2 a1 a0]

[ ]

[4 a4 3 a3 2 a2 a1 0 0 0 ]

[ ]

[ 0 4 a4 3 a3 2 a2 a1 0 0 ]

[ ]

[ 0 0 4 a4 3 a3 2 a2 a1 0 ]

[ ]

[ 0 0 0 4 a4 3 a3 2 a2 a1]
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Galois theory tells us that there is no general formula which expresses
the roots of p(x) in radicals if d ≥ 5. For specific instances with d not too
big, say d ≤ 10, it is possible to compute the Galois group of p(x) over Q .
Occasionally, one is lucky and the Galois group is solvable, in which case
maple has a chance of finding the solution of p(x) = 0 in terms of radicals.

> f := x^6 + 3*x^5 + 6*x^4 + 7*x^3 + 5*x^2 + 2*x + 1:

> galois(f);

"6T11", {"[2^3]S(3)", "2 wr S(3)", "2S_4(6)"}, "-", 48,

{"(2 4 6)(1 3 5)", "(1 5)(2 4)", "(3 6)"}

> solve(f,x)[1];

1/2 1/3

1/12 (-6 (108 + 12 69 )

1/2 2/3 1/2 1/2 1/3 1/2

+ 6 I (3 (108 + 12 69 ) + 8 69 + 8 (108 + 12 69 ) )

/ 1/2 1/3

+ 72 ) / (108 + 12 69 )

/

The number 48 is the order of the Galois group and its name is "6T11". Of
course, the user now has to consult help(galois) in order to learn more.

1.2 Numerical Root Finding

In symbolic computation, we frequently consider a polynomial problem as
solved if it has been reduced to finding the roots of one polynomial in one
variable. Naturally, the latter problem can still be a very interesting and
challenging one from the perspective of numerical analysis, especially if d
gets very large or if the ai are given by floating point approximations. In the
problems studied in this course, however, the ai are usually exact rational
numbers and the degree d rarely exceeds 200. For numerical solving in this
range, maple does reasonably well and matlab has no difficulty whatsoever.
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> Digits := 6:

> f := x^200 - x^157 + 8 * x^101 - 23 * x^61 + 1:

> fsolve(f,x);

.950624, 1.01796

This polynomial has only two real roots. To list the complex roots, we say:

> fsolve(f,x,complex);

-1.02820-.0686972 I, -1.02820+.0686972 I, -1.01767-.0190398 I,

-1.01767+.0190398 I, -1.01745-.118366 I, -1.01745 + .118366 I,

-1.00698-.204423 I, -1.00698+.204423 I, -1.00028 - .160348 I,

-1.00028+.160348 I, -.996734-.252681 I, -.996734 + .252681 I,

-.970912-.299748 I, -.970912+.299748 I, -.964269 - .336097 I,

ETC...ETC..

Our polynomial p(x) is represented in matlab as the row vector of its
coefficients [ad ad−1 . . . a2 a1 a0]. For instance, the following two commands
compute the three roots of the dense cubic p(x) = 31x3 + 23x2 + 19x+ 11.

>> p = [31 23 19 11];

>> roots(p)

ans =

-0.0486 + 0.7402i

-0.0486 - 0.7402i

-0.6448

Representing the sparse polynomial p(x) = x200 − x157 + 8x101 − 23x61 + 1
considered above requires introducing lots of zero coefficients:

>> p=[1 zeros(1,42) -1 zeros(1,55) 8 zeros(1,39) -23 zeros(1,60) 1]

>> roots(p)

ans =

-1.0282 + 0.0687i

-1.0282 - 0.0687i

-1.0177 + 0.0190i

-1.0177 - 0.0190i

-1.0174 + 0.1184i

-1.0174 - 0.1184i

ETC...ETC..
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We note that convenient facilities are available for calling matlab inside of
maple and for calling maple inside of matlab. We wish to encourage our
readers to experiment with the passage of data between these two programs.

Some numerical methods for solving a univariate polynomial equation
p(x) = 0 work by reducing this problem to computing the eigenvalues of
the companion matrix of p(x), which is defined as follows. Let V denote
the quotient of the polynomial ring modulo the ideal 〈p(x)〉 generated by
the polynomial p(x). The resulting quotient ring V = Q [x]/〈p(x)〉 is a d-
dimensional Q -vector space. Multiplication by the variable x defines a linear
map from this vector space to itself.

Timesx : V → V , f(x) 7→ x · f(x). (2)

The companion matrix is the d×d-matrix which represents the endomorphism
Timesx with respect to the distinguished monomial basis {1, x, x2, . . . , xd−1}
of V . Explicitly, the companion matrix of p(x) looks like this:

Timesx =




0 0 · · · 0 −a0/ad

1 0 · · · 0 −a1/ad

0 1 · · · 0 −a2/ad
...

...
. . .

...
...

0 0 . . . 1 −ad−1/ad


 (3)

Proposition 2. The zeros of p(x) are the eigenvalues of the matrix Timesx.

Proof. Suppose that f(x) is a polynomial in C [x] whose image in V ⊗ C =
C [x]/〈p(x)〉 is an eigenvector of (2) with eigenvalue λ. Then x · f(x) =
λ · f(x) in the quotient ring, which means that (x − λ) · f(x) is a multiple
of p(x). Since f(x) is not a multiple of p(x), we conclude that λ is a root
of p(x) as desired. Conversely, if µ is any root of p(x) then the polynomial
f(x) = p(x)/(x− µ) represents an eigenvector of (2) with eigenvalue µ.

Corollary 3. The following statements about p(x) ∈ Q [x] are equivalent:

• The polynomial p(x) is square-free, i.e., it has no multiple roots in C .

• The companion matrix Timesx is diagonalizable.

• The ideal 〈p(x)〉 is a radical ideal in Q [x].
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We note that the set of multiple roots of p(x) can be computed symboli-
cally by forming the greatest common divisor of p(x) and its derivative:

q(x) = gcd(p(x), p′(x)) (4)

Thus the three conditions in the Corollary are equivalent to q(x) = 1.
Every ideal in the univariate polynomial ring Q [x] is principal. Writing

p(x) for the ideal generator and computing q(x) from p(x) as in (4), we get
the following general formula for computing the radical of any ideal in Q [x]:

Rad
(〈p(x)〉) = 〈p(x)/q(x)〉 (5)

1.3 Real Roots

In this subsection we describe symbolic methods for computing information
about the real roots of a univariate polynomial p(x). In what follows, we
assume that p(x) is a squarefree polynomial. It is easy to achieve this by
removing all multiplicities as in (4) and (5). The Sturm sequence of p(x) is
the following sequence of polynomials of decreasing degree:

p0(x) := p(x), p1(x) := p′(x), pi(x) := −rem(pi−2(x), pi−1(x)) for i ≥ 2.

Thus pi(x) is the negative of the remainder on division of pi−2(x) by pi−1(x).
Let pm(x) be the last non-zero polynomial in this sequence.

Theorem 4. (Sturm’s Theorem) If a < b in R and neither is a zero of
p(x) then the number of real zeros of p(x) in the interval [a, b] is the number of
sign changes in the sequence p0(a), p1(a), p2(a), . . . , pm(a) minus the number
of sign changes in the sequence p0(b), p1(b), p2(b), . . . , pm(b).

We note that any zeros are ignored when counting the number of sign
changes in a sequence of real numbers. For instance, a sequence of twelve
number with signs +,+, 0,+,−,−, 0,+,−, 0,−, 0 has three sign changes.

If we wish to count all real roots of a polynomial p(x) then we can apply
Sturm’s Theorem to a = −∞ and b = ∞, which amounts to looking at the
signs of the leading coefficients of the polynomials pi in the Sturm sequence.
Using bisection, one gets a procedure for isolating the real roots by rational
intervals. This method is conveniently implemented in maple:
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> p := x^11-20*x^10+99*x^9-247*x^8+210*x^7-99*x^2+247*x-210:

> sturm(p,x,-INFINITY, INFINITY);

3

> sturm(p,x,0,10);

2

> sturm(p,x,5,10);

0

> realroot(p,1/1000);

1101 551 1465 733 14509 7255

[[----, ---], [----, ---], [-----, ----]]

1024 512 1024 512 1024 512

> fsolve(p);

1.075787072, 1.431630905, 14.16961992

Another important classical result on real roots is the following:

Theorem 5. (Déscartes’ Rule of Signs) The number of positive real roots of
a polynomial is at most the number of sign changes in its coefficient sequence.

For instance, the polynomial p(x) = x200−x157 +8x101−23x61 +1, which
was featured in Section 1.2, has four sign changes in its coefficient sequence.
Hence it has at most four positive real roots. The true number is two.

Corollary 6. A polynomial with m terms can have at most 2m−1 real zeros.

The bound in this corollary is optimal as the following example shows:

x ·
m−1∏
j=1

(x2 − j)

All 2m− 1 zeros of this polynomial are real, and its expansion has m terms.

1.4 Puiseux Series

Suppose now that the coefficients ai of our given polynomial are not rational
numbers but they are rational functions ai(t) in another parameter t. Hence
we wish to determine the zeros of a polynomial in K[x] where K = Q(t).

p(t; x) = ad(t)x
d + ad−1(t)x

d−1 + · · ·+ a2(t)x
2 + a1(t)x + a0(t). (6)
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The role of the ambient algebraically closed field containing K is now played
by the field C {{t}} of Puiseux series. The elements of C {{t}} are formal power
series in t with coefficients in C and having rational exponents, subject to
the condition that the set of appearing exponents is bounded below and has
a common denominator. Equivalently,

C {{t}} =
∞⋃

N=1

C ((t
1
N )),

where C ((y)) abbreviates the field of Laurent series in y with coefficients in C .
A classical theorem in algebraic geometry states that C {{t}} is algebraically
closed. For a modern treatment see (Eisenbud 1994, Corollary 13.15).

Theorem 7. (Puiseux’s Theorem) The polynomial p(t; x) has d roots,
counting multiplicities, in the field of Puiseux series C {{t}}.

The proof of Puiseux’s theorem is algorithmic, and, lucky for us, there is
an implementation of this algorithm in maple. Here is how it works:

> with(algcurves): p := x^2 + x - t^3;

2 3

p := x + x - t

> puiseux(p,t=0,x,20);

18 15 12 9 6 3

{-42 t + 14 t - 5 t + 2 t - t + t ,

18 15 12 9 6 3

+ 42 t - 14 t + 5 t - 2 t + t - t - 1 }

We note that this program generally does not compute all Puiseux series
solutions but only enough to generate the splitting field of p(t; x) over K.

> with(algcurves): q := x^2 + t^4 * x - t:

> puiseux(q,t=0,x,20);

29/2 15/2 4 1/2

{- 1/128 t + 1/8 t - 1/2 t + t }

> S := solve(q,x):

> series(S[1],t,20);

1/2 4 15/2 29/2 43/2

t - 1/2 t + 1/8 t - 1/128 t + O(t )

> series(S[2],t,20);

1/2 4 15/2 29/2 43/2

-t - 1/2 t - 1/8 t + 1/128 t + O(t )
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We shall explain how to compute the first term (lowest order in t) in each of
the d Puiseux series solutions x(t) to our equation p(t; x) = 0. Suppose that
the i-th coefficient in (6) has the Laurent series expansion:

ai(t) = ci · tAi + higher terms in t.

Each Puiseux series looks like

x(t) = γ · tτ + higher terms in t.

We wish to characterize the possible pairs of numbers (τ, γ) in Q × C which
allow the identity p(t; x(t)) = 0 to hold. This is done by first finding the
possible values of τ . We ignore all higher terms and consider an equation

cd · tAd+dτ + cd−1 · tAd−1+(d−1)τ + · · · + c1 · tA1+τ + c0 · tA0 = 0. (7)

This equation imposes the following piecewise-linear condition on τ :

min{Ad+dτ, Ad−1+(d−1)τ, . . . , A2+2τ, A1+τ, A0} is attained twice. (8)

The crucial condition (8) will reappear in Lectures 3 and 9. Throughout this
book, the phrase “is attained twice” will always mean “is attained at least
twice”. As an illustration consider the example p(t; x) = x2 + x − t3. For
this polynomial, the condition (8) reads

min{ 0 + 2τ, 0 + τ, 3 } is attained twice.

That sentence means the following disjunction of linear inequality systems:

2τ = τ ≤ 3 or 2τ = 3 ≤ τ or 3 = τ ≤ 2τ.

This disjunction is equivalent to

τ = 0 or τ = 3,

which gives us the lowest terms in the two Puiseux series produced by maple.
It is customary to phrase the procedure described above in terms of the

Newton polygon of p(t; x). This polygon is the convex hull in R2 of the points
(i, Ai) for i = 0, 1, . . . , d. The condition (8) is equivalent to saying that −τ
equals the slope of an edge on the lower boundary of the Newton polygon.
Here is a picture of the Newton polygon of the equation p(t; x) = x2 +x− t3:
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Figure: The lower boundary of the Newton polygon

1.5 Hypergeometric Series

The method of Puiseux series can be extended to the case when the co-
efficients ai are rational functions in several variables t1, . . . , tm. The case
m = 1 was discussed in the last section. We now examine the generic case
when all d + 1 coefficients a0, . . . , ad in (1) are indeterminates. Each zero
X of the polynomial in (1) is an algebraic function of d + 1 variables, writ-
ten X = X(a0, . . . , ad). The following theorem due to Karl Mayer (1937)
characterizes these functions by the differential equations which they satisfy.

Theorem 8. The roots of the general equation of degree d are a basis for the
solution space of the following system of linear partial differential equations:

∂2X
∂ai∂aj

= ∂2X
∂ak∂al

whenever i+ j = k + l, (9)∑d
i=0 iai

∂X
∂ai

= −X and
∑d

i=0 ai
∂X
∂ai

= 0. (10)

The meaning of the statement “are a basis for the solution space of” will
be explained at the end of this section. Let us first replace this statement by
“are solutions of” and prove the resulting weaker version of the theorem.

Proof. The two Euler equations (10) express the scaling invariance of the
roots. They are obtained by applying the operator d/dt to the identities

X(a0, ta1, t
2a2, . . . , t

d−1ad−1, t
dad) = 1

t
·X(a0, a1, a2, . . . , ad−1, ad),

X(ta0, ta1, ta2, . . . , tad−1, tad) = X(a0, a1, a2, . . . , ad−1, ad).
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To derive (9), we consider the first derivative f′(x) =
∑d

i=1 iaix
i−1 and

the second derivative f ′′(x) =
∑d

i=2 i(i − 1)aix
i−2. Note that f ′(X) 6=

0, since a0, . . . , ad are indeterminates. Differentiating the defining identity∑d
i=0 aiX(a0, a1, . . . , ad)

i = 0 with respect to aj , we get

Xj + f ′(X) · ∂X
∂aj

= 0. (11)

¿From this we derive

∂f ′(X)

∂ai
= −f

′′(X)

f ′(X)
·X i + iX i−1. (12)

We next differentiate ∂X/∂aj with respect to the indeterminate ai:

∂2X

∂ai∂aj
=

∂

∂ai

(− Xj

f ′(X)

)
=

∂f ′(X)

∂ai
Xjf ′(X)−2 − jXj−1∂X

∂ai
f ′(X)−1. (13)

Using (11) and (12), we can rewrite (13) as follows:

∂2X

∂ai∂aj
= −f ′′(X)X i+jf ′(X)−3 + (i+ j)X i+j−1f ′(X)−2.

This expression depends only on the sum of indices i+j. This proves (9).

We check the validity of our differential system for the case d = 2 and we
note that it characterizes the series expansions of the quadratic formula.

> X := solve(a0 + a1 * x + a2 * x^2, x)[1];

2 1/2

-a1 + (a1 - 4 a2 a0)

X := 1/2 ------------------------

a2

> simplify(diff(diff(X,a0),a2) - diff(diff(X,a1),a1));

0

> simplify( a1*diff(X,a1) + 2*a2*diff(X,a2) + X );

0

> simplify(a0*diff(X,a0)+a1*diff(X,a1)+a2*diff(X,a2));

0
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> series(X,a1,4);

1/2 1/2

(-a2 a0) 1 (-a2 a0) 2 4

----------- - 1/2 ---- a1 - 1/8 ----------- a1 + O(a1 )

a2 a2 2

a2 a0

What do you get when you now say series(X,a0,4) or series(X,a2,4)?
Writing series expansions for the solutions to the general equation of

degree d has a long tradition in mathematics. In 1757 Johann Lambert
expressed the roots of the trinomial equation xp + x + r as a Gauss hyper-
geometric function in the parameter r. Series expansions of more general
algebraic functions were subsequently given by Euler, Chebyshev and Eisen-
stein, among others. The widely known poster “Solving the Quintic with
Mathematica” published by Wolfram Research in 1994 gives a nice historical
introduction to series solutions of the general equation of degree five:

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 = 0. (14)

Mayr’s Theorem can be used to write down all possible Puiseux series solu-
tions to the general quintic (14). There are 16 = 25−1 distinct expansions.
For instance, here is one of the 16 expansions of the five roots:

X1 = −[a0

a1

]
, X2 = −[a1

a2

]
+
[

a0

a1

]
, X3 = −[a2

a3

]
+
[

a1

a2

]
,

X4 = −[a3

a4

]
+
[

a2

a3

]
, X5 = −[a4

a5

]
+
[

a3

a4

]
.

Each bracket is a series having the monomial in the bracket as its first term:

[a0

a1

]
= a0

a1
+

a2
0a2

a3
1
− a3

0a3

a4
1

+ 2
a3
0a2

2

a5
1

+
a4
0a4

a5
1
− 5

a4
0a2a3

a6
1
− a5

0a5

a6
1

+ · · ·[a1

a2

]
= a1

a2
+

a2
1a3

a3
2
− a3

1a4

a4
2
− 3

a0a2
1a5

a4
2

+ 2
a3
1a3

3

a5
2

+
a4
1a5

a5
2
− 5

a4
1a3a4

a6
2

+ · · ·[a2

a3

]
= a2

a3
− a0a5

a2
3
− a1a4

a2
3

+ 2a1a2a5

a3
3

+
a2
2a4

a3
3
− a3

2a5

a4
3

+ 2
a3
2a2

4

a5
3

+ · · ·[a3

a4

]
= a3

a4
− a2a5

a2
4

+
a2
3a5

a3
4

+
a1a2

5

a3
4
− 3

a2a3a2
5

a4
4
− a0a3

5

a4
4

+ 4
a1a3a3

5

a5
4

+ · · ·[a4

a5

]
= a4

a5
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The last bracket is just a single Laurent monomial. The other four brackets[ai−1

ai

]
can easily be written as an explicit sum over N4 . For instance,

[a0

a1

]
=

∑
i,j,k,l≥0

(−1)2i+3j+4k+5l (2i+3j+4k+5l)!

i ! j ! k ! l ! (i+2j+3k+4l+ 1)!
· a

i+2j+3k+4l+1
0 ai

2a
j
3a

k
4a

l
5

a2i+3j+4k+5l+1
1

Each coefficient appearing in one of these series is integral. Therefore these
five formulas for the roots work in any characteristic. The situation is dif-
ferent for the other 15 series expansions of the roots of the quintic (14). For
instance, consider the expansions into positive powers in a1, a2, a3, a4. They
are

Xξ = ξ ·[a1/5
0

a
1/5
5

]
+

1

5
·
(
ξ2
[ a1

a
3/5
0 a

2/5
5

]
+ ξ3

[ a2

a
2/5
0 a

3/5
5

]
+ ξ4

[ a3

a
1/5
0 a

4/5
5

] − [a4

a5

])

where ξ runs over the five complex roots of the equation ξ5 = −1, and

[a1/5
0

a
1/5
5

]
=

a
1/5
0

a
1/5
5

− 1
25

a1a4

a
4/5
0 a

6/5
5

− 1
25

a2a3

a
4/5
0 a

6/5
5

+ 2
125

a2
1a3

a
9/5
0 a

6/5
5

+ 3
125

a2a2
4

a
4/5
0 a

11/5
5

+ · · ·
[ a1

a
3/5
0 a

2/5
5

]
= a1

a
3/5
0 a

2/5
5

− 1
5

a2
3

a
3/5
0 a

7/5
5

− 2
5

a2a4

a
3/5
0 a

7/5
5

+ 7
25

a3a2
4

a
3/5
0 a

12/5
5

+ 6
25

a1a2a3

a
8/5
0 a

7/5
5

+ · · ·
[ a2

a
2/5
0 a

3/5
5

]
= a2

a
2/5
0 a

3/5
5

− 1
5

a2
1

a
7/5
0 a

3/5
5

− 3
5

a3a4

a
2/5
0 a

8/5
5

+ 6
25

a1a2a4

a
7/5
0 a

8/5
5

+ 3
25

a1a2
3

a
7/5
0 a

8/5
5

+ · · ·
[ a3

a
1/5
0 a

4/5
5

]
= a3

a
1/5
0 a

4/5
5

− 1
5

a1a2

a
6/5
0 a

4/5
5

− 2
5

a2
4

a
1/5
0 a

9/5
5

+ 1
25

a3
1

a
11/5
0 a

4/5
5

+ 4
25

a1a3a4

a
6/5
0 a

9/5
5

+ · · ·

Each of these four series can be expressed as an explicit sum over the lattice
points in a 4-dimensional polyhedron. The general formula can be found
in Theorem 3.2 of Sturmfels (2000). That reference gives all 2n−1 distinct
Puiseux series expansions of the solution of the general equation of degree d.

The system (9)-(10) is a special case of the hypergeometric differential
equations discussed in (Saito, Sturmfels and Takayama, 1999). More pre-
cisely, it is the Gel’fand-Kapranov-Zelevinsky system with parameters

(−1
0

)
associated with the integer matrix

A =

(
0 1 2 3 · · · n− 1 n
1 1 1 1 · · · 1 1

)
.
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We abbreviate the derivation ∂
∂ai

by the symbol ∂i and we consider the
ideal generated by the operators (10) in the commutative polynomial ring
Q [∂0 , ∂1, . . . , ∂d]. This is the ideal of the 2× 2-minors of the matrix(

∂0 ∂1 ∂2 · · · ∂d−1

∂1 ∂2 ∂3 · · · ∂d

)
.

This ideal defines a projective curve of degree d, namely, the rational normal
curve, and from this it follows that our system (9)-(10) is holonomic of rank
d. This means the following: Let (a0, . . . , ad) be any point in C d+1 such that
the discriminant of p(x) is non-zero, and let U be a small open ball around
that point. Then the set of holomorphic functions on U which are solutions
to (9)-(10) is a complex vector space of dimension d. Theorem 8 states that
the d roots of p(x) = 0 form a distinguished basis for that vector space.

1.6 Exercises

(1) Describe the Jordan canonical form of the companion matrix Timesx.
What are the generalized eigenvectors of the endomorphism (2)?

(2) We define a unique cubic polynomial p(x) by four interpolation condi-
tions p(xi) = yi for i = 0, 1, 2, 3. The discriminant of p(x) is a rational
function in x0, x1, x2, x3, y0, y1, y2, y3. What is the denominator of this
rational function, and how many terms does the numerator have?

(3) Create a symmetric 50× 50-matrix whose entries are random integers
between −10 and 10 and compute the eigenvalues of your matrix.

(4) For which complex parameters α is the following system solvable?

xd − α = x3 − x + 1 = 0.

(5) Consider the set of all 65, 536 polynomials of degree 15 whose coeffi-
cients are +1 or −1. Answer the following questions about this set:

(a) Which polynomial has largest discriminant?

(b) Which polynomial has the smallest number of complex roots?

(c) Which polynomial has the complex root of largest absolute value?

(d) Which polynomial has the most real roots?
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(6) Give a necessary and sufficient condition for quartic equation

a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0

to have exactly two real roots. We expect a condition which is a Boolean
combination of polynomial inequalities involving a0, a1, a2, a3, a4.

(7) Describe an algebraic algorithm for deciding whether a polynomial p(x)
has a complex root of absolute value one.

(8) Compute all five Puiseux series solutions x(t) of the quintic equation

x5 + t · x4 + t3 · x3 + t6 · x2 + t10 · x + t15 = 0

What is the coefficient of tn in each of the five series?

(9) Fix two real symmetric n × n-matrices A and B. Consider the set of
points (x, y) in the plane R2 such that all eigenvalues of the matrix
xA + yB are non-negative. Show that this set is closed and convex.
Does every closed convex semi-algebraic subset of R2 arise in this way?

(10) Let α and β be integers and consider the following system of linear
differential equations for an unknown function X(a0, a1, a2):

∂2X/∂a0∂a2 = ∂2X/∂a2
1

a1
∂X
∂a1

+ 2a2
∂X
∂a1

= α ·X
a0

∂X
∂a0

+ a1
∂X
∂a1

+ a2
∂X
∂a2

= β ·X

For which values of α and β do (non-zero) polynomial solutions exist?
Same question for rational solutions and algebraic solutions.
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2 Gröbner Bases of Zero-Dimensional Ideals

Suppose we are given polynomials f1, . . . , fm in Q [x1 ,. . . , xn] which are known
to have only finitely many common zeros in C n . Then I = 〈f1, . . . , fm〉, the
ideal generated by these polynomials, is zero-dimensional. In this section we
demonstrate how Gröbner bases can be used to compute the zeros of I.

2.1 Computing Standard Monomials and the Radical

Let ≺ be a term order on the polynomial ring S = Q [x1 ,. . . , xn]. Every ideal
I in S has a unique reduced Gröbner basis G with respect to ≺. The leading
terms of the polynomials in G generate the initial monomial ideal in≺(I). Let
B = B≺(I) denote the set of all monomials xu = xu1

1 x
u2
2 · · ·xun

n which do
not lie in in≺(I). These are the standard monomials of I with respect to ≺.
Every polynomial f in S can be written uniquely as a Q -linear combination
of B modulo I, using the division algorithm with respect to the Gröbner
basis G. We write V(I) ⊂ C n for the complex variety defined by the ideal I.

Proposition 9. The variety V(I) is finite if and only if the set B is finite,
and the cardinality of B equals the cardinality of V(I), counting multiplicities.

Consider an example with three variables denoted S = Q [x, y, z]:

I = 〈 (x− y)3 − z2, (z − x)3 − y2, (y − z)3 − x2) 〉. (15)

The following Macaulay2 computation verifies that I is zero-dimensional:

i1 : S = QQ[x,y,z];

i2 : I = ideal( (x-y)^3-z^2, (z-x)^3-y^2, (y-z)^3-x^2 );

o2 : Ideal of S

i3 : dim I, degree I

o3 = (0, 14)

i4 : gb I

o4 = | y2z-1/2xz2-yz2+1/2z3+13/60x2-1/12y2+7/60z2

x2z-xz2-1/2yz2+1/2z3+1/12x2-13/60y2-7/60z2

y3-3y2z+3yz2-z3-x2

xy2-2x2z-3y2z+3xz2+4yz2-3z3-7/6x2+5/6y2-1/6z2
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x2y-xy2-x2z+y2z+xz2-yz2+1/3x2+1/3y2+1/3z2

x3-3x2y+3xy2-3y2z+3yz2-z3-x2-z2

z4+1/5xz2-1/5yz2+2/25z2

yz3-z4-13/20xz2-3/20yz2+3/10z3+2/75x2-4/75y2-7/300z2

xz3-2yz3+z4+29/20xz2+19/20yz2-9/10z3-8/75x2+2/15y2+7/300z2

xyz2-3/2y2z2+xz3+yz3-3/2z4+y2z-1/2xz2

-7/10yz2+1/5z3+13/60x2-1/12y2-1/12z2|

i5 : toString (x^10 % I)

o5 = -4/15625*x*z^2+4/15625*z^3-559/1171875*x^2

-94/1171875*y^2+26/1171875*z^2

i6 : R = S/I; basis R

o7 = | 1 x x2 xy xyz xz xz2 y y2 yz yz2 z z2 z3 |

1 14

o7 : Matrix R <--- R

The output o4 gives the reduced Gröbner basis for I with respect to the
reverse lexicographic term order with x > y > z. We see in o7 that there are
14 standard monomials. In o5 we compute the expansion of x10 in this basis
of S/I. We conclude that the number of complex zeros of I is at most 14.

If I is a zero-dimensional ideal in S = Q [x1 , . . . , xn] then the elimination
ideal I ∩ Q [xi ] is non-zero for all i = 1, 2, . . . , n. Let pi(xi) denote the
generator of I ∩ Q [xi ]. The univariate polynomial pi can be gotten from
a Gröbner basis for I with respect to an elimination term order. Another
method is to use an arbitrary Gröbner basis to compute the normal form of
successive powers of xi until they first become linearly dependent.

We denote the square-free part of the polynomial pi(xi) by

pi,red(xi) = pi(xi)/gcd(pi(xi), p
′
i(xi)).

Theorem 10. A zero-dimensional ideal I is radical if and only if the n
elimination ideals I ∩ Q [xi ] are radical. Moreover, the radical of I equals

Rad(I) = I + 〈 p1,red, p2,red, . . . , pn,red 〉.
Our example in (15) is symmetric with respect to the variables, so that

I ∩ Q [x] = 〈p(x)〉, I ∩ Q [y] = 〈p(y)〉, I ∩ Q [z] = 〈p(z)〉.
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The common generator of the elimination ideals is a polynomial of degree 8:

p(x) = x8 +
6

25
x6 +

17

625
x4 +

8

15625
x2

This polynomial is not squarefree. Its squarefree part equals

pred(x) = x7 +
6

25
x5 +

17

625
x3 +

8

15625
x.

Hence our ideal I is not radical. Using Theorem 10, we compute its radical:

Rad(I) = I + 〈pred(x), pred(y), pred(z)〉
= 〈 x − 5/2y2 − 1/2y + 5/2z2 − 1/2z,

y + 3125/8z6 + 625/4z5 + 375/4z4 + 125/4z3 + 65/8z2 + 3z,

z7 + 6/25z5 + 17/625z3 + 8/15625z 〉.
The three given generators form a lexicographic Gröbner basis. We see that
V(I) has cardinality seven. The only real root is the origin. The other six
zeros of I in C 3 are not real. They are gotten by cyclically shifting

(x, y, z) =
(−0.14233− 0.35878i, 0.14233− 0.35878i, 0.15188i

)
and (x, y, z) =

(−0.14233 + 0.35878i, 0.14233 + 0.35878i, −0.15188i
)
.

Note that the coordinates of these vectors also can be written in terms of
radicals since pred(x)/x is a cubic polynomial in x2.

2.2 Localizing and Removing Known Zeros

In the example above, the origin is a zero of multiplicity 8, and it would have
made sense to remove this distinguished zero right from the beginning. In
this section we explain how to do this and how the number 8 could have been
derived a priori. Let I be a zero-dimensional ideal in S = Q [x1 , . . . , xn] and
p = (p1, . . . , pn) any point with coordinates in Q . We consider the associated
maximal ideal

M = 〈x1 − p1, x2 − p2, . . . , xn − pn〉 ⊂ S.

The ideal quotient of I by M is defined as(
I : M

)
=

{
f ∈ S : f ·M ⊆ I

}
.
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We can iterate this process to get the increasing sequence of ideals

I ⊆ (I : M) ⊆ (I : M2) ⊆ (I : M3) ⊆ · · ·

This sequence stabilizes with an ideal called the saturation(
I : M∞) =

{
f ∈ S : ∃m ∈ N : fm ·M ⊆ I

}
.

Proposition 11. The variety of (I : M∞) equals V(I)\{p}.
Here is how we compute the ideal quotient and the saturation in Macaulay

2. We demonstrate this for the ideal in the previous section and p = (0, 0, 0):

i1 : R = QQ[x,y,z];

i2 : I = ideal( (x-y)^3-z^2, (z-x)^3-y^2, (y-z)^3-x^2 );

i3 : M = ideal( x , y, z );

i4 : gb (I : M)

o4 = | y2z-1/2xz2-yz2+1/2z3+13/60x2-1/12y2+7/60z2

xyz+3/4xz2+3/4yz2+1/20x2-1/20y2 x2z-xz2-1/2yz2+ ....

i5 : gb saturate(I,M)

o5 = | z2+1/5x-1/5y+2/25 y2-1/5x+1/5z+2/25

xy+xz+yz+1/25 x2+1/5y-1/5z+2/25 |

i6 : degree I, degree (I:M), degree (I:M^2), degree(I:M^3)

o6 = (14, 13, 10, 7)

i7 : degree (I : M^4), degree (I : M^5), degree (I : M^6)

o7 = (6, 6, 6)

In this example, the fourth ideal quotient (I : M4) equals the saturation
(I : M∞) = saturate(I,M). Since p = (0, 0, 0) is a zero of high multiplicity,
namely eight, it would be interesting to further explore the local ring Sp/Ip.
This is an 8-dimensional Q -vector space which tells the scheme structure at
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p, meaning the manner in which those eight points pile on top of one another.
The reader need not be alarmed is he has not yet fully digested the notion of
schemes in algebraic geometry (Eisenbud and Harris 2000). An elementary
but useful perspective on schemes will be provided in Lecture 10 where we
discuss linear partial differential equations with constant coefficients.

The following general method can be used to compute the local ring at
an isolated zero of any polynomial system. Form the ideal quotient

J =
(
I : (I : M∞)

)
. (16)

Proposition 12. The ring S/J is isomorphic to the local ring Sp/Ip under
the natural map xi 7→ xi. In particular, the multiplicity of p as a zero of I
equals the number of standard monomials for any Gröbner basis of J .

In our example, the local ideal J is particularly simple and the multiplicity
eight is obvious. Here is how the Macaulay 2 session continues:

i8 : J = ( I : saturate(I,M) )

2 2 2

o8 = ideal (z , y , x )

i9 : degree J

o9 = 8

We note that Singular is fine-tuned for efficient computations in local
rings via the techniques in Chapter 4 of (Cox, Little & O’Shea 1998).

Propositions 11 and 12 provide a decomposition of the given ideal:

I = J ∩ (I : M∞). (17)

Here J is the iterated ideal quotient in (16). This ideal is primary to the
maximal ideal M , that is, Rad(J) = M . We can now iterate by applying
this process to the ideal (I : M∞), and this will eventually lead to the
primary decomposition of I. We shall return to this topic in later lectures.

For the ideal in our example, the decomposition (17) is already the pri-
mary decomposition when working over the field of rational numbers. It
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equals

〈 (x− y)3 − z2, (z − x)3 − y2, (y − z)3 − x2 〉 =

〈 x2 , y2 , z2 〉 ∩ 〈 z2 + 1
5
x− 1

5
y + 2

25
, y2 − 1

5
x + 1

5
z + 2

25
,

x2 + 1
5
y − 1

5
z + 2

25
, xy + xz + yz + 1

25
〉

Note that the second ideal is maximal and hence prime in Q [x, y, z]. The
given generators are a Gröbner basis with leading terms underlined.

2.3 Companion Matrices

Let I be a zero-dimensional ideal in S = Q [x1 , . . . , xn], and suppose that the
Q -vectorspace S/I has dimension d. In this section we assume that some
Gröbner basis of I is known. Let B denote the associated monomial basis for
S/I. Multiplication by any of the variables xi defines an endomorphism

S/I → S/I , f 7→ xi · f (18)

We write Ti for the d×d-matrix over Q which represents the linear map (18)
with respect to the basis B. The rows and columns of Ti are indexed by the
monomials in B. If xu, xv ∈ B then the entry of Ti in row xu and column
xv is the coefficient of xu in the normal form of xi · xv. We call Ti the i-th
companion matrix of the ideal I. It follows directly from the definition that
the companion matrices commute pairwise:

Ti · Tj = Tj · Ti for 1 ≤ i < j ≤ n.

The matrices Ti generate a commutative subalgebra of the non-commutative
ring of d× d-matrices, and this subalgebra is isomorphic to our ring

Q [T1 , . . . , Tn] ' S/I , Ti 7→ xi.

Theorem 13. The complex zeros of the ideal I are the vectors of joint eigen-
values of the companion matrices T1, . . . , Tn, that is,

V(I) =
{

(λ1, . . . , λn) ∈ C n : ∃ v ∈ C n ∀ i : Ti · v = λi · v
}
. (19)

Proof. Suppose that v is a non-zero complex vector such that Ti · v = λi · v
for all i. Then, for any polynomial p ∈ S,

p(T1, . . . , Tn) · v = p(λ1, . . . , λn) · v.
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If p is in the ideal I then p(T1, . . . , Tn) is the zero matrix and we conclude
that p(λ1, . . . , λn) = 0. Hence the left hand side of (19) contains the right
hand side of (19).

We prove the converse under the hypothesis that I is a radical ideal.
(The general case is left to the reader). Let λ = (λ1, . . . , λn) ∈ C n be any
zero of I. There exists a polynomial q ∈ S ⊗ C such that q(λ) = 1 and
q vanishes at all points in V(I)\{λ}. Then xi · q = λi · q holds on V(I),
hence (xi − λi) · q lies in the radical ideal I. Let v be the non-zero vector
representing the element q of S/I ⊗ C . Then v is a joint eigenvector with
joint eigenvalue λ.

Suppose that I is a zero-dimensional radical ideal. We can form a square
invertible matrix V whose columns are the eigenvectors v described above.
Then V −1 ·Ti ·V is a diagonal matrix whose entries are the i-th coordinates
of all the zeros of I. This proves the if-direction in the following corollary.
The only-if-direction is also true but we omit its proof.

Corollary 14. The companion matrices T1, . . . , Tn can be simultaneously
diagonalized if and only if I is a radical ideal.

As an example consider the Gröbner basis given at the end of the last
section. The given ideal is a prime ideal in Q [x, y, z] having degree d = 6.
We determine the three companion matrices Tx, Ty and Tz using maple:

> with(Groebner):

> GB := [z^2+1/5*x-1/5*y+2/25, y^2-1/5*x+1/5*z+2/25,

> x*y+x*z+y*z+1/25, x^2+1/5*y-1/5*z+2/25]:

> B := [1, x, y, z, x*z, y*z]:

> for v in [x,y,z] do

> T := array([],1..6,1..6):

> for j from 1 to 6 do

> p := normalf( v*B[j], GB, tdeg(x,y,z)):

> for i from 1 to 6 do

> T[i,j] := coeff(coeff(coeff(p,x,degree(B[i],x)),y,

> degree(B[i],y)),z,degree(B[i],z)):

> od:
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> od:

> print(cat(T,v),T);

> od:

[ -2 -1 -2 ]

[0 -- -- 0 --- 0 ]

[ 25 25 125 ]

[ ]

[ -1 ]

[1 0 0 0 -- 1/25]

[ 25 ]

[ ]

Tx, [0 -1/5 0 0 1/25 1/25]

[ ]

[ -2 ]

[0 1/5 0 0 -- 1/25]

[ 25 ]

[ ]

[0 0 -1 1 0 0 ]

[ ]

[0 0 -1 0 -1/5 0 ]

[ -1 -2 ]

[0 -- -- 0 0 2/125]

[ 25 25 ]

[ ]

[0 0 1/5 0 1/25 1/25 ]

[ ]

[ -1 ]

[1 0 0 0 1/25 -- ]

Ty, [ 25 ]

[ ]

[ -2 ]

[0 0 -1/5 0 1/25 -- ]

[ 25 ]
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[ ]

[0 -1 0 0 0 1/5 ]

[0 -1 0 1 0 0 ]

[ -2 -1 ]

[0 0 0 -- 1/125 --- ]

[ 25 125 ]

[ ]

[ -2 ]

[0 0 0 -1/5 -- 1/25]

[ 25 ]

[ ]

[ -2 ]

Tz, [0 0 0 1/5 1/25 -- ]

[ 25 ]

[ ]

[ -1 -1 ]

[1 0 0 0 -- -- ]

[ 25 25 ]

[ ]

[0 1 0 0 -1/5 1/5 ]

[0 0 1 0 -1/5 1/5 ]

The matrices Tx, Ty and Tz commute pairwise and they can be simultaneously
diagonalized. The entries on the diagonal are the six complex zeros. We
invite the reader to compute the common basis of eigenvectors using matlab.

2.4 The Trace Form

In this section we explain how to compute the number of real roots of a
zero-dimensional ideal which is presented to us by a Gröbner basis as before.
Fix any other polynomial h ∈ S and consider the following bilinear form on
our vector space S/I ' Qd . This is called the trace form for h:

Bh : S/I × S/I 7→ Q , (f, g) 7→ trace
(
(f · g · h)(T1, T2, . . . , Tn)

)
.
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We represent the quadratic form Bh by a symmetric d × d-matrix over Q
with respect to the basis B. If xu, xv ∈ B then the entry of Bh in row xu and
column xv is the sum of the diagonal entries in the d × d-matrix gotten by
substituting the companion matrices Ti for the variables xi in the polynomial
xu+v ·h. This rational number can be computed by summing, over all xw ∈ B,
the coefficient of xw in the normal form of xu+v+w · h modulo I.

Since the matrix Bh is symmetric, all of its eigenvalues are real numbers.
The signature of Bh is the number of positive eigenvalues of Bh minus the
number of negative eigenvalues of Bh. It turns out that this number is always
non-negative for symmetric matrices of the special form Bh. In the following
theorem, real zeros of I with multiplicities are counted only once.

Theorem 15. The signature of the trace form Bh equals the number of real
roots p of I with h(p) > 0 minus the number of real roots p of I with h(p) < 0.

The special case when h = 1 is used to count all real roots:

Corollary 16. The number of real roots of I equals the signature of B1.

We compute the symmetric 6×6-matrix B1 for the case of the polynomial
system whose companion matrices were determined in the previous section.

> with(linalg): with(Groebner):

> GB := [z^2+1/5*x-1/5*y+2/25, y^2-1/5*x+1/5*z+2/25,

> x*y+x*z+y*z+1/25, x^2+1/5*y-1/5*z+2/25]:

> B := [1, x, y, z, x*z, y*z]:

> B1 := array([],1..6,1..6):

> for j from 1 to 6 do

> for i from 1 to 6 do

> B1[i,j] := 0:

> for k from 1 to 6 do

> B1[i,j] := B1[i,j] + coeff(coeff(coeff(

> normalf(B[i]*B[j]*B[k], GB, tdeg(x,y,z)),x,

> degree(B[k],x)), y, degree(B[k],y)),z, degree(B[k],z)):

> od:

> od:

> od:
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> print(B1);

[ -2 -2 ]

[6 0 0 0 -- -- ]

[ 25 25 ]

[ ]

[ -12 -2 -2 -2 ]

[0 --- -- -- -- 0 ]

[ 25 25 25 25 ]

[ ]

[ -2 -12 -2 ]

[0 -- --- -- 0 2/25]

[ 25 25 25 ]

[ ]

[ -2 -2 -12 -2 ]

[0 -- -- --- 2/25 -- ]

[ 25 25 25 25 ]

[ ]

[-2 -2 34 -16 ]

[-- -- 0 2/25 --- --- ]

[25 25 625 625 ]

[ ]

[-2 -2 -16 34 ]

[-- 0 2/25 -- --- --- ]

[25 25 625 625 ]

> charpoly(B1,z);

6 2918 5 117312 4 1157248 3 625664 2

z - ---- z - ------ z - ------- z - ------- z

625 15625 390625 9765625

4380672 32768

+ -------- z - ------

48828125 9765625

> fsolve(%);
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-.6400000, -.4371281, -.4145023, .04115916, .1171281, 6.002143

Here the matrix B1 has three positive eigenvalues and three negative eigen-
values, so the trace form has signature zero. This confirms our earlier finding
that these equations have no real zeros. We note that we can read off the
signature of B1 directly from the characteristic polynomial. Namely, the
characteristic polynomial has three sign changes in its coefficient sequence.
Using the following result, which appears in Exercise 5 on page 67 of (Cox,
Little & O’Shea, 1998), we infer that there are three positive real eigenvalues
and this implies that the signature of B1 is zero.

Lemma 17. The number of positive eigenvalues of a real symmetric matrix
equals the number of sign changes in the coefficient sequence of its charac-
teristic polynomial.

It is instructive to examine the trace form for the case of one polynomial
in one variable. Consider the principal ideal

I = 〈 adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0 〉 ⊂ S = Q [x].

We consider the traces of successive powers of the companion matrix:

bi := trace
(
Timesi

x

)
=

∑
u∈V(I)

ui.

Thus bi is a Laurent polynomial of degree zero in a0, . . . , ad, which is essen-
tially the familiar Newton relation between elementary symmetric functions
and power sum symmetric functions. The trace form is given by the matrix

B1 =




b0 b1 b2 · · · bd−1

b1 b2 b3 · · · bd
b2 b3 b4 · · · bd+1
...

...
...

. . .
...

bd−1 bd bd+1 · · · b2d−2


 (20)

Thus the number of real zeros of I is the signature of this Hankel matrix.

28



For instance, for d = 4 the entries in the 4× 4-Hankel matrix B1 are

b0 = 4

b1 = −a3

a4

b2 =
−2a4a2+a2

3

a2
4

b3 =
−3a2

4a1+3a4a3a2−a3
3

a3
4

b4 =
−4a3

4a0+4a2
4a3a1+2a2

4a2
2−4a4a2

3a2+a4
3

a4
4

b5 =
−5a3

4a3a0−5a3
4a2a1+5a2

4a2
3a1+5a2

4a3a2
2−5a4a3

3a2+a5
3

a5
4

b6 =
−6a4

4a2a0−3a4
4a2

1+6a3
4a2

3a0+12a3
4a3a2a1+2a3

4a3
2−6a2

4a3
3a1−9a2

4a2
3a2

2+6a4a4
3a2−a6

3

a6
4

,

and the characteristic polynomial of the 4× 4-matrix B1 equals

x4 + (−b0 − b2 − b4 − b6) · x3

+ (b0b2 + b0b4 + b0b6 − b25 − b21 − b22 + b2b4 + b2b6 − 2b23 − b24 + b4b6) · x2

+ (b0b
2
5−b0b2b4−b0b2b6+b0b23+b0b24−b0b4b6+b25b2−2b5b2b3−2b5b3b4+b

2
1b4

+b21b6−2b1b2b3−2b1b3b4+b
3
2+b

2
2b6+b2b

2
3−b2b4b6+b23b4+b23b6+b34) · x

− b0b
2
5b2+2b0b5b3b4 + b0b2b4b6 − b0b23b6 − b0b34 + b25b

2
1 − 2b5b1b2b4 − 2b5b1b

2
3

+2b5b
2
2b3 − b21b4b6 + 2b1b2b3b6 + 2b1b3b

2
4 − b32b6 + b22b

2
4 − 3b2b

2
3b4 + b43

By considering sign alternations among these expressions in b0, b1, . . . , b6, we
get explicit conditions for the general quartic to have zero, one, two, three,
or four real roots respectively. These are semialgebraic conditions. This
means the conditions are Boolean combinations of polynomial inequalities
in the five indeterminates a0, a1, a2, a3, a4. In particular, all four zeros of
the general quartic are real if and only if the trace form of positive definite.
Recall that a symmetric matrix is positive definite if and only if its principal
minors are positive. Hence the quartic has four real roots if and only if

b0 > 0 and b0b2 − b21 > 0 and b0b2b4 − b0b23 − b21b4 + 2b1b2b3 − b32 > 0 and

2b0b5b3b4 − b0b25b2 + b0b2b4b6 − b0b23b6 − b0b34 + b25b
2
1 − 2b5b1b2b4 − 2b5b1b

2
3

+2b5b
2
2b3 − b21b4b6 + 2b1b2b3b6 + 2b1b3b

2
4 − b32b6 + b22b

2
4 − 3b2b

2
3b4 + b43 > 0.

The last polynomial is the determinant of B1. It equals the discriminant of
the quartic (displayed in maple at the beginning of Lecture 1) divided by a64.
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2.5 Exercises

(1) Let A = (aij) be a non-singular n×n-matrix whose entries are positive
integers. How many complex solutions do the following equations have:

n∏
j=1

x
a1j

j =

n∏
j=1

x
a2j

j = · · · =

n∏
j=1

x
anj

j = 1.

(2) Pick a random homogeneous cubic polynomial in four variables. Com-
pute the 27 lines on the cubic surface defined by your polynomial.

(3) Given d arbitrary rational numbers a0, a1, . . . , ad−1, consider the system
of d polynomial equations in d unknowns z1, z2, . . . , zd given by setting

xd + ad−1x
d−1 · · ·+ a1x + a0 = (x− z1)(x− z2) · · · (x− zd).

Describe the primary decomposition of this ideal in Q [z1 , z1, . . . , zd].
How can you use this to find the Galois group of the given polynomial?

(4) For any two positive integers m,n, find an explicit radical ideal I in
Q [x1 , . . . , xn] and a term order ≺ such that in≺(I) = 〈x1, x2, . . . , xn〉m.

(5) Fix the monomial ideal M = 〈x, y〉 = 〈x3, x2y, xy2, y3〉 and compute
its companion matrices Tx, Ty. Describe all polynomial ideals in Q [x, y]
which are within distance ε = 0.0001 from M , in the sense that the
companion matrices are ε-close to Tx, Ty in your favorite matrix norm.

(6) Does every zero-dimensional ideal in Q [x, y] have a radical ideal in all of
its ε-neighborhoods? How about zero-dimensional ideals in Q [x, y, z]?

(7) How many distinct real vectors (x, y, z) ∈ R3 satisfy the equations

x3 + z = 2y2, y3 + x = 2z2, z3 + y = 2x2 ?

(8) Pick eight random points in the real projective plane. Compute the
12 nodal cubic curves passing through your points. Can you find eight
points such that all 12 cubic polynomials have real coefficients?

(9) Consider a quintic polynomial in two variables, for instance,

f = 5y5 + 19y4x + 36y3x2 + 34y2x3 + 16yx4 + 3x5

+6y4 + 4y3x + 6y2x2 + 4yx3 + x4 + 10y3 + 10y2 + 5y + 1.

Determine the irreducible factor of f in R[x, y], and also in C [x, y].
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(10) Consider a polynomial system which has infinitely many complex zeros
but only finitely many of them have all their coordinates distinct. How
would you compute those zeros with distinct coordinates?

(11) Does there exist a Laurent polynomial in C [t, t−1 ] of the form

f = t−4 + x3t
−3 + x2t

−2 + x1t
−1 + y1t + y2t

2 + y3t
3 + t4

such that the powers f2, f 3, f 4, f 5, f 6 and f 7 all have zero constant
term? Can you find such a Laurent polynomial with real coefficients?
What if we also require that the constant term of t8 is zero?

(12) A well-studied problem in number theory is to find rational points on
elliptic curves. Given an ideal I ⊂ Q [x1 , . . . , xn] how can you decide
whether V(I) is an elliptic curve, and, in the affirmative case, which
computer program would you use to look for points in V(I) ∩ Qn?

3 Bernstein’s Theorem and Fewnomials

The Gröbner basis methods described in the previous lecture apply to ar-
bitrary systems of polynomial equations. They are so general that they are
frequently not the best choice when dealing with specific classes polynomial
systems. A situation encountered in many applications is a system of n
sparse polynomial equations in n variables which has finitely many roots.
Algebraically, this situation is special because we are dealing with a com-
plete intersection, and sparsity allows us to use polyhedral techniques for
counting and computing the zeros. This lecture gives a gentle introduction
to sparse polynomial systems by explaining some basic techniques for n = 2.

3.1 From Bézout’s Theorem to Bernstein’s Theorem

A polynomial in two unknowns looks like

f(x, y) = a1x
u1yv1 + a2x

u2yv2 + · · · + amx
umyvm, (21)

where the exponents ui and vi are non-negative integers and the coefficients ai

are non-zero rationals. Its total degree deg(f) is the maximum of the numbers
u1 + v1, . . . , um + vm. The following theorem gives an upper bound on the
number of common complex zeros of two polynomials in two unknowns.
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Theorem 18. (Bézout’s Theorem) Consider two polynomial equations in
two unknowns: g(x, y) = h(x, y) = 0. If this system has only finitely many
zeros (x, y) ∈ C 2 , then the number of zeros is at most deg(g) · deg(h).

Bézout’s Theorem is the best possible in the sense that almost all poly-
nomial systems have deg(g) · deg(h) distinct solutions. An explicit example
is gotten by taking g and h as products of linear polynomials u1x+u2y+u3.
More precisely, there exists a polynomial in the coefficients of g and h such
that whenever this polynomial is non-zero then f and g have the expected
number of zeros. The first exercise below concerns finding such a polynomial.

A drawback of Bézout’s Theorem is that it yields little information for
polynomials that are sparse. For example, consider the two polynomials

g(x, y) = a1 + a2x + a3xy + a4y , h(x, y) = b1 + b2x
2y + b3xy

2. (22)

These two polynomials have precisely four distinct zeros (x, y) ∈ C 2 for
generic choices of coefficients ai and bj . Here “generic” means that a certain
polynomial in the coefficients ai, bj , called the discriminant, should be non-
zero. The discriminant of the system (22) is the following expression
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2

If this polynomial of degree 14 is non-zero, then the system (22) has four
distinct complex zeros. This discriminant is computed in maple as follows.

g := a1 + a2 * x + a3 * x*y + a4 * y;

h := b1 + b2 * x^2 * y + b3 * x * y^2;
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R := resultant(g,h,x):

S := factor( resultant(R,diff(R,y),y) ):

discriminant := op( nops(S), S);

The last command extracts the last (and most important) factor of the
expression S.

Bézout’s Theorem would predict deg(g) · deg(h) = 6 common complex
zeros for the equations in (22). Indeed, in projective geometry we would
expect the cubic curve {g = 0} and the quadratic curve {h = 0} to intersect
in six points. But these particular curves never intersect in more than four
points in C 2 . How come ? To understand why the number is four and not
six, we need to associate convex polygons with our given polynomials.

Convex polytopes have been studied since the earliest days of mathe-
matics. We shall see that they are very useful for analyzing and solving
polynomial equations. A polytope is a subset of Rn which is the convex
hull of a finite set of points. A familiar example is the convex hull of
{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)} in R3 ;
this is the regular 3-cube. A d-dimensional polytope has many faces, which
are again polytopes of various dimensions between 0 and d − 1. The 0-
dimensional faces are called vertices, the 1-dimensional faces are called edges,
and the (d − 1)-dimensional faces are called facets. For instance, the cube
has 8 vertices, 12 edges and 6 facets. If d = 2 then the edges coincide with
the facets. A 2-dimensional polytope is called a polygon.

Consider the polynomial f(x, y) in (21). Each term xuiyvi appearing in
f(x, y) can be regarded as a lattice point (ui, vi) in the plane R2 . The convex
hull of all these points is called the Newton polygon of f(x, y). In symbols,

New(f) := conv
{

(u1, v1), (u2, v2), . . . , (um, vm)
}

This is a polygon in R2 having at most m vertices. More generally, every
polynomial in n unknowns gives rise to a Newton polytope in Rn .

Our running example in this lecture is the the pair of polynomials in
(22). The Newton polygon of the polynomial g(x, y) is a quadrangle, and the
Newton polygon of h(x, y) is a triangle. If P and Q are any two polygons in
the plane, then their Minkowski sum is the polygon

P +Q :=
{
p+ q : p ∈ P, q ∈ Q}.

Note that each edge of P +Q is parallel to an edge of P or an edge of Q.
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The geometric operation of taking the Minkowski sum of polytopes mir-
rors the algebraic operation of multiplying polynomials. More precisely, the
Newton polytope of a product of two polynomials equals the Minkowski sum
of two given Newton polytopes:

New(g · h) = New(g) + New(h).

If P and Q are any two polygons then we define their mixed area as

M(P,Q) := area(P +Q) − area(P ) − area(Q).

For instance, the mixed area of the two Newton polygons in (22) equals

M(P,Q) = M(New(g), New(h)) =
13

2
− 1− 3

2
= 4.

The correctness of this computation can be seen in the following diagram:

Figure: Mixed subdivision

This figure shows a subdivision of P +Q into five pieces: a translate of P ,
a translate of Q and three parallelograms. The mixed area is the sum of the
areas of the three parallelograms, which is four. This number coincides with
the number of common zeros of g and h. This is not an accident, but is an
instance of a general theorem due to David Bernstein (1975). We abbreviate
C ∗ := C \{0}. The set (C ∗)2 of pairs (x, y) with x 6= 0 and y 6= 0 is a group
under multiplication, called the two-dimensional algebraic torus.
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Theorem 19. (Bernstein’s Theorem)
If g and h are two generic bivariate polynomials, then the number of solutions
of g(x, y) = h(x, y) = 0 in (C ∗)2 equals the mixed area M(New(g), New(h)).

Actually, this assertion is valid for Laurent polynomials, which means that
the exponents in our polynomials (21) can be any integers, possibly negative.
Bernstein’s Theorem implies the following combinatorial fact about lattice
polygons. If P and Q are lattice polygons (i.e., the vertices of P and Q have
integer coordinates), then M(P,Q) is a non-negative integer.

We remark that Bézout’s Theorem follows as a special case from Bern-
stein’s Theorem. Namely, if g and h a general polynomials of degree d and e
respectively, then their Newton polygons are the triangles

P := New(g) = conv{(0, 0), (0, d), (d, 0)} ,
Q := New(h) = conv{(0, 0), (0, e), (e, 0)} ,

P +Q := New(g · h) = conv{(0, 0), (0, d+ e), (d+ e, 0)}.
The areas of these triangles are d2/2, e2/2, (d+ e)2/2, and hence

M(P,Q) =
(d+ e)2

2
− d2

2
− e2

2
= d · e.

Hence two general plane curves of degree d and e meet in d · e points.
We shall present a proof of Bernstein’s Theorem. This proof is algorithmic

in the sense that it tells us how to approximate all the zeros numerically.
The steps in this proof from the foundation for the method of polyhedral
homotopies for solving polynomial systems. This is an active area of research,
with lots of exciting progress by work of T.Y. Li, Jan Verschelde and others.

We proceed in three steps. The first deals with an easy special case.

3.2 Zero-dimensional Binomial Systems

A binomial is a polynomial with two terms. We first prove Theorem 1.1 in
the case when g and h are binomials. After multiplying or dividing both
binomials by suitable scalars and powers of the variables, we may assume
that our given equations are

g = xa1yb1 − c1 and h = xa2yb2 − c2, (23)

where a1, a2, b1, b2 are integers (possibly negative) and c1, c2 are non-zero
complex numbers. Note that multiplying the given equations by a (Laurent)
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monomial changes neither the number of zeros in (C ∗)2 nor the mixed area
of their Newton polygons

To solve the equations g = h = 0, we compute an invertible integer
2× 2-matrix U = (uij) ∈ SL2(Z) such that(

u11 u12

u21 u22

)
·
(
a1 b1
a2 b2

)
=

(
r1 r3
0 r2

)
.

This is accomplished using the Hermite normal form algorithm of integer lin-
ear algebra. The invertible matrix U triangularizes our system of equations:

g = h = 0

⇐⇒ xa1yb1 = c1 and xa2yb2 = c2

⇐⇒ (xa1yb1)u11(xa2yb2)u12 = cu11
1 cu12

2 and (xa1yb1)u21(xa2yb2)u22 = cu21
1 cu22

2

⇐⇒ xr1yr3 = cu11
1 cu12

2 and yr2 = cu21
1 cu22

2 .

This triangularized system has precisely r1r2 distinct non-zero complex solu-
tions. These can be expressed in terms of radicals in the coefficients c1 and
c2. The number of solutions equals

r1r2 = det

(
r1 r3
0 r2

)
= det

(
a1 b1
a2 b2

)
= area(New(g) +New(h)).

This equals the mixed area M(New(g), New(h)), since the two Newton
polygons are just segments, so that area(New(g)) = area(New(h)) = 0.
This proves Bernstein’s Theorem for binomials. Moreover, it gives a simple
algorithm for finding all zeros in this case.

The method described here clearly works also for n binomial equations in
n variables, in which case we are to compute the Hermite normal form of an
integer n × n-matrix. We note that the Hermite normal form computation
is similar but not identical to the computation of a lexicographic Gröbner
basis. We illustrate this in maple for a system with n = 3 having 20 zeros:

> with(Groebner): with(linalg):

> gbasis([

> x^3 * y^5 * z^7 - c1,

> x^11 * y^13 * z^17 - c2,

> x^19 * y^23 * z^29 - c3], plex(x,y,z));
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13 3 8 10 15 2 2 9 8 6 3 4 7

[-c2 c1 + c3 z , c2 c1 y - c3 z , c2 c1 x - c3 z y]

> ihermite( array([

> [ 3, 5, 7 ],

> [ 11, 13, 17 ],

> [ 19, 23, 29 ] ]));

[1 1 5]

[ ]

[0 2 2]

[ ]

[0 0 10]

3.3 Introducing a Toric Deformation

We introduce a new indeterminate t, and we multiply each monomial of g
and each monomial of h by a power of t. What we want is the solutions to
this system for t = 1, but what we will do instead is to analyze it for t in
neighborhood of 0. For instance, our system (22) gets replaced by

gt(x, y) = a1t
ν1 + a2xt

ν2 + a3xyt
ν3 + a4yt

ν4

ht(x, y) = b1t
ω1 + b2x

2ytω2 + b3xy
2tω3

We require that the integers νi and ωj be “sufficiently generic” in a sense
to be made precise below. The system gt = ht = 0 can be interpreted
as a bivariate system which depends on a parameter t. Its zeros (x(t), y(t))
depend on that parameter. They define the branches of an algebraic function
t 7→ (x(t), y(t)). Our goal is to identify the branches.

In a neighborhood of the origin in the complex plane, each branch of our
algebraic function can be written as follows:

x(t) = x0 · tu + higher order terms in t,

y(t) = y0 · tv + higher order terms in t,

where x0, y0 are non-zero complex numbers and u, v are rational numbers.
To determine the exponents u and v we substitute x = x(t) and y = y(t)
into the equations gt(x, y) = ht(x, y) = 0. In our example this gives

gt

(
x(t), y(t)

)
= a1t

ν1 + a2x0t
u+ν2 + a3x0y0t

u+v+ν3 + a4y0t
v+ν4 + · · · ,

ht

(
x(t), y(t)

)
= b1t

ω1 + b2x
2
0y0t

2u+v+ω2 + b3x0y
2
0t

u+2v+ω3 + · · · .
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In order for
(
x(t), y(t)

)
to be a root, the term of lowest order must

vanish in each of these two equations. Since x0 and y0 are chosen to be non-
zero, this is possible only if the lowest order in t is attained by at least two
different terms. This implies the following two piecewise-linear equations for
the indeterminate vector (u, v) ∈ Q2 :

min
{
ν1, u+ ν2, u+ v + ν3, v + ν4

}
is attained twice,

min
{
ω1, 2u+ v + ω2, u+ 2v + ω3

}
is attained twice.

As in Lecture 1, each of these translates into a disjunction of linear equations
and inequalities. For instance, the second “min-equation” translates into

ω1 = 2u+ v + ω2 ≥ u+ 2v + ω3

or ω1 = u+ 2v + ω3 ≥ 2u+ v + ω2

or 2u+ v + ω2 = u+ 2v + ω3 ≥ ω1

It is now easy to state what we mean by the νi and ωj being sufficiently
generic. It means that the minimum is attained twice but not thrice. More
precisely, at every solution (u, v) of the two piecewise-linear equations, pre-
cisely two of the linear forms attain the minimum value in each of the two
equations.

One issue in the algorithm for Bernstein’s Theorem is to choose powers
of t that are small but yet generic. In our example, the choice ν1 = ν2 =
ν3 = ν4 = ω3 = 0, ω1 = ω2 = 1 is generic. Here the two polynomials are

gt(x, y) = a1 + a2x + a3xy + a4y, ht(x, y) = b1t + b2x
2yt + b3xy

2,

and the corresponding two piecewise-linear equations are

min
{

0, u, u+v, v
}

and min
{

1, 2u+v+1, u+2v
}

are attained twice.

This system has precisely three solutions:

(u, v) ∈ {
(1, 0), (0, 1/2), (−1, 0)

}
.

For each of these pairs (u, v), we now obtain a binomial system g̃(x0, y0) =
h̃(x0, y0) = 0 which expresses the fact that the lowest terms in gt

(
x(t), y(t)

)
and ht

(
x(t), y(t)

)
do indeed vanish. The three binomial systems are

• g̃(x0, y0) = a1 + a4y0 and h̃(x0, y0) = b1 + b3x0y
2
0 for (u, v) = (1, 0).
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• g̃(x0, y0) = a1 + a2x0 and h̃(x0, y0) = b1 + b3x0y
2
0 for (u, v) = (0, 1/2).

• g̃(0, y0) = a2x0 + a3x0y0 and h̃(x0, y0) = b2x
2
0y0 + b3x0y

2
0 for (u, v) =

(−1, 0).

These binomial systems have one, two and one root respectively. For in-
stance, the unique Puiseux series solution for (u, v) = (1, 0) has

x0 = −a2
4b1/a

2
1b3 and y0 = −a1/a4.

Hence our algebraic function has a total number of four branches. If one
wishes more information about the four branches, one can now compute
further terms in the Puiseux expansions of these branches. For instance,

x(t) = −a2
4b1

a2
1b3
· t + 2 · a3

4b21(a1a3−a2a4)

a5
1b23

· t2

+
a4
4b21(a3

1a4b2−5a2
1a2

3b1+12a1a2a3a4b1−7a2
2a2

4b1)

a8
1b83

· t3 + . . .

y(t) = −a1

a4
+ b1(a1a3−a2a4)

a2
1b3

· t +
a4b21(a1a3−a2a4)(a1a3−2a2a4)

a5
1b23

· t2 + . . . .

For details on computing multivariate Puiseux series see (McDonald 1995).

3.4 Mixed Subdivisions of Newton Polytopes

We fix a generic toric deformation gt = ht = 0 of our equations. In this sec-
tion we introduce a polyhedral technique for solving the associated piecewise
linear equation and, in order to prove Bernstein’s Theorem, we show that
the total number of branches equals the mixed area of the Newton polygons.

Let us now think of gt and ht as Laurent polynomials in three variables
(x, y, t) whose zero set is a curve in (C ∗)3. The Newton polytopes of these
trivariate polynomials are the following two polytopes in R3 :

P := conv
{
(0, 0, ν1), (1, 0, ν2), (1, 1, ν3), (0, 1, ν4)

}
and Q := conv

{
(0, 0, ω1), (2, 1, ω2), (1, 2, ω3)

}
.

The Minkowski sum P +Q is a polytope in R3 . By a facet of P +Q we mean
a two-dimensional face. A facet F of P +Q is a lower facet if there is a vector
(u, v) ∈ R2 such that (u, v, 1) is an inward pointing normal vector to P +Q
at F . Our genericity conditions for the integers νi and ωj is equivalent to:

(1) The Minkowski sum P +Q is a 3-dimensional polytope.
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(2) Every lower facet of P +Q has the form F1 + F2 where either

(a) F1 is a vertex of P and F2 is a facet of Q, or

(b) F1 is an edge of P and F2 is an edge of Q, or

(c) F1 is a facet of P and F2 is a vertex of Q.

As an example consider our lifting from before, ν1 = ν2 = ν3 = ν4 = ω3 = 0
and ω1 = ω2 = 1. It meets the requirements (1) and (2). The polytope P
is a quadrangle and Q is triangle. But they lie in non-parallel planes in R3 .
Their Minkowski sum P +Q is a 3-dimensional polytope with 10 vertices:

Figure: The 3-dimensional polytope P+Q

The union of all lower facets of P + Q is called the lower hull of the
polytope P + Q. Algebraically speaking, the lower hull is the subset of all
points in P + Q at which some linear functional of the form (x1, x2, x3) 7→
ux1 + vx2 + x3 attains its minimum. Geometrically speaking, the lower hull
is that part of the boundary of P + Q which is visible from below. Let
π : R3 → R2 denote the projection onto the first two coordinates. Then

π(P ) = New(g), π(Q) = New(h), and π(P+Q) = New(g)+New(h).

The map π restricts to a bijection from the lower hull onto New(g)+New(h).
The set of polygons ∆ := {π(F ) : F lower facet of P + Q} defines a sub-
division of New(g) +New(h). A subdivision ∆ constructed by this process,
for some choice of νi and ωj , is called a mixed subdivision of the given Newton
polygons. The polygons π(F ) are the cells of the mixed subdivision ∆.
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Every cell of a mixed subdivision ∆ has the form F1 + F2 where either

(a) F1 = {(ui, vi)} where xuiyvi appears in g and F2 is the projection of
a facet of Q, or

(b) F1 is the projection of an edge of P and F2 is the projection of an
edge of Q, or

(c) F1 is the projection of a facet of P and F2 = {(ui, vi)} where xuiyvi

appears in h.

The cells of type (b) are called the mixed cells of ∆.

Lemma 20. Let ∆ be any mixed subdivision for g and h. Then the sum of
the areas of the mixed cells in ∆ equals the mixed area M(New(g), New(h)).

Proof. Let γ and δ be arbitrary positive reals and consider the polytope
γP + δQ in R3 . Its projection into the plane R2 equals

π(γP + δQ) = γπ(P ) + δπ(Q) = γ ·New(g) + δ ·New(h).

Let A(γ, δ) denote the area of this polygon. This polygon can be subdivided
into cells γF1 + δF2 where F1 + F2 runs over all cells of ∆. Note that
area(γF1 + δF2) equals δ2 · area(F1 + F2) if F1 + F2 is a cell of type (a),
γδ ·area(F1+F2) if it is a mixed cell, and γ2 ·area(F1+F2) if is has type (c).
The sum of these areas equals A(γ, δ). Therefore A(γ, δ) = A(a) · δ2 + A(b) ·
γδ + A(c) · γ2, where A(b) is the sum of the areas of the mixed cells in ∆. We
conclude A(b) = A(1, 1)− A(1, 0)− A(0, 1) = M(New(g), New(h)).

The following lemma makes the connection with the previous section.

Lemma 21. A pair (u, v) ∈ Q2 solves the piecewise-linear min-equations if
and only if (u, v, 1) is the normal vector to a mixed lower facet of P +Q.

This implies that the valid choices of (u, v) are in bijection with the mixed
cells in the mixed subdivision ∆. Each mixed cell of ∆ is expressed uniquely
as the Minkowski sum of a Newton segment New(g̃) and a Newton segment
New(h̃), where g̃ is a binomial consisting of two terms of g, and h̃ is a
binomial consisting of two terms of h. Thus each mixed cell in ∆ can be
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identified with a system of two binomial equations g̃(x, y) = h̃(x, y) = 0. In
this situation we can rewrite our system as follows:

gt(x(t), y(t)) = g̃(x0, y0) · ta + higher order terms in t,

ht(x(t), y(t)) = h̃(x0, y0) · tb + higher order terms in t,

where a and b suitable rational numbers. This implies the following lemma.

Lemma 22. Let (u, v) be as in Lemma 21. The corresponding choices
of (x0, y0) ∈ (C ∗)2 are the solutions of the binomial system g̃(x0, y0) =
h̃(x0, y0) = 0.

We are now prepared to complete the proof of Bernstein’s Theorem.
This is done by showing that the equations gt(x, y) = ht(x, y) = 0 have
M(New(g),New(h)) many distinct isolated solutions in (K∗)2 where K =
C {{t}} is the algebraically closed field of Puiseux series.

By Section 3.2, the number of roots (x0, y0) ∈ (C ∗)2 of the binomial
system in Lemma 22 coincides with the area of the mixed cell New(g̃) +
New(h̃). Each of these roots provides the leading coefficients in a Puiseux
series solution (x(t), y(t)) to our equations. Conversely, by Lemma 21 every
series solution arises from some mixed cell of ∆. We conclude that the number
of series solutions equals the sum of these areas over all mixed cells in ∆. By
Lemma 20, this quantity coincides with the mixed area M(New(f),New(g)).
General facts from algebraic geometry guarantee that the same number of
roots is attained for almost all choices of coefficients, and that we can descend
from the field K to the complex numbers C under the substitution t = 1. �

Our proof of Bernstein’s Theorem gives rise to a numerical algorithm
for finding of all roots of a sparse system of polynomial equations. This
algorithm belongs to the general class of numerical continuation methods,
which are sometimes also called homotopy methods. Standard references
include (Allgower & Georg, 1990) and (Li 1997). For some fascinating recent
progress see (Sommese, Verschelde and Wampler 2001).

The idea of our homotopy is to trace each of the branches of the algebraic
curve (x(t), y(t)) between t = 0 and t = 1. We have shown that the number of
branches equals the mixed area. Our constructions give sufficient information
about the Puiseux series so that we can approximate (x(t), y(t)) for any t in a
small neighborhood of zero. Using numerical continuation, it is now possible
to approximate (x(1), y(1)).
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3.5 Khovanskii’s Theorem on Fewnomials

Polynomial equations arise in many mathematical models in science and
engineering. In such applications one is typically interested in solutions over
the real numbers R instead of the complex numbers C . This study of real
roots of polynomial systems is considerably more difficult than the study of
complex roots. Even the most basic questions remain unanswered to-date.
Let us start out with a very concrete such question:

Question 23. What is the maximum number of isolated real roots of any
system of two polynomial equations in two variables each having four terms?

The polynomial equations considered here look like

f(x, y) = a1x
u1yv1 + a2x

u2yv2 + a3x
u3yv3 + a4x

u4yv4 ,

g(x, y) = b1x
ũ1yṽ1 + b2x

ũ2yṽ2 + b3x
ũ3yṽ3 + b4x

ũ4yṽ4 .

where ai, bj are arbitrary real numbers and ui, vj, ũi, ṽj are arbitrary integers.
To stay consistent with our earlier discussion, we shall count only solutions
(x, y) in (R∗)2, that is, we require that both x and y are non-zero reals.

There is an obvious lower bound for the number Question 23: thirty-six.
It is easy to write down a system of the above form that has 36 real roots:

f(x) = (x2 − 1)(x2 − 2)(x2 − 3) and g(y) = (y2 − 1)(y2 − 2)(y2 − 3).

Each of the polynomials f and g depends on one variable only, and it has 6
non-zero real roots in that variable. Therefore the system f(x) = g(y) = 0
has 36 distinct isolated roots in (R∗)2. Note also that the expansions of f
and g have exactly four terms each, as required.

A priori it is not clear whether Question 23 even makes sense: why should
such a maximum exist ? It certainly does not exist if we consider complex
zeros, because one can get arbitrarily many complex zeros by increasing the
degrees of the equations. The point is that such an unbounded increase of
roots is impossible over the real numbers. This was proved by Khovanskii
(1980). He found a bound on the number of real roots which does not depend
on the degrees of the given equations. We state the version for positive roots.

Theorem 24. (Khovanskii’s Theorem) Consider n polynomials in n vari-
ables involving m distinct monomials in total. The number of isolated roots

in the positive orthant (R+)n of any such system is at most 2(m
2 ) · (n+ 1)m.
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The basic idea behind the proof of Khovanskii’s Theorem is to estab-
lish the following more general result. We consider systems of n equa-
tions which can be expressed as polynomial functions in at most m mono-
mials in x = (x1, . . . , xn). If we abbreviate the i-th such monomial by
xai := xai1

1 xai2
2 · · ·xain

n , then we can write our n polynomials as

Fi

(
xa1 , xa2 , . . . , xam

)
= 0 (i = 1, 2, . . . , n)

We claim that the number of real zeros in the positive orthant is at most

2(m
2 ) · (1 +

n∑
i=1

deg(Fi)
)m · d∏

i=1

deg(Fi).

Theorem 2.3 concerns the case where deg(Fi) = 1 for all i.
We proceed by induction on m − n. If m = n then (2.3) is expressed in

n monomials in n unknowns. By a multiplicative change of variables

xi 7→ zui1
1 zui2

2 · · · zuin
n

we can transform our d monomials into the n coordinate functions z1, . . . , zn.
(Here the uij can be rational numbers, since all roots under consideration are
positive reals.) Our assertion follows from Bézout’s Theorem, which states
that the number of isolated complex roots is at most the product of the
degrees of the equations.

Now suppose m > n. We introduce a new variable t, and we multiply
one of the given monomials by t. For instance, we may do this to the first
monomial and set

Gi(t, x1, . . . , xn) := Fi

(
xa1 · t , xa2 , . . . , xam

)
(i = 1, 2, . . . , n)

This is a system of equations in x depending on the parameter t. We study
the behavior of its positive real roots as t moves from 0 to 1. At t = 0 we have
a system involving one monomial less, so the induction hypothesis provides
a bound on the number of roots. Along our trail from 0 to 1 we encounter
some bifurcation points at which two new roots are born. Hence the number
of roots at t = 1 is at most twice the number of bifurcation points plus the
number of roots of t = 0.

Each bifurcation point corresponds to a root (x, t) of the augmented sys-
tem

J(t,x) = G1(t,x) = · · · = Gn(t,x) = 0, (2.4)
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where J(t,x) denotes the toric Jacobian:

J(t, x1, . . . , xm) = det

(
xi · ∂

∂xj
Gj(t,x)

)
1≤i,j≤m

.

Now, the punch line is that each of the n + 1 equations in (2.4) – in-
cluding the Jacobian – can be expressed in terms of only m monomials
xa1 · t, xa2 , · · · , xam. Therefore we can bound the number of bifurcation
points by the induction hypothesis, and we are done.

This was only to give the flavor of how Theorem 2.3 is proved. There are
combinatorial and topological fine points which need most careful attention.
The reader will find the complete proof in (Khovanskii 1980), in (Khovanskii
1991) or in (Benedetti & Risler 1990).

Khovanskii’s Theorem implies an upper bound for the root count sug-
gested in Question 23. After multiplying one of the given equations by a
suitable monomial, we may assume that our system has seven distinct mono-
mials. Substituting n = 2 and m = 7 into Khovanskii’s formula, we see that

there are at most 2(
7
2) · (2+1)7 = 4, 586, 471, 424 roots in the positive quad-

rant. By summing over all four quadrants, we conclude that the maximum

in Question 23 lies between 36 and 18, 345, 885, 696 = 22 · 2(7
2) · (2 + 1)7.

The gap between 36 and 18, 345, 885, 696 is frustratingly large. Experts agree
that the truth should be closer to the lower bound than to the upper bound,
but at the moment nobody knows the exact value. Could it be 36 ?

The original motivation for Khovanskii’s work was the following conjec-
ture from the 1970’s due to Kouchnirenko. Consider any system of n poly-
nomial equations in n unknown, where the i-th equation has at most mi

terms. The number of isolated real roots in (R+)n of such a system is at most
(m1−1)(m2−1) · · · (md−1). This number is attained by equations in distinct
variables, as was demonstrated by our example with d = 2, m1 = m2 = 4
which has (m1 − 1)(m2 − 1) = 16 real zeros.

Remarkably, Kouchnirenko’s conjecture remained open for many years
after Khovanskii had developed his theory of fewnomials which includes the
above theorem. Only recently, Bertrand Haas (2002) found the following
counterexample to Kouchnirenko’s conjecture in the case d = 2, m1 = m2 =
4. Proving the following proposition from scratch is a nice challenge.

Proposition 25. (Haas) The two equations

x108 + 1.1y54 − 1.1y = y108 + 1.1x54 − 1.1x = 0
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have five distinct strictly positive solutions (x, y) ∈ (R+)2.

It was proved by Li, Rojas and Wang (2001) that the lower bound pro-
vided by Haas’ example coincides with the upper bound for two trinomials.

Theorem 26. (Li, Rojas and Wang) A system of two trinomials

f(x, y) = a1x
u1yv1 + a2x

u2yv2 + a3x
u3yv3 ,

g(x, y) = b1x
ũ1yṽ1 + b2x

ũ2yṽ2 + b3x
ũ3yṽ3,

with ai, bj ∈ R and ui, vj , ũi, ṽj ∈ R has at most five positive real zeros.

The exponents in this theorem are allowed to be real numbers not just
integers. Li, Rohas and Wang (2001) proved a more general result for a two
equations in x and y where the first equation and the second equation has m
terms. The number of positive real roots of such a system is at most 2m− 2.

Let us end this section with a light-hearted reference to (Lagarias &
Richardson 1997). That paper analyzes a particular sparse system in two
variables, and the author of these lecture notes lost $ 500 along the way.

3.6 Exercises

(1) Consider the intersection of a general conic and a general cubic curve

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0

b1x
3+b2x

2y+b3xy
2+b4y

3+b5x
2+b6xy+b7y

2+b8x+b9y+b10 = 0

Compute an explicit polynomial in the unknowns ai, bj such that equa-
tions have six distinct solutions whenever your polynomial is non-zero.

(2) Draw the Newton polytope of the following polynomial

f(x1, x2, x3, x4) = (x1−x2)(x1−x3)(x1−x4)(x2−x3)(x2−x4)(x3−x4).

(3) For general αi, βj ∈ Q , how many vectors (x, y) ∈ (C ∗)2 satisfy

α1x
3y + α2xy

3 = α3x + α4y and β1x
2y2 + β2xy = β3x

2 + β4y
2 ?

Can your bound be attained with all real vectors (x, y) ∈ (R∗)2?
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(4) Find the first three terms in each of the four Puiseux series solutions
(x(t), y(t)) of the two equations

t2x2 + t5xy + t11y2 + t17x+ t23y + t31 = 0

t3x2 + t7xy + t13y2 + t19x+ t29y + t37 = 0

(5) State and prove Bernstein’s Theorem for n equations in n variables.

(6) Bernstein’s Theorem can be used in reverse, namely, we can calculate
the mixed volume of n polytopes by counting the number of zeros in
(C ∗)n of a sparse system of polynomial equations. Pick your favorite
three distinct three-dimensional lattice polytopes in R3 and compute
their mixed volume with this method using Macaulay 2.

(7) Show that Kouchnirenko’s Conjecture is true for d = 2 and m1 = 2.

(8) Prove Proposition 25. Please use any computer program of your choice.

(9) Can Haas’ example be modified to show that the answer to Question
23 is strictly larger than 36?

4 Resultants

Elimination theory deals with the problem of eliminating one or more vari-
ables from a system of polynomial equations, thus reducing the given problem
to a smaller problem in fewer variables. For instance, if we wish to solve

a0 + a1x + a2x
2 = b0 + b1x + b2x

2 = 0,

with a2 6= 0 and b2 6= 0 then we can eliminate the variable x to get

a2
0b

2
2 − a0a1b1b2 − 2a0a2b0b2 + a0a2b

2
1 + a2

1b0b2 − a1a2b0b1 + a2
2b

2
0 = 0. (24)

This polynomial of degree 4 is the resultant. It vanishes if and only if the
given quadratic polynomials have a common complex root x. The resultant
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(24) has the following three determinantal representations:∣∣∣∣∣∣∣∣
a0 a1 a2 0
0 a0 a1 a2

b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣
a0 a1 a2

b0 b1 b2
[01] [02] 0

∣∣∣∣∣∣ = −
∣∣∣∣ [01] [02]

[02] [12]

∣∣∣∣ (25)

where [ij] = aibj − ajbi. Our aim in this section is to discuss such formulas.
The computation of resultants is an important tool for solving polynomial

systems. It is particularly well suited for eliminating all but one variable from
a system of n polynomials in n unknowns which has finitely many solutions.

4.1 The Univariate Resultant

Consider two general polynomials of degrees d and e in one variable:

f = a0 + a1x+ a2x
2 + · · ·+ ad−1x

d−1 + adx
d,

g = b0 + b1x + b2x
2 + · · ·+ be−1x

e−1 + bex
e.

Theorem 27. There exists a unique (up to sign) irreducible polynomial
Res in Z[a0, a1, . . . , ad, b0, b1, . . . , bd] which vanishes whenever the polynomi-
als f(x) and g(x) have a common zero.

Here and throughout this section “common zeros” may lie in any alge-
braically closed field (say, C ) which contains the field to which we specialize
the coefficients ai and bj of the given polynomials (say, Q ). Note that a poly-
nomial with integer coefficients being “irreducible” implies that the coeffi-
cients are relatively prime. The resultant Res = Resx(f, g) can be expressed
as the determinant of the Sylvester matrix

Resx(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0
a1 a0 b1 b0

a1
. . . b1

. . .
...

. . . a0
...

. . . b0
... a1

... b1
ad be

ad
... be

...
. . .

. . .

ad be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(26)
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where the blank spaces are filled with zeroes. See the left formula in (24).
There are many other useful formulas for the resultant. For instance,

suppose that the roots of f are ξ1, . . . , ξd and the roots of g are η1, . . . , ηe.
Then we have the following product formulas:

Resx(f, g) = ae
db

d
e

d∏
i=1

e∏
j=1

(ξi − ηj) = ae
d

d∏
i=1

g(ξi) = (−1)debde

e∏
j=1

f(ηj).

From this we conclude the following proposition.

Proposition 28. If Cf and Cg are the companion matrices of f and g then

Resx(f, g) = ae
0 · det

(
g(Cf)

)
= (−1)debd0 · det

(
f(Cg)

)
.

If f and g are polynomials of the same degree d = e, then the following
method for computing the resultant is often used in practice. Compute the
following polynomial in two variables, which is called the Bézoutian:

B(x, y) =
f(x)g(y)− f(y)g(x)

x− y =
d−1∑
i,j=0

cijx
iyj.

Form the symmetric d × d-matrix C = (cij). Its entries cij are sums of
brackets [kl] = akbl − albk. The case d = 2 appears in (24) on the right.

Theorem 29. (Bézout resultant) The determinant of C equals Resx(f, g).

Proof. The resultant Resx(f, g) is an irreducible polynomial of degree 2d in
a0, . . . , ad, b0, . . . , bd. The determinant of C is also a polynomial of degree 2d.
We will show that the zero set of Resx(f, g) is contained in the zero set of
det(C). This implies that the two polynomials are equal up to a constant.
Looking at leading terms one finds the constant to be either 1 or −1.

If (a0, . . . , ad, b0, . . . , bd) is in the zero set of Resx(f, g) then the sys-
tem f = g = 0 has a complex solution x0. Then B(x0, y) is identically
zero as a polynomial in y. This implies that the non-zero complex vector
(1, x0, x

2
0, . . . , x

m−1
0 ) lies in the kernel of C, and therefore det(C) = 0.

The 3× 3-determinants in the middle of (24) shows that one can also use
mixtures of Bézout matrices and Sylvester matrices. Such hybrid formulas for
resultants are very important in higher-dimensional problems as we shall see
below. Let us first show three simple applications of the univariate resultant.
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Example. (Intersecting two algebraic curves in the real plane)
Consider two polynomials in two variables, say,

f = x4 + y4 − 1 and g = x5y2 − 4x3y3 + x2y5 − 1.

We wish to compute the intersection of the curves {f = 0} and {g = 0} in
the real plane R2 , that is, all points (x, y) ∈ R2 with f(x, y) = g(x, y) = 0.
To this end we evaluate the resultant with respect to one of the variables,

Resx(f, g) = 2y28 − 16y27 + 32y26 + 249y24 + 48y23 − 128y22 + 4y21

−757y20 − 112y19 + 192y18 − 12y17 + 758y16 + 144y15 − 126y14

+28y13 − 251y12 − 64y11 + 30y10 − 36y9 − y8 + 16y5 + 1.

This is an irreducible polynomial in Q [y]. It has precisely four real roots

y = −0.9242097, y = −0.5974290, y = 0.7211134, y = 0.9665063.

Hence the two curves have four intersection points, with these y-coordinates.
By the symmetry in f and g, the same values are also the possible x-
coordinates. By trying out (numerically) all 16 conceivable x-y-combinations,
we find that the following four pairs are the real solutions to our equations:

(x, y) = (−0.9242, 0.7211), (x, y) = (0.7211,−0.9242),

(x, y) = (−0.5974, 0.9665), (x, y) = (0.9665,−0.5974).

Example. (Implicitization of a rational curve in the plane)
Consider a plane curve which is given to us parametrically:

C =

{(
a(t)

b(t)
,
c(t)

d(t)

)
∈ R2 : t ∈ R

}
,

where a(t), b(t), c(t), d(t) are polynomials in Q [t]. The goal is to find the
unique irreducible polynomial f ∈ Q [x, y] which vanishes on C. We may
find f by the general Gröbner basis approach explained in (Cox, Little &
O’Shea). It is more efficient, however, to use the following formula:

f(x, y) = Rest

(
b(t) · x− a(t), d(t) · y − c(t) ).

Here is an explicit example in maple of a rational curve of degree six:
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> a := t^3 - 1: b := t^2 - 5:

> c := t^4 - 3: d := t^3 - 7:

> f := resultant(b*x-a,d*y-c,t);

2 2 2

f := 26 - 16 x - 162 y + 18 x y + 36 x - 704 x y + 324 y

2 2 2 3

+ 378 x y + 870 x y - 226 x y

3 4 3 2 4 3

+ 440 x - 484 x + 758 x y - 308 x y - 540 x y

2 3 3 3 4 2 3

- 450 x y - 76 x y + 76 x y - 216 y

Example. (Computation with algebraic numbers)
Let α and β be algebraic numbers over Q . They are represented by their
minimal polynomials f, g ∈ Q [x]. These are the unique (up to scaling)
irreducible polynomials satisfying f(α) = 0 and g(β) = 0. Our problem
is to find the minimal polynomials p and q for their sum α + β and their
product α ·β respectively. The answer is given by the following two formulas

p(z) = Resx

(
f(x), g(z − x) ) and q(z) = Resx

(
f(x), g(z/x) · xdeg(g)

)
.

It is easy to check the identities p(α+β) = 0 and q(α·β) = 0. It can happen,
for special f and g, that the output polynomials p or q are not irreducible.
In that event an appropriate factor of p or q will do the trick.

As an example consider two algebraic numbers given in terms of radicals:

α =
5
√

2, β =
3

√
−7/2− 1/18

√
3981 +

3

√
−7/2 + 1/18

√
3981.

Their minimal polynomials are α5−2 and β3+β+7 respectively. Using the
above formulas, we find that the minimal polynomial for their sum α+ β is

p(z) = z15 + 5 z13 + 35 z12 + 10 z11 + 134 z10 + 500 z9 + 240 z8 + 2735 z7

+3530z6 + 1273z5 − 6355z4 + 12695z3 + 1320z2 + 22405z + 16167,

and the minimal polynomial for their product α · β equals

q(z) = z15 − 70 z10 + 984 z5 + 134456.
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4.2 The Classical Multivariate Resultant

Consider a system of n homogeneous polynomials in n indeterminates

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0. (27)

We assume that the i-th equation is homogeneous of degree di > 0, that is,

fi =
∑

j1+···+jn=di

c
(i)
j1,...,jn

xj1
1 · · ·xjn

n ,

where the sum is over all
(

n+di−1
di

)
monomials of degree di in x1, . . . , xn. Note

that the zero vector (0, 0, . . . , 0) is always a solution of (27). Our question is
to determine under which condition there is a non-zero solution. As a simple
example we consider the case of linear equations (n = 3, d1 = d2 = d3 = 1):

f1 = c1100x1 + c1010x2 + c1001x3 = 0

f2 = c2100x1 + c2010x2 + c2001x3 = 0

f3 = c3100x1 + c3010x2 + c3001x3 = 0.

This system has a non-zero solution if and only if the determinant is zero:

det


 c1100 c1010 c1001

c2100 c2010 c2001
c3100 c3010 c3001


 = 0.

Returning to the general case, we regard each coefficient c
(i)
j1,...,jn

of each
polynomial fi as an unknown, and we write Z[c] for the ring of polynomials
with integer coefficients in these variables. The total number of variables in
Z[c] equals N =

∑n
i=1

(
n+di−1

di

)
. For instance, the 3 × 3-determinant in the

example above may be regarded as a cubic polynomial in Z[c]. The following
theorem characterizes the classical multivariate resultant Res = Resd1···dn .

Theorem 30. Fix positive degrees d1, . . . , dn. There exists a unique (up to
sign) irreducible polynomial Res ∈ Z[c] which has the following properties:

(a) Res vanishes under specializing the c
(i)
j1...,jn

to rational numbers if and
only if the corresponding equations (27) have a non-zero solution in C n .

(b) Res is irreducible, even when regarded as a polynomial in C [c].
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(c) Res is homogeneous of degree d1 · · ·di−1 · di+1 · · ·dn in the coefficients

(c
(i)
a : |a| = di) of the polynomial fi, for each fixed i ∈ {1, . . . , n}.

We sketch a proof of Theorem 30. It uses results from algebraic geometry.

Proof. The elements of C [u] are polynomial functions on the affine space
C N . We regard x = (x1, . . . , xn) as homogeneous coordinates for the complex
projective space Pn−1. Thus (u, x) are the coordinates on the product variety
C N×P n−1. Let I denote the subvariety of CN×P n−1 defined by the equations∑

j1+···+jn=di

c
(i)
j1,...,jn

xj1
1 · · ·xjn

n = 0 for i = 1, 2, . . . , n.

Note that I is defined over Q . Consider the projection φ : CN × P n−1 →
P n−1, (u, x) 7→ x. Then φ(I) = P n−1. The preimage φ−1(x) of any point
x ∈ P n−1 can be identified with the set { u ∈ CN : (u, x) ∈ I }. This
is a linear subspace of codimension n in CN . To this situation we apply
(Shafarevich 1994, §I.6.3, Theorem 8) to conclude that the variety I is closed
and irreducible of codimension n in CN × P n−1. Hence dim(I) = N − 1.

Consider the projection ψ : C N × P n−1 → C N , (u, x) 7→ u. It follows
from the Main Theorem of Elimination Theory, (Eisenbud 1994, Theorem
14.1) that ψ(I) is an irreducible subvariety of CN which is defined over Q
as well. Every point c in CN can be identified with a particular polynomial
system f1 = · · · = fn = 0. That system has a nonzero root if and only if c
lies in the subvariety ψ(I). For every such c we have

dim(ψ(I)) ≤ dim(I) = N − 1 ≤ dim(ψ−1(c)) + dim(ψ(I))
The two inequalities follow respectively from parts (2) and (1) of Theorem
7 in Section I.6.3 of (Shafarevich 1977). We now choose c = (f1, . . . , fn) as
follows. Let f1, . . . , fn−1 be any equations as in (27) which have only finitely
many zeros in Pn−1. Then choose fn which vanishes at exactly one of these
zeros, say y ∈ Pn−1. Hence ψ−1(c) = {(c, y)}, a zero-dimensional variety.
For this particular choice of c both inequalities hold with equality. This
implies dim(ψ(I)) = N − 1.

We have shown that the image of I under ψ is an irreducible hypersurface
in C N , which is defined over Z. Hence there exists an irreducible polynomial
Res ∈ Z[c], unique up to sign, whose zero set equals ψ(I). By construction,
this polynomial Res(u) satisfies properties (a) and (b) of Theorem 30.

Part (c) of the theorem is derived from Bézout’s Theorem.
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Various determinantal formulas are known for the multivariate resultant.
The most useful formulas are mixtures of Bézout matrices and Sylvester ma-
trices like the expression in the middle of (25). Exact division-free formulas
of this kind are available for n ≤ 4. We discuss such formulas for n = 3.

The first non-trivial case is d1 = d2 = d3 = 2. Here the problem is to
eliminate two variables x and y from a system of three quadratic forms

F = a0x
2 + a1xy + a2y

2 + a3xz + a4yz + a5z
2,

G = b0x
2 + b1xy + b2y

2 + b3xz + b4yz + b5z
2,

H = c0x
2 + c1xy + c2y

2 + c3xz + c4yz + c5z
2.

To do this, we first compute their Jacobian determinant

J := det


 ∂F/∂x ∂F/∂y ∂F/∂z

∂G/∂x ∂G/∂y ∂G/∂z
∂H/∂x ∂H/∂y ∂H/∂z


 .

We next compute the partial derivatives of J . They are quadratic as well:

∂J/∂x = u0x
2 + u1xy + u2y

2 + u3xz + u4yz + u5z
2,

∂J/∂y = v0x
2 + v1xy + v2y

2 + v3xz + v4yz + v5z
2,

∂J/∂z = w0x
2 + w1xy + w2y

2 + w3xz + w4yz + w5z
2.

Each coefficient ui, vj or wk is a polynomial of degree 3 in the original co-
efficients ai, bj, ck. The resultant of F,G and H coincides with the following
6× 6-determinant:

Res2,2,2 = det




a0 b0 c0 u0 v0 w0

a1 b1 c1 u1 v1 w1

a2 b2 c2 u2 v2 w2

a3 b3 c3 u3 v3 w3

a4 b4 c4 u4 v4 w4

a5 b5 c5 u5 v5 w5




(28)

This is a homogeneous polynomial of degree 12 in the 18 unknowns a0, a1, . . . ,
a5, b0, b1, . . . , b5, c0, c1, . . . , c5. The full expansion of Res has 21, 894 terms.

In a typical application of Res2,2,2, the coefficients ai, bj , ck will themselves
be polynomials in another variable t. Then the resultant is a polynomial in
t which represents the projection of the desired solutions onto the t-axis.
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Consider now the more general case of three ternary forms f, g, h of the
same degree d = d1 = d2 = d3. The following determinantal formula for their
resultant was known to Sylvester. We know from part (c) of Theorem 30 that
Resd,d,d is a homogeneous polynomial of degree 3d2 in 3

(
d+2
2

)
unknowns. We

shall express Resd,d,d as the determinant of a square matrix of size(
2d

2

)
=

(
d

2

)
+

(
d

2

)
+

(
d

2

)
+

(
d+ 1

2

)
.

We write Se = Q [x, y, z]e for the
(

e+2
2

)
-dimensional vector space of ternary

forms of degree e. Our matrix represents a linear map of the following form

Sd−2 ⊗ Sd−2 ⊗ Sd−2 ⊗ Sd−1 → S2d−2

( a, b, c, u ) 7→ a · f + b · g + c · h + δ(u),

where δ is a linear map from Sd−1 to S2d−2 to be described next. We shall
define δ by specifying its image on any monomial xiyjzk with i+j+k = d−1.
For any such monomial, we choose arbitrary representations

f = xi+1 · Px + yj+1 · Py + zk+1 · Pz

g = xi+1 ·Qx + yj+1 ·Qy + zk+1 ·Qz

h = xi+1 ·Rx + yj+1 ·Ry + zk+1 ·Rz,

where Px, Qx, Rx are homogeneous of degree d − i − 1, Py, Qy, Ry are ho-
mogeneous of degree d − j − 1, and Pz, Qz, Rz are homogeneous of degree
d− k − 1. Then we define

δ
(
xiyjzk

)
= det


 Px Py Pz

Qx Qy Qz

Rx Ry Rz


 .

Note that this determinant is indeed a ternary form of degree

(d− i− 1)+ (d− j− 1)+ (d−k− 1) = 3d− 3− (i+ j+k) = 2d− 2.

4.3 The Sparse Resultant

Most systems of polynomial equations encountered in real world applications
are sparse in the sense that only few monomials appear with non-zero coeffi-
cient. The classical multivariate resultant is not well suited to this situation.
As an example consider the following system of three quadratic equations:

f = a0x+ a1y + a2xy, g = b0 + b1xy + b2y
2, h = c0 + c1xy + c2x

2.
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If we substitute the coefficients of f, g and h into the resultant Res2,2,2 in
(28) then the resulting expression vanishes identically. This is consistent
with Theorem 30 because the corresponding homogeneous equations

F = a0xz+a1yz+a2xy, G = b0z
2 +b1xy+b2y

2, H = c0z
2 +c1xy+c2y

2

always have the common root (1 : 0 : 0), regardless of what the coefficients
ai, bj , ck are. In other words, the three given quadrics always intersect in the
projective plane. But they generally do not intersect in the affine plane C 2 .
In order for this to happen, the following polynomial in the coefficients must
vanish:

a2
1b2b

2
1c

2
0c1 − 2a2

1b2b1b0c0c
2
1 + a2

1b2b
2
0c

3
1 − a2

1b
3
1c

2
0c2 + 2a2

1b
2
1b0c0c1c2

−a2
1b1b

2
0c

2
1c2 − 2a1a0b

2
2b1c

2
0c1 + 2a1a0b

2
2b0c0c

2
1 + 2a1a0b2b

2
1c

2
0c2

−2a1a0b2b
2
0c

2
1c2 − 2a1a0b

2
1b0c0c

2
2 + 2a1a0b1b

2
0c1c

2
2 + a2

0b
3
2c

2
0c1 − a2

0b
2
2b1c

2
0c2

−2a2
0b

2
2b0c0c1c2 + 2a2

0b2b1b0c0c
2
2 + a2

0b2b
2
0c1c

2
2 − a2

0b1b
2
0c

3
2 − a2

2b
2
2b1c

3
0

+a2
2b

2
2b0c

2
0c1 + 2a2

2b2b1b0c
2
0c2 − 2a2

2b2b
2
0c0c1c2 − a2

2b1b
2
0c0c

2
2 + a2

2b
3
0c1c

2
2.

The expression is the sparse resultant of f, g and h. This resultant is custom-
tailored to the specific monomials appearing in the given input equations.

In this section we introduce the set-up of “sparse elimination theory”.
In particular, we present the precise definition of the sparse resultant. Let
A0,A1, . . . ,An be finite subsets of Zn. Set mi := #(Ai). Consider a system
of n+ 1 Laurent polynomials in n variables x = (x1, . . . , xn) of the form

fi(x) =
∑
a∈Ai

cia x
a (i = 0, 1, . . . , n).

Here xa = xa1
1 · · ·xan

n for a = (a1, . . . , an) ∈ Zn. We say that Ai is the
support of the polynomial fi(x). In the example above, n = 2, m1 = m2 =
m3 = 3, A0 = { (1, 0), (0, 1), (1, 1) } and A1 = A2 = { (0, 0), (1, 1), (0, 2)}.
For any subset J ⊆ {0, . . . , n} consider the affine lattice spanned by

∑
j∈J Aj ,

LJ :=
{∑

j∈J

λja
(j) | a(j) ∈ Aj, λj ∈ Z for all j ∈ J and

∑
j∈J

λj = 1
}
.

We may assume that L{0,1,...,n} = Zn. Let rank(J) denote the rank of the
lattice LJ . A subcollection of supports {Ai}i∈I is said to be essential if

rank(I) = #(I)− 1 and rank(J) ≥ #(J) for each proper subset J of I.
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The vector of all coefficients cia appearing in f0, f1, . . . , fn represents a point
in the product of complex projective spaces Pm0−1 × · · · × Pmn−1. Let Z
denote the subset of those systems (4.3) which have a solution x in (C ∗)n,
where C ∗ := C \{0}. Let Z̄ be the closure of Z in Pm0−1 × · · · × Pmn−1.

Lemma 31. The projective variety Z̄ is irreducible and defined over Q .

It is possible that Z̄ is not a hypersurface but has codimension ≥ 2. This
is where the condition that the supports be essential comes in. It is known
that the codimension of Z̄ in Pm0−1 × · · · × Pmn−1 equals the maximum of
the numbers #(I)− rank(I), where I runs over all subsets of {0, 1, . . . , n}.

We now define the sparse resultant Res. If codim(Z̄) = 1 then Res is the
unique (up to sign) irreducible polynomial in Z[. . . , cia, . . .] which vanishes on
the hypersurface Z̄. If codim(Z̄) ≥ 2 then Res is defined to be the constant
1. We have the following result, Theorem 32, which is a generalization of
Theorem 30 in the same way that Bernstein’s Theorem generalizes Bézout’s
Theorem.

Theorem 32. Suppose that {A0,A1, . . . ,An} is essential, and let Qi denote
the convex hull of Ai. For all i ∈ {0, . . . , n} the degree of Res in the i’th group
of variables {cia, a ∈ Ai} is a positive integer, equal to the mixed volume

M(Q0, . . . , Qi−1, Qi+1 . . . , Qn) =
∑

J⊆{0,...,i−1,i+1...,n}
(−1)#(J) · vol

(∑
j∈J

Qj

)
.

We refer to (Gel’fand, Kapranov & Zelevinsky 1994) and (Pedersen &
Sturmfels 1993) for proofs and details. The latter paper contains the follow-
ing combinatorial criterion for the existence of a non-trivial sparse resultant.
Note that, if each Ai is n-dimensional, then I = {0, 1, . . . , n} is essential.

Corollary 33. The variety Z̄ has codimension 1 if and only if there exists
a unique subset {Ai}i∈I which is essential. In this case the sparse resultant
Res coincides with the sparse resultant of the equations {fi : i ∈ I}.

Here is a small example. For the linear system

c00x + c01y = c10x+ c11y = c20x + c21y + c22 = 0.

the variety Z̄ has codimension 1 in the coefficient space P1 × P 1 × P 2. The
unique essential subset consists of the first two equations. Hence the sparse

57



resultant of this system is not the 3 × 3-determinant (which would be re-
ducible). The sparse resultant is the 2 × 2-determinant Res = c00c11 −
c10c01.

We illustrate Theorem 32 for our little system {f, g, h}. Clearly, the triple
of support sets {A1,A2,A3} is essential, since all three Newton polygons
Qi = conv(Ai) are triangles. The mixed volume of two polygons equals

M(Qi, Qj) = area(Qi +Qj)− area(Qi)− area(Qj).

In our example the triangles Q2 and Q3 coincide, and we have

area(Q1) = 1/2, area(Q2) = 1, area(Q1 +Q2) = 9/2, area(Q2 +Q3) = 4.

This implies

M(Q1, Q2) = M(Q1, Q3) = 3 and M(Q2, Q3) = 2.

This explains why the sparse resultant above is quadratic in (a0, a1, a2) and
homogeneous of degree 3 in (b0, b1, b2) and in (c0, c1, c2) respectively.

One of the central problems in elimination theory is to find “nice” deter-
minantal formulas for resultants. The best one can hope for is a Sylvester-type
formula, that is, a square matrix whose non-zero entries are the coefficients
of the given equation and whose determinant equals precisely the resultant.
The archetypical example of such a formula is (26). Sylvester-type formulas
do not exist in general, even for the classical multivariate resultant.

If a Sylvester-type formula is not available or too hard to find, the next
best thing is to construct a “reasonably small” square matrix whose deter-
minant is a non-zero multiple of the resultant under consideration. For the
sparse resultant such a construction was given in (Canny and Emiris 1995)
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and (Sturmfels 1994). A Canny-Emiris matrix for our example is




y2 y3 xy3 y4 xy4 xy2 x2y2 x2y3 y xy

yf a1 0 0 0 0 a2 0 0 0 a0

y2f 0 a1 a2 0 0 a0 0 0 0 0
xy2f 0 0 a1 0 0 0 a0 a2 0 0
y2g b0 0 b1 b2 0 0 0 0 0 0
xy2g 0 0 0 0 b2 b0 0 b1 0 0
yg 0 b2 0 0 0 b1 0 0 b0 0
xyg 0 0 b2 0 0 0 b1 0 0 b0
xy2h 0 0 0 0 c2 c0 0 c1 0 0
yh 0 c2 0 0 0 c1 0 0 c0 0
xyh 0 0 c2 0 0 0 c1 0 0 c0




The determinant of this matrix equals a1b2 times the sparse resultant.
The structure of this 10× 10-matrix can be understood as follows. Form

the product fgh and expand it into monomials in x and y. A certain com-
binatorial rule selects 10 out of the 15 monomials appearing in fgh. The
columns are indexed by these 10 monomials. Say the i’th column is indexed
by the monomial xjyk. Next there is a second combinatorial rule which se-
lects a monomial multiple of one of the input equations f , g or h such that
this multiple contains xiyj in its expansion. The i’th row is indexed by that
polynomial. Finally the (i, j)-entry contains the coefficient of the j’th col-
umn monomial in the i’th row polynomial. This construction implies that
the matrix has non-zero entries along the main diagonal. The two combina-
torial rules mentioned in the previous paragraph are based on the geometric
construction of a mixed subdivision of the Newton polytopes.

The main difficulty overcome by the Canny-Emiris formula is this: If
one sets up a matrix like the one above just by “playing around” then most
likely its determinant will vanish (try it), unless there is a good reason why it
shouldn’t vanish. Now the key idea is this: a big unknown polynomial (such
as Res) will be non-zero if one can ensure that its initial monomial (with
respect to some term order) is non-zero.

Consider the lexicographic term order induced by the variable ordering
a1 > a0 > a2 > b2 > b1 > b0 > c0 > c1 > c2. The 24 monomials of Res are
listed in this order above. All 10 ! permutations contribute a (possible) non-
zero term to the expansion of the determinant of the Canny-Emiris matrix.
There will undoubtedly be some cancellation. However, the unique largest
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monomial (in the above term order) appears only once, namely, on the main
diagonal. This guarantees that the determinant is a non-zero polynomial.
Note that the product of the diagonal elements in the 10× 10-matrix equals
a1b2 times the underlined leading monomial.

An explicit combinatorial construction for all possible initial monomials
(with respect to any term order) of the sparse resultant is given in (Sturmfels
1993). It is shown there that for any such initial monomial there exists a
Canny-Emiris matrix which has that monomial on its main diagonal.

4.4 The Unmixed Sparse Resultant

In this section we consider the important special case when the given Laurent
polynomials f0, f1, . . . , fn all have the same support:

A := A0 = A1 = · · · = An ⊂ Zn.

In this situation, the sparse resultant Res is the Chow form of the projective
toric variety XA which is given parametrically by the vector of monomials(
xa : a ∈ A ). Chow forms play a central role in elimination theory, and it

is of great importance to find determinantal formulas for Chow forms of fre-
quently appearing projective varieties. Significant progress in this direction
has been made in the recent work of Eisenbud, Floystad, Schreyer on exte-
rior syzygies and the Bernstein-Bernstein-Beilinson correspondence. Khetan
(2002) has applied these techniques to give an explicit determinantal for-
mula of mixed Bézout-Sylvester type for the Chow form of any toric surface
or toric threefold. This provides a very practical technique for eliminating
two variables from three equations or three variables from four equations.

We describe Khetan’s formula for an example. Consider the following
unmixed system of three equations in two unknowns:

f = a1 + a2x+ a3y + a4xy + a5x
2y + a6xy

2,

g = b1 + b2x+ b3y + b4xy + b5x
2y + b6xy

2,

h = c1 + c2x + c3y + c4xy + c5x
2y + c6xy

2.

The common Newton polygon of f, g and h is a pentagon of normalized area
5. It defines a toric surface of degree 5 in projective 5-space. The sparse
unmixed resultant Res = Res(f, g, h) is the Chow form of this surface. It
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can be written as a homogeneous polynomial of degree 5 in the brackets

[ijk] =


 ai aj ak

bi bj bk
ci cj ck


 .

Hence Res is a polynomial of degree 15 in the 18 unknowns a1, a2, . . . , c6. It
equals the determinant of the following 9× 9-matrix


0 −[124] 0 [234] [235] [236] a1 b1 c1
0 −[125] 0 0 0 0 a2 b2 c2
0 −[126] 0 − [146] −[156]−[345] −[346] a3 b3 c3
0 0 0 [345]−[156]−[246] − [256] −[356] a4 b4 c4
0 0 0 − [256] 0 0 a5 b5 c5
0 0 0 − [356] − [456] 0 a6 b6 c6
a1 b1 c1 d1 e1 f1 0 0 0
a2 b2 c2 d2 e2 f2 0 0 0
a3 b3 c3 d3 e2 f3 0 0 0




4.5 The Resultant of Four Trilinear Equations

Polynomial equations arising in many applications are multihomogeneous.
Sometimes we are even luckier and the equations are multilinear, that is,
multihomogeneous of degree (1, 1, . . . , 1). This will happen in Lecture 6.
The resultant of a multihomogeneous system is the instance of the sparse
resultant where the Newton polytopes are products of simplices. There are
lots of nice formulas available for such resultants. For a systematic account
see (Sturmfels and Zelevinsky 1994) and (Dickenstein and Emiris 2002).

In this section we discuss a one particular example, namely, the resultant
of four trilinear polynomials in three unknowns. This material was prepared
by Amit Khetan. The given equations are

fi = Ci7x1x2x3 +Ci6x1x2 +Ci5x1x3 +Ci4x1 +Ci3x2x3 +Ci2x2 +Ci1x3 +Ci0,

where i = 0, 1, 2, 3. The four polynomials f0, f1, f2, f3 in the unknowns
x1, x2, x3 share the same Newton polytope, the standard 3-dimensional cube.
Hence our system is the unmixed polynomial system supported on the 3-cube.

The resultant Res(f0, f1, f2, f3) is the unique (up to sign) irreducible
polynomial in the 32 indeterminates Cij which vanishes if f0 = f1 = f2 =
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f3 = 0 has a common solution (x1, x2, x3) in C 3 . If we replace the affine
space C 3 by the product of projective lines P1 × P1 × P1, then the “if” in
the previous sentence can be replaced by “if and only if”. The resultant is
a homogeneous polynomial of degree 24, in fact, it is homogeneous of degree
6 in the coefficients of fi for each i. In algebraic geometry, we interpret this
resultant as the Chow form of the Segre variety P1 × P1 × P1 ⊂ P7.

We first present a Sylvester matrix for Res. Let S(a, b, c) denote the
vector space of all polynomials in Q [x1 , x2, x3] of degree less than or equal to
a in x1, less than or equal to b in x2, and less than or equal to c in x3. The
dimension of S(a, b, c) is (a + 1)(b+ 1)(c+ 1). Consider the Q -linear map

φ : S(0, 1, 2)4 → S(1, 2, 3) , (g0, g1, g2, g3) 7→ g0f0 + g1f1 + g2f2 + g3f3.

Both the range and the image of the linear map φ are vector spaces of dimen-
sion 24. We fix the standard monomial bases for both of these vector spaces.
Then the linear map φ is given by a 24× 24 matrix. Each non-zero entry in
this matrix is one of the coefficients Cij. In particluar, the determinant of φ
is a polynomial of degree 24 in the 36 unknowns Cij .

Proposition 34. The determinant of the matrix φ equals Res(f0, f1, f2, f3).

This formula is a Sylvester Formula for the resultant of four trilinear
polynomials. The Sylvester formula is easy to generate, but it is not the most
efficient representation when it comes to actually evaluating our resultant.
A better representation is the following Bézout formula.

For i, j, k, l ∈ {1, 2, 3, 4, 5, 6, 7, 8} we define the bracket variables

[ijkl] = det



C0i C0j C0k C0l

C1i C1j C1k C1l

C2i C2j C2k C2l

C3i C3j C3k C3l




We shall present a 6 × 6 matrix B whose entries are linear forms in the
bracket variables, such that detB = Res(f0, f1, f2, f3). This construction is
described, for arbitrary products of projective spaces, in a recent paper by
Dickenstein and Emiris (2002). First construct the 4×4-matrix M such that

M0j = fj(x1, x2, x3) for j = 0, 1, 2, 3

Mij =
fj(y1, . . . , yi, xi+1, . . . , x3)− fj(y1, . . . , yi−1, xi, . . . , x3)

yi − xi
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for i = 1, 2, 3 and j = 1, 2, 3, 4

The first row of the matrix M consists of the given polynomials fi, while
each successive row of M is an incremental quotient with each xi successively
replaced by a corresponding yi. After a bit of simplification, such as sub-
tracting x1 times the second row from the first, the matrix M gets replaced
by a 4× 4-matrix of the form

M̃ =



C03x2x3 + C02x2 + C01x3 + C00 . . .
C07x2x3 + C06x2 + C05x3 + C04 . . .
C07y1x3 + C06y1 + C03x3 + C02 . . .
C07y1y2 + C05y1 + C03y2 + C01 . . .




Let B(x, y) denote the determinant of this matrix. This is a polynomial in
two sets of variables. It is called the (affine) Bezoutian of the given trilinear
forms f0, f1, f2, f3. It appears from the entries of M̃ that B(x, y) has total
degree 8, but this is not the case. In fact, the total degree of this polynomial
is only 6. The monomials xαyβ = xα1

1 x
α2
2 x

α3
3 y

β1
1 y

β2
2 y

β3
3 appearing in B(x, y)

satisfy αi < i and βi < 3− i. This is the content of the lemma below. The
coefficient bαβ of xαyβ in B(x, y) is a linear form in the bracket variables.

Lemma 35. B(x, y) ∈ S(0, 1, 2)⊗ S(2, 1, 0).

We can interpret the polynomial B(x, y) as as a linear map, also denote B,
from the dual vector space S(2, 1, 0)∗ to S(0, 1, 2). Each of these two vector
spaces is 6-dimensional and has a canonical monomial basis. The following
6× 6-matrix represents the linear map B in the monomial basis:

2
6666666666666666664

[0124] [0234] [0146] − [0245] [0346] − [0247] −[0456] [0467]

−[0125] − [0134] [1234] + [0235] [0147] + [0156] −[1247] + [0356] −[1456] − [0457] [1467] + [0567]
−[0345] − [1245] −[0257] + [1346]

−[0135] [1235] [0157] − [1345] −[1257] + [1356] −[1457] [1567]

−[0126] [0236] −[1246] + [0256] [2346] − [0267] −[2456] [2467]

−[0136] − [0127] [1236] + [0237] −[1247] − [1346] −[0367] − [1267] −[3456] − [2457] [2567] + [3467]
[0257] + [0356] [2356] + [2347]

−[0137] [1237] −[1347] + [0357] −[1367] + [2357] −[3457] [3567]

3
7777777777777777775

Proposition 36. Res(f0, f1, f2, f3) is the determinant of the above matrix.

This type of formula is called a Bézout formula or sometimes pure Bézout
formula formula in the resultant literature. Expanding the determinant gives
a polynomial of degree 6 in the brackets with 11, 280 terms. It remains

63



an formidable challenge to further expand this expression into an honest
polynomial of degree 24 in the 32 coefficients Cij.

5 Primary Decomposition

In this lecture we consider arbitrary systems of polynomial equations in sev-
eral unknowns. The solution set of these equations may have many different
components of different dimensions, and our task is to identify all of these
irreducible components. The algebraic technique for doing this is primary
decomposition. After reviewing the relevant basic results from commuta-
tive algebra, we demonstrate how to do such computations in Singular and
Macaulay2. We then present some particularly interesting examples.

5.1 Prime Ideals, Radical Ideals and Primary Ideals

Let I be an ideal in the polynomial ring Q [x] = Q [x1 , . . . , xn]. Solving the
polynomial system I means at least finding the irreducible decomposition

V(I) = V(P1) ∪ V(P2) ∪ · · · ∪ V(Pr) ⊂ C n

of the complex variety defined by I. Here each V(Pi) is an irreducible variety
over the field of rational numbers Q . Naturally, if we extend scalars and pass
to the complex numbers C , then V(Pi) may further decompose into more
components, but describing those components typically involves numerical
computations. The special case where I is zero-dimensional was discussed in
Lecture 2. In this lecture we mostly stick to doing arithmetic in Q [x] only.

Recall that an ideal P in Q [x] is a prime ideal if

(P : f) = P for all f ∈ Q [x]\P (29)

A variety is irreducible if it can be defined by a prime ideal. Deciding whether
a given ideal is prime is not an easy task. See Corollary 40 below for a method
that works quite well (say, in Macaulay2) on small enough examples.

Fix an ideal I in Q [x]. A prime ideal P is said to be associated to I if

there exists f ∈ Q [x] such that (I : f) = P. (30)

A polynomial f which satisfies (I : f) = P is called a witness for P in I.
We write Ass(I) for the set of all prime ideals which are associated to I.
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Proposition 37. For any ideal I ⊂ Q [x], Ass(I) is non-empty and finite.

Here are some simple examples of ideals I, primes P and witnesses f .

Example 38. In each of the following six cases, P is a prime ideal in the
polynomial ring in the given unknowns, and the identity (I : f) = P holds.

(a) I = 〈x4
1 − x2

1〉, f = x3
1 − x1, P = 〈x1〉.

(a’) I = 〈x4
1 − x2

1〉, f = x17
1 − x16

1 , P = 〈x1 + 1〉.
(b) I = 〈x1x4 + x2x3, x1x3, x2x4〉, f = x2

4, P = 〈x1, x2〉.
(b’) I = 〈x1x4 + x2x3, x1x3, x2x4〉, f = x1x4, P = 〈x1, x2, x3, x4〉.
(c) I = 〈x1x2+x3x4, x1x3+x2x4, x1x4+x2x3〉, f = (x2

3−x2
4)x4, P =〈x1, x2, x3〉.

(c’) I = 〈x1x2+x3x4, x1x3+x2x4, x1x4+x2x3〉, f = x1x
2
4+x2x

2
4−x3x

2
4+x

2
3x4,

P = 〈x1 − x4, x2 − x4, x3 + x4〉.
The radical of an ideal I equals the intersection of all its associated primes:

Rad(I) =
⋂{

P : P ∈ Ass(I)
}
. (31)

The computation of the radical and the set of associated primes are built-in
commands in Macaulay 2. The following session checks whether the ideals
in (b) and (c) of Example 38 are radical, and it illustrates the identity (31).

i1 : R = QQ[x1,x2,x3,x4];

i2 : I = ideal( x1*x4+x2*x3, x1*x3, x2*x4 );

i3 : ass(I)

o3 = {ideal (x4, x3), ideal (x2, x1), ideal (x4, x3, x2, x1)}

i4 : radical(I) == I

o4 = false

i5 : radical(I)

o5 = ideal (x2*x4, x1*x4, x2*x3, x1*x3)
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i6 : intersect(ass(I))

o6 = ideal (x2*x4, x1*x4, x2*x3, x1*x3)

i7 : ass(radical(I))

o7 = {ideal (x4, x3), ideal (x2, x1)}

i8 : J = ideal( x1*x2+x3*x4, x1*x3+x2*x4, x1*x4+x2*x3 );

i9 : ass(J)

o9 = {ideal (x3 + x4, x2 - x4, x1 - x4), ideal (x4, x2, x1),

ideal (x3 + x4, x2 + x4, x1 + x4), ideal (x4, x3, x1),

ideal (x3 - x4, x2 + x4, x1 - x4), ideal (x4, x3, x2),

ideal (x3 - x4, x2 - x4, x1 + x4), ideal (x3, x2, x1)}

i10 : radical(J) == J

o10 = true

The following result is a useful trick for showing that an ideal is radical.

Proposition 39. Let I be an ideal in Q [x] and ≺ any term order. If the
initial monomial ideal in≺(I) is square-free then I is a radical ideal.

An ideal I in Q [x] is called primary if the set Ass(I) is a singleton. In
that case, its radical Rad(I) is a prime ideal and Ass(I) =

{
Rad(I)

}
.

Corollary 40. The following three conditions are equivalent for an ideal I:

(1) I is a prime ideal;

(2) I is radical and primary;

(3) Ass(I) =
{
I
}
.

We can use the condition (3) to test whether a given ideal is prime. Here
is an interesting example. Let X = (xij) and Y = (yij) be two n×n-matrices
both having indeterminate entries. Each entry in their commutator XY −
Y X is a quadratic polynomial in the polynomial ring Q [X, Y ] generated by
the 2n2 unknowns xij , yij. We let I denote the ideal generated by these n2

quadratic polynomials. It is known that the commuting variety V(I) is an
irreducible variety in C n×n but it is unknown whether I is always prime ideal.
The following Macaulay2 session proves that I is a prime ideal for n = 2.
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i1 : R = QQ[ x11,x12,x21,x22, y11,y12,y21,y22 ];

i2 : X = matrix({ {x11,x12} , {x21,x22} });

i3 : Y = matrix({ {y11,y12} , {y21,y22} });

i4 : I = ideal flatten ( X*Y - Y*X )

o4 = ideal (- x21*y12 + x12*y21, x21*y12 - x12*y21,

x21*y11 - x11*y21 + x22*y21 - x21*y22,

- x12*y11 + x11*y12 - x22*y12 + x12*y22)

i5 : ass(I) == {I}

o5 = true

5.2 How to Compute a Primary Decomposition

The following is the main result about primary decompositions in Q [x].

Theorem 41. Every ideal I in Q [x] is an intersection of primary ideals,

I = Q1 ∩ Q2 ∩ · · · ∩ Qr, (32)

where the primes Pi = Rad(Qi) are distinct and associated to I.

It is an immediate consequence of (31) that the following inclusion holds:

Ass
(
Rad(I)

) ⊆ Ass
(
I
)
.

In the situation of Theorem 41, the associated prime Pi is a minimal prime
of I if it also lies in Ass

(
Rad(I)

)
. In that case, the corresponding primary

component Qi of I is unique, and it can be recovered computationally via

Qi =
(
I : (I : P∞

i )
)
. (33)

On the other hand, if Pi lies in Ass
(
I
)\Ass

(
Rad(I)

)
then Pi is an embedded

prime of I and the primary component Qi in Theorem 41 is not unique.
A full implementation of a primary decomposition algorithm is available

in Singular. We use the following example to demonstrate how it works.

I = 〈xy, x3 − x2, x2y − xy〉 = 〈x〉 ∩ 〈x− 1, y〉 ∩ 〈x2, y〉.
The first two components are minimal primes while the third component is an
embedded primary component. Geometrically, V(I) consists of the y-axis, a
point on the x-axis, and an embedded point at the origin. Here is Singular:
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> ring R = 0, (x,y), dp;

> ideal I = x*y, x^3 - x^2, x^2*y - x*y;

> LIB "primdec.lib";

> primdecGTZ(I);

[1]:

[1]:

_[1]=x

[2]:

_[1]=x

[2]:

[1]:

_[1]=y

_[2]=x-1

[2]:

_[1]=y

_[2]=x-1

[3]:

[1]:

_[1]=y

_[2]=x2

[2]:

_[1]=x

_[2]=y

> exit;

Auf Wiedersehen.

The output consists of three pairs denoted [1], [2], [3]. Each pair consists
of a primary ideal Qi in [1] and the prime ideal P = Rad(Qi) in [2].

We state two more results about primary decomposition which are quite
useful in practice. Recall that a binomial is a polynomial of the form

α · xi1
1 x

i2
2 · · ·xin

n − β · xj1
1 x

j2
2 · · ·xjn

n ,

where α and β are scalars, possibly zero. An ideal I is a binomial ideal if it is
generated by a set of binomials. All examples of ideals seen in this lecture so
far are binomial ideals. Note that every monomial ideal is a binomial ideal.

The following theorem, due to Eisenbud and Sturmfels (1996), states that
primary decomposition is a binomial-friendly operation. Here we must pass
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to an algebraically closed field such as C . Otherwise the statement is not
true as the following primary decomposition in one variable over Q shows:

〈 x11−1 〉 = 〈x−1〉 ∩ 〈x10 +x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2 +x+1〉.
Theorem 42. If I is a binomial ideal in C [x] then the radical of I is binomial,
every associated prime of I is binomial, and I has a primary decomposition
where each primary component is a binomial ideal.

Of course, these statements are well-known (and easy to prove) when
“binomial” is replaced by “monomial”. For details on monomial primary
decomposition see the chapter by Hosten and Smith in the Macaulay2 book.

Another class of ideals which behave nicely with regard to primary de-
composition are the Cohen-Macaulay ideals. The archetype of a Cohen-
Macaulay ideal is a complete intersection, that is, an ideal I of codimension
c which is generated by c polynomials. The case c = n of zero-dimensional
complete intersections was discussed at length in earlier lectures, but also
higher-dimensional complete intersections come up frequently in practice.

Theorem 43. (Macaulay’s Unmixedness Theorem) If I is a complete
intersection of codimension c in Q [x] then I has no embedded primes and
every minimal prime of I has codimension c as well.

When computing a non-trivial primary decomposition, it is advisable to
keep track of the degrees of the pieces. The degree of an ideal I is additive
in the sense that degree(I) is the sum of over degree(Qi) where Qi runs over
all primary components of maximal dimension in (32). Theorem 43 implies

Corollary 44. If I is a homogeneous complete intersection, then

degree(I) =
r∑

i=1

degree(Qi).

In the following sections we shall illustrate these results for some inter-
esting systems of polynomial equations derived from matrices.

5.3 Adjacent Minors

The following problem is open and appears to be difficult: What does it mean
for an m× n-matrix to have all adjacent k × k-subdeterminants vanish?
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To make this question more precise, fix an m×n-matrix of indeterminates
X = (xi,j) and let Q [X] denote the polynomial ring in these m×n unknowns.
For any two integers i ∈ {1, . . . , n− k + 1} and j ∈ {1, . . . , m− k + 1} we
consider the following k × k-minor

det




xi,j xi,j+1 . . . xi,j+k−1

xi+1,j xi+1,j+1 . . . xi+1,j+k−1
...

...
. . .

...
xi+k−1,j xi+k−1,j+1 . . . xi+k−1,j+k−1


 (34)

Let Ak,m,n denote the ideal in Q [X] generated by these adjacent minors.
Thus Ak,m,n is an ideal generated by (n − k + 1)(m − k + 1) homogeneous
polynomials of degree k in mn unknowns. The variety V(Am,n,k) consists of
all complex m×n-matrices whose adjacent k×k-minors vanish. Our problem
is to describe all the irreducible components of this variety. Ideally, we would
like to know an explicit primary decomposition of the ideal Ak,m,n.

In the special case k = m = 2, our problem has the following beautiful
solution. Let us rename the unknowns and consider the 2× 2-matrix

X =

(
x1 x2 · · · xn

y1 y2 · · · yn

)
.

Our ideal A2,2,n is generated by the n− 1 binomials

xi−1 · yi − xi · yi−1 (i = 2, 3, . . . , n).

These binomials form a Gröbner basis because the underlined leading mono-
mials are relatively prime. This shows that A2,2,n is a complete intersection
of codimension n − 1. Hence Theorem 43 applies here. Moreover, since the
leading monomials are square-free, Proposition 39 tells us that A2,2,n is a rad-
ical ideal. Hence we know already, without having done any computations,
that A2,2,n is an intersection of prime ideals each having codimension n. The
first case which exhibits the full structure is n = 5, here in Macaulay2:

i1: R = QQ[x1,x2,x3,x4,x5,y1,y2,y3,y4,y5];

i2: A225 = ideal( x1*y2 - x2*y1, x2*y3 - x3*y2,

x3*y4 - x4*y3, x4*y5 - x5*y4);

i3: ass(A225)
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o3 = { ideal(y4, y2, x4, x2),

ideal(y3, x3, x5*y4 - x4*y5, x2*y1 - x1*y2),

ideal(y4, x4, x3*y2 - x2*y3, x3*y1 - x1*y3, x2*y1 - x1*y2),

ideal(y2, x2, x5*y4 - x4*y5, x5*y3 - x3*y5, x4*y3 - x3*y4),

ideal (x5*y4 - x4*y5, x5*y3 - x3*y5, x4*y3 - x3*y4,

x5*y2 - x2*y5, x4*y2 - x2*y4, x3*y2 - x2*y3,

x5*y1-x1*y5, x4*y1-x1*y4, x3*y1-x1*y3, x2*y1-x1*y2)}

i4: A225 == intersect(ass(A225))

o4 = true

After a few more experiments one conjectures the following general result:

Theorem 45. The number of associated primes of A2,2,n is the Fibonacci
number f(n), defined by f(n) = f(n−1) + f(n−2) and f(1) = f(2) = 1.

Proof. Let F(n) denote the set of all subsets of {2, 3, . . . , n − 1} which do
not contain two consecutive integers. The cardinality of F(n) equals the
Fibonacci number f(n). For instance, F(5) =

{∅, {2}, {3}, {4}, {2,4}}. For
each element S of F(n) we define a binomial ideal PS in Q [X]. The gen-
erators of PS are the variables xi and yi for all i ∈ S, and the binomials
xjyk − xkyj for all j, k 6∈ S such that no element of S lies between j and k.
It is easy to see that PS is a prime ideal of codimension n− 1. Moreover, PS

contains A2,2,n, and therefore PS is a minimal prime of A2,2,n. We claim that

A2,2,n =
⋂

S∈F(n)

PS.

In view of Theorem 43 and Corollary 44, it suffices to prove the identity∑
S∈F(n)

degree(PS) = 2n−1.

First note that P∅ is the determinantal ideal 〈xiyj − xixj : 1 ≤ i < j ≤ n〉.
The degree of P∅ equals n. Using the same fact for matrices of smaller size,
we find that, for S non-empty, the degree of the prime PS equals the product

i1 ·(i2−i1+1)·(i3−i2+1) · · · (ir−ir−1+1)·ir where S = {i1 < i2 < · · · < ir}.
Consider the surjection φ : 2{2,...,n} → F(n) defined by

φ
({j1<j2< · · · <jr}) = {jr−1, jr−3, jr−5, . . .}.
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The product displayed above is the cardinality of the inverse image φ−1(S).
This proves

∑
S∈F(n) #(φ−1(S)) = 2n, which implies our assertion.

Our result can be phrased in plain English as follows: if all adjacent
2× 2-minors of a 2× n-matrix vanish then the matrix is a concatenation of
2× ni-matrices of rank 1 separated by zero columns. Unfortunately, things
are less nice for larger matrices. First of all, the ideal Ak,m,n is neither radical
nor a complete intersecion. For instance, A2,3,3 has four associated primes,
one of which is embedded. Here is the Singular code for the ideal A2,3,3:

ring R = 0,(x11,x12,x13,x21,x22,x23,x31,x32,x33),dp;

ideal A233 = x11*x22-x12*x21, x12*x23-x13*x22,

x21*x32-x22*x31, x22*x33-x23*x32;

LIB "primdec.lib";

primdecGTZ(A233);

The three minimal primes of A2,3,3 translate into English as follows: if all
adjacent 2×2-minors of a 3×3-matrix vanish then either the middle column
vanishes, or the middle row vanishes, or the matrix has rank at most 2.

The binomial idealsA2mn were studied by (Diaconis, Eisenbud and Sturm-
fels 1998). The motivation was an application to statistics to be described
in Lecture 8. The three authors found a primary decomposition for the case
m = n = 4. The ideal of adjacent 2× 2-minors of a 4× 4-matrix is

A244 = 〈x12x21 − x11x22, x13x22 − x12x23, x14x23 − x13x24,

x22x31 − x21x32, x23x32 − x22x33, x24x33 − x23x34,

x32x41 − x31x42, x33x42 − x32x43, x34x43 − x33x44〉.

Let P denote the prime ideal generated by all thirty-six 2× 2-minors of
our 4× 4-matrix (xij) of indeterminates. We also introduce the prime ideals

C1 := 〈x12, x22, x23, x24, x31, x32, x33, x43〉
C2 := 〈x13, x21, x22, x23, x32, x33, x34, x42〉.

and the prime ideals

A := 〈 x12x21 − x11x22, x13, x23, x31, x32, x33, x43 〉
B := 〈 x11x22 − x12x21, x11x23 − x13x21, x11x24 − x14x21, x31, x32,

x12x23 − x13x22, x12x24 − x14x22, x13x24 − x14x23, x33, x34 〉.
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Rotating and reflecting the matrix (xij), we find eight ideals A1, A2, . . . , A8

equivalent to A and four ideals B1, B2, B3, B4 equivalent to B. Note that Ai

has codimension 7 and degree 2, Bj has codimension 7 and degree 4, and Ck

has codimension 8 and degree 1, while P has codimension 9 and degree 20.
The following lemma describes the variety V(A244) ⊂ C 4×4 set-theoretically.

Lemma 46. The minimal primes of A244 are the 15 primes Ai, Bj, Cj and
P . Each of these is equal to its primary component in A244. From

Rad(A244) = A1 ∩ A2 ∩ · · · ∩ A8 ∩ B1 ∩ B2 ∩ B3 ∩B4 ∩ C1 ∩ C2 ∩ P.

we find that both A244 and Rad(A244) have codimension 7 and degree 32.

We next present the list of all the embedded components of A244. Each of
the following five ideals D,E, F, F ′ and G was shown to be primary by using
Algorithm 9.4 in (Eisenbud & Sturmfels 1996). Our first primary ideal is

D := 〈x13, x23, x33, x43〉2 + 〈x31, x32, x33, x34〉2 +

〈 xikxjl − xilxjk : min{j, l} ≤ 2 or (3, 3) ∈ {(i, k), (j, l), (i, l), (j, k)}〉
The radical of D is a prime of codimension 10 and degree 5. (Commutative
algebra experts will notice that Rad(D) is a ladder determinantal ideal.) Up
to symmetry, there are four such ideals D1, D2, D3, D4.

Our second type of embedded primary ideal is

E :=
( [
I + 〈x2

12, x
2
21, x

2
22, x

2
23, x

2
24, x

2
32, x2

33, x
2
34, x

2
42, x

2
43〉
]

: (x11x13x14x31x41x44)
2
)
.

Its radical Rad(E) is a monomial prime of codimension 10. Up to symmetry,
there are four such primary ideals E1, E2, E3, E4.

Our third type of primary ideal has codimension 10 as well. It equals

F :=
( [
I + 〈x3

12, x
3
13, x

3
22, x

3
23, x

3
31, x

3
32, x

3
33, x

3
34, x

3
42, x

3
43〉
]

: (x11x14x21x24x41x44)
2(x11x24 − x21x14)

)
.

Its radical Rad(F ) is a monomial prime. Up to symmetry, there are four
such primary ideals F1, F2, F3, F4. Note how Rad(F ) differs from Rad(E).

Our fourth type of primary is the following ideal of codimension 11:

F ′ :=
( [
I + 〈x3

12, x
3
13, x

3
22, x

3
23, x

3
31, x

3
32, x

3
33, x

3
34, x

3
42, x

3
43〉
]

: (x11x14x21x24x41x44)(x21x44 − x41x24)
)

73



Up to symmetry, there are four such primary ideals F ′1, F
′
2, F

′
3, F

′
4. Note that

Rad(F ′) = Rad(F )+ 〈x14x21−x11x24〉. In particular, the ideals F and F ′ lie
in the same cellular component of I; see (Eisenbud & Sturmfels 1996, Section
6). Our last primary ideal has codimension 12. It is unique up to symmetry.

G :=
( [
I + 〈x5

12, x
5
13, x

5
21, x

5
22, x

5
23, x

5
24, x

5
31, x

5
32, x

5
33, x

5
34, x

5
42, x

5
43〉
]

: (x11x14x41x44)
5(x11x44 − x14x41)

)
.

In summary, we have the following theorem.

Theorem 47. The ideal of adjacent 2× 2-minors of a generic 4× 4-matrix
has 32 associated primes, 15 minimal and 17 embedded. Using the prime
decomposition in Lemma 46, we get the minimal primary decomposition

A244 = Rad(I) ∩D1∩· · ·∩D4 ∩E1∩· · ·∩E4 ∩ F1∩· · ·∩F4 ∩ F ′
1∩· · ·∩F ′

4 ∩G.

The correctness of the above intersection can be checked by Singular or
Macaulay 2. It remains an open problem to find a primary decomposition
for the ideal of adjacent 2 × 2-minors for larger sizes. We do not even have
a reasonable conjecture. Things seem even more difficult for adjacent k× k-
minors. Do you have a suggestion as to how Lemma 46 might generalize?

5.4 Permanental Ideals

The permanant of an n×n-matrix is the sum over all its n diagonal products.
The permanent looks just like the determinant, except that every minus sign
in the expansion is replaced by a plus sign. For instance, the permanent of
a 3× 3-matrix equals

per


 a b c

d e f
g h i


 = aei + afh + bfg + bdi + cdh + ceg. (35)

In this section we discuss the following problem: What does it mean for an
m × n-matrix to have all its k × k-subpermanents vanish? As before, we
fix an m × n-matrix of indeterminates X = (xi,j) and let Q [X] denote the
polynomial ring in these m × n unknowns. Let Perk,m,n denote the ideal in
Q [x] generated by all k× k-subpermanents of X. Thus Perk,m,n represents a
system of

(
m
k

) · (n
k

)
polynomial equations of degree k in m · n unknowns.
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As our first example consider the three 2×2-permanents in a 2×3-matrix:

Per2,2,3 = 〈x11x22 + x12x21, x11x23 + x13x21, x12x23 + x13x22〉.
The generators are not a Gröbner basis for any term order. If we pick a term
order which selects the underlined leading monomials then the Gröbner basis
consists of the three generators together with two square-free monomials:

x13x21x22 and x12x13x21.

Proposition 39 tells us that Per2,2,3 is radical. It is also a complete inter-
section and hence the intersection of prime ideals of codimension three. We
find

Per2,2,3 = 〈x11, x12, x13〉 ∩ 〈x21, x22, x23〉 ∩ 〈x11x22 + x12x21, x13, x23〉
∩ 〈x11x23 + x13x21, x12, x22〉 ∩ 〈x12x23 + x13x22, x11, x21〉.

However, if m,n ≥ 3 then P2,m,n is not a radical ideal. Let us examine the
3× 3-case in Macaulay 2 with variable names as in the 3× 3-matrix (35).

i1 : R = QQ[a,b,c,d,e,f,g,h,i];

i2 : Per233 = ideal( a*e+b*d, a*f+c*d, b*f+c*e,

a*h+b*g, a*i+c*g, b*i+c*h,

d*h+e*g, d*i+f*g, e*i+f*h);

i3 : gb Per233

o3 = | fh+ei ch+bi fg+di eg+dh cg+ai bg+ah ce+bf cd+af bd+ae

dhi ahi bfi bei dei afi aeh adi adh abi aef abf aei2 ae2i a2ei|

This Gröbner basis shows us that Per2,3,3 is not a radical ideal. We compute
the radical using the built-in command:

i4 : time radical Per233

-- used 53.18 seconds

o4 = ideal (f*h + e*i, c*h + b*i, f*g + d*i, e*g + d*h,

c*g + a*i, b*g + a*h, c*e + b*f, c*d + a*f, b*d + a*e, a*e*i)

The radical has a minimal generator of degree three, while the original ideal
was generated by quadrics. We next compute the associated primes. There
are 16 such primes, the first 15 are minimal and the last one is embedded:

75



i5 : time ass Per233

-- used 11.65 seconds

o5 = { ideal (g, f, e, d, a, c*h + b*i),

ideal (i, h, g, d, a, c*e + b*f),

ideal (i, h, g, e, b, c*d + a*f),

ideal (h, f, e, d, b, c*g + a*i),

ideal (i, f, e, d, c, b*g + a*h),

ideal (i, h, g, f, c, b*d + a*e),

ideal (i, f, c, b, a, e*g + d*h),

ideal (h, e, c, b, a, f*g + d*i),

ideal (g, d, c, b, a, f*h + e*i),

ideal (h, g, e, d, b, a), ideal (i, h, g, f, e, d),

ideal (i, g, f, d, c, a), ideal (f, e, d, c, b, a),

ideal (i, h, g, c, b, a), ideal (i, h, f, e, c, b),

ideal (i, h, g, f, e, d, c, b, a) }

i6 : time intersect ass Per233

-- used 0.24 seconds

o6 = ideal (f*h + e*i, c*h + b*i, f*g + d*i, e*g + d*h,

c*g + a*i, b*g + a*h, c*e + b*f, c*d + a*f, b*d + a*e, a*e*i)

Note that the lines o4 and o6 have the same output by equation (31). How-
ever, for this example the obvious command radical is slower than the non-
obvious command intersect ass. The lesson to be learned is that many
road lead to Rome and one should always be prepared to apply one’s full
range of mathematical knowhow when trying to crack a polynomial system.

The ideals 2×2-subpermanents of matrices of any size were studied in full
detail by Laubenbacher and Swanson (2000) who gave explicit descriptions
of Gröbner bases, associated primes, and a primary decomposition of P2,m,n.
The previous Macaulay 2 session offers a glimpse of their results. It would
be very interesting to try to extend this work to 3 × 3-subpermanents and
beyond. How many associated primes does the ideal Pk,m,n have?

We present one more open problem about permanental ideals. Consider
the n× 2n-matrix [X X] which is gotten by concatenating our matrix of un-
knowns with itself. We write Pern[XX] for the ideal of n×n-subpermanents
of this n× 2n-matrix. A conjecture on graph polynomials due to Tarsi sug-
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gests that every matrix in the variety of Pern[XX] should be singular. We
offer the following refinement of Tarsi’s conjecture.

Conjecture 48. The n’th power of the determinant of X lies in Pern[X X].

For n = 2 this conjecture is easy to check. Indeed, the ideal

Per2

(
x11 x12 x11 x12

x21 x22 x21 x22

)
= 〈 x11x22 + x12x21, x11x21, x12x22 〉

contains (x11x22 − x12x21)
2 but not x11x22 − x12x21. But already the next

two cases n = 3 and n = 4 are quite interesting to work on.

5.5 Exercises

1. If P is an associated prime of I, how to find a witness f for P in I?

2. Let P be a prime ideal and m a positive integer. Show that P is a
minimal prime of Pm. Give an example where Pm is not primary.

3. For an ideal I of codimension c we define top(I) as the intersection of all
primary components Qi of codimension c. Explain how one computes
top(I) from I in Macaulay2 or Singular? Compute top(I) for

(a) I = 〈 x1x2x3, x4x5x6, x
2
1x

3
2, x

5
3x

7
4, x

11
5 x

13
6 〉,

(b) I = 〈 x1x2 + x3x4 + x5x6, x1x3 + x4x5 + x6x2, x1x4 + x5x6 +
x2x3, x1x5 + x6x2 + x3x4, x1x6 + x2x3 + x4x5 〉,

(c) I = 〈 x2
1 +x2x3−1, x2

2 +x3x4−1, x2
3 +x4x5−1, x2

4 +x5x6−1, x2
5 +

x6x1 − 1, x2
6 + x1x2 − 1 〉.

4. What happens if you apply the formula (33) to an embedded prime Pi?

5. Prove that P is associated to I if and only if
(
I : (I : P )

)
= P .

6. Decompose the two adjacent-minor ideals A2,3,4 and A3,3,5.

7. Decompose the permanental ideals Per2,4,4, Per3,3,4 and Per3,3,5.

8. Compute the primary decomposition of Per3[X X] in Singular.

9. Prove Conjecture 48 for n = 4.
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6 Polynomial Systems in Economics

The computation of equilibria in economics leads to systems of polynomial
equations. In this lecture we discuss the equations satisfied by the Nash
equilibria of an n-person game. For n = 2 these equations are linear but
for n > 2 they are multilinear. We derive these multilinear equations, we
present algebraic techniques for solving them, and we give a sharp bound for
the number of totally mixed Nash equilibria. This bound is due to McKelvey
& McLennan (1997) who derived it from Bernstein’s Theorem. In Section 6.2
we offer a detailed analysis of the Three Man Poker Game which appeared in
the orginal paper of Nash (1951) and leads to a solving a quadratic equation.

6.1 Three-Person Games with Two Pure Strategies

We present the scenario of a non-cooperative game by means of a small
example. Our notation is consistent with that used by Nash (1951). There
are three players whose names are Adam, Bob and Carl. Each player can
choose from two pure strategies, say “buy stock # 1” or “buy stock # 2”. He
can mix them by allocating a probability to each pure strategy. We write a1
for the probability which Adam allocates to strategy 1, a2 for the probability
which Adam allocates to strategy 2, b1 for the probability which Bob allocates
to strategy 1, etc.. The six probabilities a1, a2, b1, b2, c1, c2 are our decision
variables. The vector (a1, a2) is Adam’s strategy, (b1, b2) is Bob’s strategy,
and (c1, c2) is Carl’s strategy. We use the term strategy for what is called
mixed strategy in the literature. The strategies of our three players satisfy

a1, a2, b1, b2, c1, c2 ≥ 0 and a1 + a2 = b1 + b2 = c1 + c2 = 1. (36)

The data representing a particular game are three payoff matrices A = (Aijk),
B = (Bijk), and C = (Cijk). Here i, j, k run over {1, 2} so that each of A,
B, and C is a three-dimensional matrix of format 2× 2× 2. Thus our game
is given by 24 = 3× 2× 2× 2 rational numbers Aijk, Bijk, Cijk. All of these
numbers are known to all three players. The game is for Adam, Bob and
Carl to select their strategies. They will then receive the following payoff:

Adam’s payoff =
∑2

i,j,k=1Aijk · ai · bj · ck
Bob’s payoff =

∑2
i,j,k=1Bijk · ai · bj · ck

Carl’s payoff =
∑2

i,j,k=1Cijk · ai · bj · ck
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A vector (a1, a2, b1, b2, c1, c2) satisfying (36) is called a Nash equilibrium if
no player can increase their payoff by changing his strategy while the other
two players keep their strategy fixed. In other words, the following condition
holds: For all pairs (u1, u2) with u1, u2 ≥ 0 and u1 + u2 = 1 we have∑2

i,j,k=1Aijk · ai · bj · ck ≥ ∑2
i,j,k=1Aijk · ui · bj · ck,∑2

i,j,k=1Bijk · ai · bj · ck ≥ ∑2
i,j,k=1Bijk · ai · uj · ck,∑2

i,j,k=1Cijk · ai · bj · ck ≥ ∑2
i,j,k=1Cijk · ai · bj · uk.

Given fixed strategies chosen by Adam, Bob and Carl, each of the expressions
on the right hand side is a linear function in (u1, u2). Therefore the universal
quantifier above can be replaced by “For (u1, u2) ∈ {(1, 0), (0, 1)} we have”.
Introducing three new variables α, β, γ for Adam’s, Bob’s and Carl’s payoff,
the conditions for a Nash equilibrium can therefore be written as follows:

α = a1 ·
∑2

j,k=1A1jk · bj · ck + a2 ·
∑2

j,k=1A2jk · bj · ck,
α ≥ ∑2

j,k=1A1jk · bj · ck and α ≥ ∑2
j,k=1A2jk · bj · ck,

β = b1 ·
∑2

i,k=1Bi1k · ai · ck + b2 ·
∑2

i,k=1Bi2k · ai · ck,
β ≥ ∑2

i,k=1Bi1k · ai · ck and β ≥ ∑2
i,k=1Bi2k · ai · ck,

γ = c1 ·
∑2

i,j=1Cij1 · ai · bj + c2 ·
∑2

i,j=1Cij2 · ai · bj ,
γ ≥ ∑2

i,j=1Cij1 · ai · bj and γ ≥ ∑2
i,j=1Cij2 · ai · bj .

Since a1 + a2 = 1 and a1 ≥ 0 and a2 ≥ 0, first two rows imply:

a1 ·
(
α −

2∑
j,k=1

A1jk · bj · ck
)

= a2 ·
(
α −

2∑
j,k=1

A2jk · bj · ck
)

= 0. (37)

Similarly, we derive the following equations:

b1 ·
(
β −

2∑
i,k=1

Bi1k · ai · ck
)

= b2 ·
(
β −

2∑
i,k=1

Bi2k · ai · ck
)

= 0, (38)

c1 ·
(
γ −

2∑
i,j=1

Cij1 · ai · bj
)

= c2 ·
(
γ −

2∑
i,j=1

Cij2 · ai · bj
)

= 0. (39)

We regard (37), (38) and (39) as a system of polynomial equations in the
nine unknowns a1, a2, b1, b2, c1, c2, α, γ, δ. Our discussion shows the following:
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Proposition 49. The set of Nash equilibria of the game given by the payoff
matrices A,B,C is the set of solutions (a1, . . . , c2, α, β, γ) to (36), (37), (38)
and (39) which make the six expressions in the large parentheses nonnegative.

For practical computations it is convenient to change variables as follows:

a1 = a, a2 = 1− a, b1 = b, b2 = 1− b, c1 = c, c2 = 1− c.
Corollary 50. The set of Nash equilibria of the game given by the payoff ma-
trices A,B,C consists of the common zeros of the following six polynomials
subject to a, b and c and all parenthesized expressions being nonnegative:

a · (α− A111bc− A112b(1− c)− A121(1− b)c− A122(1− b)(1− c)
)
,

(1− a) · (α− A211bc− A212b(1− c)− A221(1− b)c− A222(1− b)(1− c)
)
,

b · (β −B111ac−B112a(1− c)− B211(1− a)c−B212(1− a)(1− c)
)
,

(1− b) · (β − B121ac− B122a(1− c)− B221(1− a)c− B222(1− a)(1− c)
)
,

c · (γ − C111ab− C121a(1− b)− C211(1− a)b− C221(1− a)(1− b)
)
,

(1− c) · (γ − C112ab− C122a(1− b)− C212(1− a)b− C222(1− a)(1− b)
)
.

A Nash equilibrium is said to be totally mixed if all six probabilities
a, 1−a, b, 1−b, c, 1−c are strictly positive. If we are only interested in totally
mixed equilibria then we can erase the left factors in the six polynomials and
eliminate α, β, γ by subtracting the second polynomial from the first, the
fourth polynomial from the third, and the last polynomial from the fifth.

Corollary 51. The set of fully mixed Nash equilibria of the game (A,B,C)
consists of the common zeros (a, b, c) ∈ (0, 1)3 of three bilinear polynomials:

(A111−A112−A121+A122−A211+A212+A221−A222) · bc + (A122−A222)

+ (A112 − A122 − A212 +A222) · b + (A121 − A122 − A221 +A222) · c,
(B111−B112+B122−B121−B211+B212−B222+B221) · ac + (B212−B222)

+ (B211 − B212 − B221 +B222) · c + (B112 −B122 −B212 +B222) · a,
(C111−C112+C122−C121−C211+C212−C222+C221) · ab + (C221−C222)

+ (C121 − C221 − C122 + C222) · a + (C222 − C221 − C212 + C211) · b.
These three equations have two complex solutions, for general payoff ma-

trices A,B,C. Indeed, the mixed volume of the three Newton squares equals
2. In the next section we give an example where both roots are real and lie
in the open cube (0, 1)3, meaning there are two fully mixed Nash equilibria.
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6.2 Two Numerical Examples Involving Square Roots

Consider the game described in the previous section with the payoff matrices




111 112 121 122 211 212 221 222

A = 6 4 6 8 0 6 11 1
B = 10 12 8 1 12 7 6 8
C = 0 14 2 7 11 11 3 3


 (40)

For instance, B112 = 12. The equations in Corollary 50 are

a · (α− 6b(1− c)− 11(1− b)c− (1− b)(1− c)) = 0,

(1− a) · (α− 6bc− 4b(1− c)− 6(1− b)c− 8(1− b)(1− c)) = 0,

b · (β − 12ac− 7a(1− c)− 6(1− a)c− 8(1− a)(1− c)) = 0,

(1− b) · (β − 10ac− 12a(1− c)− 8(1− a)c− (1− a)(1− c)) = 0,

c · (γ − 11ab− 11a(1− b)− 3(1− a)b− 3(1− a)(1− b)) = 0,

(1− c) · (γ − 14a(1− b)− 2(1− a)b− 7(1− a)(1− b)) = 0.

These equations are radical and they have 16 solutions all of which are real.
Namely, a vector (a, b, c, α, β, γ) is a solution if and only if it lies in the set{ (

7/12, 7/9, 0, 44/9, 89/12, 28/9
)
,
(
1/2, 5/11, 1, 6, 9, 7

)∗
,(

4, 0, 7/12, 41/6, 337/12, 35
)
,
(−1/10, 1, 1/4, 9/2, 297/40, 11/5

)
,(

0, 4/5, 7/9, 86/15, 58/9, 3
)∗
,
(
1, 3/14, 5/7, 663/98, 74/7, 11

)∗
,(

0, 0, 0, 8, 1, 7
)
,
(
0, 0, 1, 6, 8, 3

)
,
(
0, 1, 0, 4, 8, 2

)
,
(
0, 1, 1, 6, 6, 3

)
,(

1, 0, 0, 1, 12, 14
)
,
(
1, 0, 1, 11, 10, 11

)
,
(
1, 1, 0, 6, 7, 0

)
,
(
1, 1, 1, 0, 12, 11

)
,(

0.8058, 0.2607, 0.6858, 6.3008, 9.6909, 9.4465
)∗(

0.4236, 0.4059, 0.8623, 6.0518, 8.4075, 6.3869
)∗ }

However, some of these solution vectors are not Nash equilibria. For instance,
the third vector has a = 4 which violates the non-negativity of (1−a). The
first vector (a, b, c, α, β, γ) = (7/12, 7/9, 0, 44/9, 89/12, 28/9) violates the
non-negativity of (γ− 11ab− 11a(1− b)− 3(1− a)b− 3(1− a)(1− b)), etc...
This process eliminates 11 of the 16 candidate vectors. The remaining five
are marked with a star. We conclude: The game (40) has five isolated Nash
equilibria. Of these five, the last two are fully mixed Nash equilibria.
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The two fully mixed Nash equilibria can be represented algebraically by
extracting a square root. Namely, we first erase the left factors a, . . . , (1−c)
from the six equations, and thereafter we compute the Gröbner basis:{

1011X + 1426c− 7348, 96Y + 698c− 1409, 3Z + 52c− 64,

24a+ 52c− 55, 1011b− 832c+ 307, 208c2 − 322c+ 123
}
.

As with all our Gröbner bases, leading terms are underlined. These six
equations are easy to solve. The solutions are the last two vectors above.

Our second example is the Three-Man Poker Game discussed in Nash’s
1951 paper. This game leads to algebraic equations which can be solved by
extracting the square root of 321. The following material was prepared by
Ruchira Datta. The game was originally solved by John Nash in collaboration
with Lloyd Shapley (1950).

This is a greatly simplified version of poker. The cards are of only two
kinds, high and low. The three players A, B, and C ante up two chips each
to start. Then each player is dealt one card. Starting with player A, each
player is given a chance to “open”, i.e., to place the first bet (two chips are
always used to bet). If no one does so, the players retrieve their antes from
the pot. Once a player has opened, the other two players are again given a
chance to bet, i.e., they may “call”. Finally, the cards are revealed and those
players with the highest cards among those who placed bets share the pot
equally.

Once the game is open, one should call if one has a high card and pass if
one has a low card. The former is obvious; the latter follows because it might
be the strategy of the player who opened the game, to only open on a high
card. In this case one would definitely lose one’s bet as well as the ante. So
the only question is whether to open the game. Player C should obviously
open if he has a high card. It turns out that player A should never open if he
has a low card (this requires proof). Thus player A has two pure strategies:
when he has a high card, to open or not to open. We denote his probability
of opening in this case by a. (His subsequent moves, and his moves in case
he has a low card, are determined.) Player C also has two pure strategies:
when he has a low card, to open or not to open. We denote his probability of
opening in this case by c. Player B has four pure strategies: for each of his
possible cards, to open or not to open. We denote his probability of opening
when he has a high card by d, and his probability of opening when he has a
low card by e. It turns out that the equilibrium strategy is totally mixed in
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these four parameters (this also requires proof, but does not require actually
computing the strategy).

Assuming each of the eight possible hands is equally likely, the payoff
matrix (where by payoff we mean the expected value of the payoff) contains
48 = 3 × 2 × 4 × 2 rational entries. As in the examples above, this can be
written as a 3× 16 matrix. Here is the left (a = 0) block:




0000 0001 0010 0011 0100 0101 0110 0111

A = −1
4

−1
4

−1
4

0 −1
4

0 −1
4

1
4

B = 1
4

1
4

−1
4

0 1
2

−1
4

0 −1
2

C = 0 0 1
2

0 −1
4

1
4

1
4

1
4


 (41)

and here is the right (a = 1) block:




1000 1001 1010 1011 1100 1101 1110 1111

A = 1
8

1
8

0 −1
2

1
4

1
4

1
8

−3
8

B = −1
4

−1
4

−1
4

1
4

1
8

−7
8

1
8

−3
8

C = 1
8

1
8

1
4

1
4

−3
8

5
8

−1
4

3
4


 (42)

(We split the matrix into blocks to fit the page.) Here the indices across the
top indicate the pure strategies chosen by the players. If we write a0 = a,
a1 = 1 − a, d0 = d, d1 = 1 − d, e0 = e, e1 = 1 − e, c0 = c, and c1 = 1 − c,
then for instance B1010 is B’s payoff when player A does not open on a high
card (so a1 = 1), player B does open on a high card (so d0 = 1) and does not
open on a low card (so e1 = 1), and player C does open on a low card (so
c0 = 1). In general, Xijkl is player X’s payoff when ai = 1, dj = 1, ek = 1,
and cl = 1. The equation for the expected payoff β of player B is

β = d · e ·∑1
i,k=0Bi00k · ai · ck + d · (1− e) ·∑1

i,k=0Bi01k · ai · ck
+ (1− d) · e ·∑1

i,k=0Bi10k · ai · ck + (1−d)(1−e) ·∑1
i,k=0Bi11k · ai · ck.

We have a modified version of Corollary 50 with eight polynomials instead
of six. The first polynomial becomes:

a · (α− A0000dec− A0001de(1− c)
− A0010d(1− e)c− A0011d(1− e)(1− c)
− A0100(1− d)ec− A0101(1− d)e(1− c)
− A0110(1− d)(1− e)c− A0111(1− d)(1− e)(1− c)

)
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The second, fifth, and sixth polynomials are modified analogously. The third
and fourth polynomials are replaced by four polynomials, the first of which
is

d · e · (β −B0000ac− B0001a(1− c)−B1000(1− a)c− B1001(1− a)(1− c)
)

Again, we can cancel the left factors of all the polynomials since the equilib-
rium is totally mixed. Eliminating α and γ as before gives us the following
two trilinear polynomials:

(A0000−A0001−A0010+A0011−A0100+A0101+A0110−A0111

−A1000+A1001+A1010−A1011+A1100−A1101−A1110+A1111) · cde
+(A0010−A0011−A0110+A0111−A1010+A1011+A1110−A1111) · cd
+(A0100−A0101−A0110+A0111−A1100+A1101+A1110−A1111) · ce
+(A0001−A0011−A0101+A0111−A1001+A1011+A1101−A1111) · de

+(A0110−A0111−A1110+A1111) · c+ (A0011−A0111−A1011+A1111) · d
+(A0101−A0111−A1101+A1111) · e+ (A0111 − A1111)

and

(C0000−C0001−C0010+C0011−C0100+C0101+C0110−C0111

−C1000+C1001+C1010−C1011+C1100−C1101−C1110+C1111) · ade
+(C0010−C0011−C0110+C0111−C1010+C1011+C1110−C1111) · ad
+(C0100−C0101−C0110+ C0111−C1100+C1101+C1110−C1111) · ae
+(C1000−C1001−C1010+C1011−C1100+C1101+C1110−C1111) · de

+(C0110−C0111−C1110+C1111) · a + (C1010−C1011−C1110+C1111) · d
+(C1100−C1101−C1110+C1111) · e+ (C1110 − C1111).

(For each term, take the bitstring that indexes its coefficient and mask off
the bits corresponding to variables that don’t occur in its monomial, which
will always be one; then the parity of the resulting bitstring gives the sign of
the term.) There are four polynomials in β; subtracting each of the others
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from the first gives the following three bilinear polynomials:

(B0000−B0001−B0010+B0011−B1000+B1001+B1010−B1011) · ac+ (B1001−B1011)

+(B0001 − B0011 − B1001 +B1011) · a+ (B1000 − B1001 −B1010 +B1011) · c,
(B0000−B0001−B0100+B0101−B1000+B1001+B1100−B1101) · ac+ (B1001−B1101)

+(B0001 − B0101 − B1001 +B1101) · a+ (B1000 − B1001 −B1100 +B1101) · c,
(B0000−B0001−B0110+B0111−B1000+B1001+B1110−B1111) · ac+ (B1001−B1111)

+(B0001 − B0111 − B1001 +B1111) · a+ (B1000 −B1001 −B1110 +B1111) · c.

So the set of totally mixed Nash equilibria consists of the common zeros
(a, d, e, c) ∈ (0, 1)4 of these five polynomials. Substituting our payoff matrix
into the last polynomial gives

1

8
+

5

8
a− 1

2
c = 0.

Solving for c gives

c =
5a+ 1

4

and substituting into the previous two polynomials yields

−3

8
+

21

16
a− 5

16
a2 = 0

and
3

8
− 21

16
a +

5

16
a2 = 0.

Solving for a in the range 0 < a < 1 gives

a =
21−√321

10
.

Substituting into the two trilinear polynomials yields two linear equations
for d and e; solving these yields

d =
5− 2a

5 + a
, e =

4a− 1

a+ 5
,

which agrees with the result in Nash’s paper.
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6.3 Equations Defining Nash Equilbria

We consider a finite n-person game in normal form. The players are labeled
1, 2, . . . , n. The i’th player can select from di pure strategies which we call
1, 2, . . . , di. The game is defined by n payoff matrices X(i), X(2), . . . , X(n),
one for each player. Each matrix X(i) is an n-dimensional matrix of format
d1 × d2 × · · · × dn whose entries are rational numbers. The entry X

(i)
j1j2···jn

represents the payoff for player i if player 1 selects the pure strategy j1,
player 2 selects the pure strategy j2, etc. Each player is to select a (mixed)
strategy, which is a probability distribution on his set of pure strategies. We
write p

(i)
j for the probability which player i allocates to the strategy j. The

vector p(i) =
(
p

(i)
1 , p

(i)
2 , . . . , p

(i)
di

)
is called the strategy of player i. The payoff

πi for player i is the value of the multilinear form given by his matrix X(i):

πi =

d1∑
j1=1

d2∑
j2=1

· · ·
dn∑

jn=1

X
(i)
j1j2...jn

· p(1)
j1
p

(2)
j2
· · ·p(n)

jn
.

Summarizing, the data for our problem are the payoff matrices X(i), so
the problem is specified by nd1d2 · · ·dn rational numbers. We must solve for
the d1 + d2 + · · ·+ dn unknowns p

(i)
j . Since the unknowns are probabilities,

∀ i, j : p
(i)
j ≥ 0 and ∀ i : p

(i)
1 + p

(i)
2 + · · ·+ p

(i)
di

= 1. (43)

These conditions specify that p = (p
(i)
j ) is a point in the product of simplices

∆ = ∆d1−1 ×∆d2−1 × · · · ×∆dn−1. (44)

A point p ∈ ∆ is a Nash equilibrium if none of the n players can increase
his payoff by changing his strategy while the other n − 1 players keep their
strategies fixed. We shall write this as a system of polynomial constraints,
in the unknown vectors p ∈ ∆ and π = (π1, . . . , πn) ∈ Rn . For each of the

unknown probabilities p
(i)
k we consider the following multilinear polynomial:

p
(i)
k ·
(
πi−

d1∑
j1=1

· · ·
di−1∑

ji−1=1

di+1∑
ji+1=1

· · ·
dn∑

jn=1

X
(i)
j1...ji−1kji+1jn

·p(1)
j1
· · · p(i−1)

ji−1
p

(i+1)
ji+1
· · · p(n)

jn

)
(45)

Hence (45) together with (43) represents a system of n+ d1 + · · ·+ dn poly-
nomial equations in n+d1+ · · ·+dn unknowns, where each polynomial is the
product of a linear polynomial and a multilinear polynomial of degree n− 1.
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Theorem 52. A vector (p, π) ∈ ∆×Rn represents a Nash equilibrium for the
game with payoff matrices X (1), . . . , X(n) if and only if (p, π) is a zero of the
polynomials (45) and each parenthesized expression in (45) is nonnegative.

Nash (1951) proved that every game has at least one equilibrium point
(p, π). His proof and many subsequent refinements made use of fixed point
theorems from topology. Numerical algorithms based on combinatorial re-
finements of these fixed point theorems have been developed, notably in the
work of Scarf (1967). The algorithms converge to one Nash equilibrium but
they do not give any additional information about the number of Nash equi-
libria or, if that number is infinite, about the dimension and component
structure of the semi-algebraic set of Nash equilibria. For that purpose one
needs the more refined algebraic techniques discussed in these lectures.

There is an obvious combinatorial subproblem arising from the equations,
namely, in order for the product (45) to be zero, one of the two factors must
be zero and the other factor must be non-negative. Thus our problem is
that of a non-linear complementarity problem. The case n = 2 is the linear
complementarity problem. In this case we must solve a disjunction of systems
of linear equations, which implies that each Nash equilibrium has rational
coordinates and can be computed using exact arithmetic. A classical simplex-
like algorithm due to Lemke and Howson (1964) finds one Nash equilibrium
in this manner. It is a challenging computational task to enumerate all Nash
equilibria for a given 2-person game as d1 and d2 get large. The problem
is similar to (but more difficult than) enumerating all vertices of a convex
polyhedron given by linear inequalities. In the latter case, the Upper Bound
Theorem gives a sharp estimate for the maximal number of vertices, but the
analogous problem for counting Nash equilibria of bimatrix games is open in
general. For the state of the art see (McLennan & Park 1998). We illustrate
the issue of combinatorial complexity with an example from that paper.

Example 53. (A two-person game with exponentially many Nash equilibria)
Take n = 2, d1 = d2 =: d and both X(1) and X(2) to be the d×d-unit matrix.
In this game, the two players both have payoff 1 if their choices agree and
otherwise they have payoff 0. Here the equilibrium equations (45) are

p
(1)
k ·

(
π1 − p(2)

k

)
= p

(2)
k ·

(
π2 − p(1)

k

)
= 0 for k = 1, 2, . . . , d. (46)

The Nash equilibria are solutions of (46) such that all p
(i)
k are between 0 and

πi and p
(1)
1 + · · ·+ p

(1)
d = p

(2)
1 + · · ·+ p

(2)
d = 1. Their number equals 2d− 1.
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For instance, for d = 2 the equilibrium equations (46) have five solutions:

i1 : R = QQ[p,q,Pi1,Pi2];

i2 : I = ideal( p * (Pi1 - q), (1 - p) * (Pi1 - 1 + q),

q * (Pi2 - p), (1 - q) * (Pi2 - 1 + p) );

i3 : decompose(I)

o3 = { ideal (Pi2 - 1, Pi1 - 1, p, q),

ideal (Pi2 - 1, Pi1 - 1, p - 1, q - 1),

ideal (2Pi2 - 1, 2Pi1 - 1, 2p - 1, 2q - 1),

ideal (Pi2, Pi1, p, q - 1),

ideal (Pi2, Pi1, p - 1, q) }

Only the first three of these five components correspond to Nash equilibria.
For d = 2, the 2d − 1 = 3 Nash equilibria are (p, q) = (0, 0), (1

2
, 1

2
), (1, 1).

In what follows we shall disregard the issues of combinatorial complexity
discussed above. Instead we focus on the algebraic complexity of our prob-
lem. To this end, we consider only fully mixed Nash equilibria, that is, we
add the requirement that all probabilities p

(i)
j be strictly positive. In our

algebraic view, this is no restriction in generality because the vanishing of
some of our unknowns yields smaller system of polynomial equations with
fewer unknowns but of the same multilinear structure. ¿From now on, the
p

(i)
j will stand for real variables whose values are strictly between 0 and 1.

This allows us to remove the left factors p(i) in (45) and work with the paren-
thesized (n − 1)-linear polynomials instead. Eliminating the unknowns πi,
we get the following polynomials for i = 1, . . . , n, and k = 2, 3, . . . , di:

d1∑
j1=1

· · ·
di−1∑

ji−1=1

di+1∑
ji+1=1

· · ·
dn∑

jn=1

(X
(i)
j1...ji−1kji+1jn

−X(i)
j1...ji−11ji+1jn

)p
(1)
j1
· · ·p(i−1)

ji−1
p

(i+1)
ji+1
· · · p(n)

jn

This is a system of d1+· · ·+dn−n equations in d1+· · ·+dn unknowns, which
satisfy the n linear equations in (43). Corollary 51 generalizes as follows.

Theorem 54. The fully mixed Nash equilibria of the n-person game with
payoff matrices X (1), . . . , X(n) are the common zeros in the interior of the
polytope ∆ of the d1 + · · ·+ dn − n multilinear polynomials above.
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In what follows, we always eliminate n of the variables by setting

p
(i)
di

= 1−
di−1∑
j=1

p
(i)
di

for i = 1, 2, . . . , n.

What remains is a system of δ multilinear polynomials δ unknowns, where
δ := d1 + · · ·+ dn − n. We shall study these equations in the next section.

6.4 The Mixed Volume of a Product of Simplices

Consider the di − 1 polynomials which appear in Theorem 54 for a fixed
upper index i. They share same Newton polytope, namely, the product of
simplices

∆(i) = ∆d1−1 × · · · ×∆di−1−1 × {0} ×∆di+1−1 × · · · ×∆dn−1. (47)

Here ∆di−1 is the convex hull of the unit vectors and the origin in Rdi−1.
Hence the Newton polytope ∆(i) is a polytope of dimension δ− di + 1 in Rδ .
Combining all Newton polytopes, we get the following δ-tuple of polytopes

∆[d1, . . . , dn] :=
(
∆(1), . . . ,∆(1), ∆(2), . . . ,∆(2), . . . , ∆(n), . . . ,∆(n)

)
,

where ∆(i) appears di − 1 times.

Corollary 55. The fully mixed Nash equilibria of an n-person game where
player i has di pure strategies are the zeros of a sparse polynomial system
with support ∆[d1, . . . , dn], and every such system arises from some game.

We are now in the situation of Bernstein’s Theorem, which tells us that
the expected number of complex zeros in (C ∗)δ of a sparse system of δ poly-
nomials in δ unknowns equals the mixed volume of the Newton polytopes.
The following result of McKelvey & McLennan (1997) gives a combinatorial
description for the mixed volume of the polytope-tuple ∆[d1, . . . , dn].

Theorem 56. The maximum number of isolated fully mixed Nash equilibria
for any n-person game where the i’th player has di pure strategies equals the
mixed volume of ∆[d1, . . . , dn]. This mixed volume coincides with the number

of partitions of the δ-element set of unknowns { p(i)
k : i = 1, . . . , n, k =

2, . . . , di } into n disjoint subsets B1, B2, . . . , Bn such that
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• the cardinality of the i’th block Bi is equal to di − 1, and

• the i’th block Bi is disjoint from { p(i)
1 , p

(i)
2 , . . . , p

(i)
di

}
, i.e., no variable

with upper index i is allowed to be in Bi.

This theorem says, in particular, that the maximum number of complex
zeros of a sparse system with Newton polytopes ∆[d1, . . . , dn] can be attained
by counting real zeros only. Moreover, it can be attained by counting only
real zeros which have all their coordinates strictly between 0 and 1. The
key idea in proving Theorem 56 is to replace each of the given multilinear
equations by a product of linear forms. In terms of Newton polytopes, this
means that ∆(i) is expressed as the Minkowski sum of the n− 1 simplices

{0} × · · · × {0} ×∆dj−1 × {0} × · · · × {0}. (48)

We shall illustrate Theorem 56 and this factoring construction for the
case n = 3, d1 = d2 = d3 = 3. Our familiar players Adam, Bob and Carl
reenter the scene in this case. A new stock #3 has come on the market,
and our friends can now each choose from three pure strategies. The prob-
abilities which Adam allocates to stocks #1, #2 and #3 are a1, a2, and
1 − a1 − a2. There are now six equilibrium equations in the six unknowns
a1, a2, b1, b2, c1, c2. The number of set partitions of {a1, a2, b1, b2, c1, c2} de-
scribed in Theorem 56 is ten. The ten allowed partitions are

{b1, b2} ∪ {c1, c2} ∪ {a1, a2} {c1, c2} ∪ {a1, a2} ∪ {b1, b2}
{b1, c1} ∪ {a1, c2} ∪ {a2, b2} {b1, c1} ∪ {a2, c2} ∪ {a1, b2}
{b1, c2} ∪ {a1, c1} ∪ {a2, b2} {b1, c2} ∪ {a2, c1} ∪ {a1, b2}
{b2, c1} ∪ {a1, c2} ∪ {a2, b1} {b2, c1} ∪ {a2, c2} ∪ {a1, b1}
{b2, c2} ∪ {a1, c1} ∪ {a2, b1} {b2, c2} ∪ {a2, c1} ∪ {a1, b1}.

This number ten is the mixed volume of six 4-dimensional polytopes, each a
product of two triangles, regarded as a face of the product of three triangles:

∆[2, 2, 2] =
( • ×∆2 ×∆2 , • ×∆2 ×∆2 , ∆2 × • ×∆2 ,

∆2 × • ×∆2 , ∆2 ×∆2 × • , ∆2 ×∆2 × •
)

Theorem 56 tells us that Adam, Bob and Carl can be made happy in ten
possible ways, i.e, their game can have as many as ten fully mixed Nash
equilibria. We shall construct payoff matrices which attain this number.

90



Consider the following six bilinear equations in factored form:

(200b1 + 100b2 − 100)(200c1 + 100c2 − 100) = 0

(190b1 + 110b2 − 101)(190c1 + 110c2 − 101) = 0

(200a1 + 100a2 − 100)(180c1 + 120c2 − 103) = 0

(190a1 + 110a2 − 101)(170c1 + 130c2 − 106) = 0

(180a1 + 120a2 − 103)(180b1 + 120b2 − 103) = 0

(170a1 + 130a2 − 106)(170b1 + 130b2 − 106) = 0.

These equations have the Newton polytopes ∆[2, 2, 2], and the coefficients
are chosen so that all ten solutions have their coordinates between 0 and 1.
We now need to find 3×3×3-payoff matrices (Aijk), (Bijk), and (Cijk) which
give rise to these equations. Clearly, the payoff matrices are not unique. To
make them unique we require the normalizing condition that each player’s
payoff is zero when he picks stock #1. In symbols, A1jk = Bi1k = Cij1 = 0
for all i, j, k ∈ {1, 2, 3}. The remaining 54 parameters are now uniquely
determined. To find them, we expand our six polynomials in a different
basis, like the one used in Corollary 50. The rewritten equations are

10000b1c1 − 10000b1(1− c1 − c2)− 10000(1− b1 − b2)c1
+10000(1− b1 − b2)(1− c1 − c2) = 0,

7921b1c1 + 801b1c2 − 8989b1(1− c1 − c2) + 801b2c1 + 81b2c2

−909b2(1− c1 − c2)− 8989(1− b1 − b2)c1 − 909(1− b1 − b2)c2
+10201(1− b1 − b2)(1− c1 − c2) = 0,

7700a1c1 + 1700a1c2 − 10300a1(1− c1 − c2)− 7700(1− a1 − a2)c1

−1700(1− a1 − a2)c2 + 10300(1− a1 − a2)(1− c1 − c2) = 0,

5696a1c1 + 2136a1c2 − 9434a1(1− c1 − c2) + 576a2c1 + 216a2c2

−954a2(1− c1 − c2)− 6464(1− a1 − a2)c1 − 2424(1− a1 − a2)c2

+10706(1− a1 − a2)(1− c1 − c2) = 0,

5929a1b1 + 1309a1b2 − 7931a1(1− b1 − b2) + 1309a2b1 + 289a2b2

−1751a2(1− b1 − b2)− 7931(1− a1 − a2)b1 − 1751(1− a1 − a2)b2

+10609(1− a1 − a2)(1− b1 − b2) = 0,

4096a1b1 + 1536a1b2 − 6784a1(1− b1 − b2) + 1536a2b1 + 576a2b2

−2544a2(1− b1 − b2)− 6784(1− a1 − a2)b1 − 2544(1− a1 − a2)b2

+11236(1− a1 − a2)(1− b1 − b2) = 0.
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The 18 coefficients appearing in the first two equations are the entries in
Adam’s payoff matrix:

A211 = 10000, A212 = 0, . . . , a233 = 10000 ; A311 = 7921, . . . , A333 = 10201.

Similarly, we get Bob’s payoff matrix from the middle two equations, and
we get Carl’s payoff matrix from the last two equations. In this manner, we
have constructed an explicit three-person game with three pure strategies
per player which has ten fully mixed Nash equilibria.

Multilinear equations are particularly well-suited for the use of numerical
homotopy methods. For the starting system of such a homotopy one can
take products of linear forms as outlined above. Jan Verschelde has reported
encouraging results obtained by his software PHC for the computation of Nash
equilibria. We believe that considerable progress can still be made in the
numerical computation of Nash equilibria, and we hope to pursue this further.

One special case of Theorem 56 deserves special attention: d1 = d2 =
· · · = dn = 2. This concerns an n-person game where each player has two
pure strategies. The corresponding polytope tuple ∆[1, 1, . . . , 1] consists of
the n distinct facets of the n-dimensional cube. Officially, the n-cube has 2n
facets each of which is an (n− 1)-cube, but the facets come in natural pairs,
and we pick only one representative from each pair. In this special case, the
partitions described in Theorem 56 correspond to the derangements of the
set {1, 2, . . . , n}, that is, permutations of {1, 2, . . . , n} without fixed points.

Corollary 57. The following three numbers coincide, for every n ∈ N :

• The maximum number of isolated fully mixed Nash equilibria for an
n-person game where each player has two pure strategies,

• the mixed volume of the n facets of the n-cube,

• the number of derangements of an n-element set.

Counting derangements is a classical problem is combinatorics. Their
number grows as follows: 1, 2, 9, 44, 265, 1854, 14833, 133496, . . .. For in-
stance, the number of derangements of {1, 2, 3, 4, 5} is 44. A 5-person game
with two mixed strategies can have as many as 44 fully mixed Nash equlibria.
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6.5 Exercises

1. Consider three equations in unknowns a, b, c as in Corollary 51:

bc+λ1b+λ2c+λ3 = ac+µ1a+µ2c+µ3 = ab+ν1a+ν2b+ν3 = p 0.

Find necessary and sufficient conditions, in terms of the parameters
λi, µj, νk for this system to have two real roots (a, b, c) both of which
satisfy 0 < a, b, c < 1. In other words, characterize those 3-person
games with 2 pure strategies which have 2 totally mixed Nash equilibria.

2. Find all irreducible components of the variety defined by the equations
(46). How many components do not correspond to Nash equilibria?

3. Determine the exact maximum number of isolated fully mixed Nash
equilibria of any 5-person game where each player has 5 pure strategies.

4. Pick your favorite integer N between 0 and 44. Construct an explicit
five-person game with two mixed strategies per player which has exactly
N fully mixed Nash equilibria.

7 Sums of Squares

This lecture concerns polynomial problems over the real numbers R. This
means that the input consists of polynomials in R[x1 , . . . , xn] where each
coefficient is given either as a rational number or a floating point number.
A trivial but crucial observation about real numbers is that sums of squares
are non-negative. Sums of squares lead us to Semidefinite Programming, an
exciting subject of current interest in numerical optimization. We will give
an introduction to semidefinite programming with a view towards solving
polynomial equations and inequalities over R. A crucial role is played by
the Real Nullstellensatz which tells us that either a polynomial problem has
a solution or there exists a certificate that no solution exists. Semidefinite
programming provides a numerical method for computing such certificates.
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7.1 Positive Semidefinite Matrices

We begin by reviewing some basic material from linear algebra. Let V ' Rm

be an m-dimensional real vector space which has a known basis. Every
quadratic form on V is represented uniquely by a symmetric m×m-matrix
A. Namely, the quadratic form associated with a real symmetric matrix A is

φ : V → R , u 7→ uT · A · u. (49)

The matrix A has only real eigenvalues. It can be diagonalized over the real
numbers by an orthogonal matrix Λ, whose columns are eigenvectors of A:

ΛT · A · Λ = diag(λ1, λ2, . . . , λm). (50)

Computing this identity is a task in numerical linear algebra, a task that
matlab performs well. Given (50) our quadratic form can be written as

φ(u) =

m∑
j=1

λj ·
( m∑

i=1

Λijui

)2
. (51)

This expression is an alternating sum of squares of linear forms on V .

Proposition 58. For a symmetric m ×m-matrix A with entries in R, the
following five conditions are equivalent:

(a) uT · A · u ≥ 0 for all u ∈ Rm

(b) all eigenvalues of A are nonnegative real numbers

(c) all diagonal subdeterminants of A are nonnegative

(d) there exists a real m×m-matrix B such that A = B ·BT

(e) the quadratic form uT ·A ·u is a sum of squares of linear forms on Rm .

By a diagonal subdeterminant of A we mean an i× i-subdeterminant with
the same row and column indices, for any i ∈ {1, 2, . . . , m}. Thus condition
(c) amounts to checking 2m − 1 polynomial inequalities in the entries of
A. If we wish to check whether A is positive definite, the situation when
all eigenvalues are strictly positive, then it suffices to take the m principal
minors, which are gotten by taking the first i rows and first i columns only.
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We call the identity A = B ·BT in (d) a Cholesky decomposition of A. In
numerical analysis texts this term is often reserved for such a decomposition
where B is lower triangular. We allow B to be any real matrix. Note that
the factor matrix B is easily expressed in terms of the (floating point) data
computed in (50) and vice versa. Namely, we take

B = Λ · diag(
√
λ1,
√
λ2, . . . ,

√
λm).

In view of (51), this proves the equivalence of (d) and (e): knowledge of the
matrix B is equivalent to writing the quadratic form φ as a sum of squares. A
matrix A which satisfies the conditions (a) – (e) is called positive semidefinite.

Let Sym2(V ) denote the real vector space consisting of all symmetric
m×m-matrices. The positive semidefinite cone or PSD cone is

PSD(V ) = {A ∈ Sym2(V ) : A is positive semidefinite }.

This is a full-dimensional closed semi-algebraic convex cone in the vector

space Sym2(V ) ' R(m+1
2 ). The set PSD(V ) is closed and convex because it

is the solution set of an infinite system of linear inequalities in (a), one for
each u ∈ Rm . It is semi-algebraic because it can be defined by m polynomial
inequalities as in (c). It is full-dimensional because every matrix A with
strictly positive eigenvalues λi has an open neighborhood in PSD(V ). The
extreme rays of the cone PSD(V ) are the squares of linear forms, as in (e).

In what follows we use the symbol ` to denote a linear function (plus
a constant) on the vector space Sym2(V ). Explicitly, for an indeterminate
symmetric matrix A = (aij), a linear function ` can be written as follows:

`(A) = u00 +
m∑

1≤j<k≤m

ujk · aij

where the ujk are constants. An affine subspace is the solution set to a system
of linear equations `1(A) = · · · = `r(A) = 0. Semidefinite programming
concerns the intersection of an affine subspace with the positive semidefinite
cone. There are highly efficient algorithms for solving the following problems.

Semidefinite Programming: Decision Problem
Given linear functions `1, . . . , `r, does there exist a positive semidefinite ma-
trix A ∈ PSD(V) which satisfies the equations 1̀(A) = · · · = `r(A) = 0?
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Semidefinite Programming: Optimization Problem
Given linear functions `0, `1, . . . , `r, minimize `0(A) subject to A ∈ PSD(V)
and `1(A) = · · · = `r(A) = 0.

It is instructive to examine these two problems for the special case when
A is assumed to be a diagonal matrix, say, A = diag(λ1, . . . , λm). Then
A ∈ PSD(V ) is equivalent to λ1, . . . , λm ≥ 0, and our first problem is to
solve a linear system of equations in the non-negative reals. This is the
Decision Problem of Linear Programming. The second problem amounts
to minimizing an linear function over a convex polyhedron, which is the
Optimization Problem of Linear Programming. Thus Linear Programming
is the restriction of Semidefinite Programming to diagonal matrices.

Consider the following simple semidefinite programming decision problem
for m = 3. Suppose we wish to find a positive semidefinite matrix

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33


 ∈ PSD(R3) which satisfies

a11 = 1, a12 = 0, a23 = −1, a33 = 2 and 2a13 + a22 = −1. (52)

It turns out that this particular problem has a unique solution:

A =


 1 0 −1

0 1 −1
−1 −1 2


 =


 1 0 0

0 1 0
−1 −1 0


 ·


 1 0 0

0 1 0
−1 −1 0




T

(53)

We will use this example to sketch the connection to sums of squares.
Consider the following fourth degree polynomial in one unknown:

f(x) = x4 − x2 − 2x + 2.

We wish to know whether f(x) is non-negative on R, or equivalently, whether
f(x) can be written as a sum of squares of quadratic polynomials. Consider
the possible representations of our polynomial as a matrix product:

f(x) =
(
x2 x 1

) ·

a11 a12 a13

a12 a22 a23

a13 a23 a33


 ·


x2

x
1


 (54)

This identity holds if and only if the linear equations (52) are satisfied. By
condition (e) in Proposition 58, the polynomial in (54) is a sum of squares if
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and only if the matrix A = (aij) is positive semidefinite. Thus the semidef-
inite programming decision problem specified by (52) is exactly equivalent
to the question whether f(x) is a sum of squares. The answer is affirmative
and given in (53). ¿From the Cholesky decomposition of A = (aij) in (53).
we get

f(x) =
(
x2 − 1 x− 1 0

) ·

x2 − 1
x− 1

0


 = (x2 − 1)2 + (x− 1)2.

7.2 Zero-dimensional Ideals and SOStools

Let I be a zero-dimensional ideal in S = R[x1 ,. . . , xn] which is given to us by
an explicit Gröbner basis G with respect to some term order ≺. Thus we are
in the situation of Lecture 2. The set B = B≺(I) of standard monomials is
an effective basis for the R-vector space V = S/I. Suppose that #(B) = m,
so that S/I ' Rm . Every quadratic form on V is represented by an m×m-
matrix A whose rows and columns are indexed by B. Let X denote the
column vector of length m whose entries are the monomials in B. Then
XT · A · X is a polynomial in S = R[x1 , . . . , xn]. It can be regarded as an
element of S/I = RB by taking its normal form modulo the Gröbner basis
G. In this section we apply semidefinite programming to the quadratic forms
XT · A ·X on V . The point of departure is the following theorem.

Theorem 59. The following three statements are equivalent:

(a) The ideal I has no real zeros.

(b) The constant −1 is a sum of squares in V = S/I.

(c) There exists a positive semidefinite m×m-matrix A such that

XT · A ·X + 1 lies in the ideal I. (55)

The equivalence of (b) and (c) follows from Proposition 58. The implica-
tion from (b) to (a) is obvious. The implication from (a) to (b) is proved by
reduction to the case n = 1. For one variable, it follows from the familar fact
that a polynomial in R[x] with no real roots can be factored into a product
of irreducible quadratic polynomials. The condition (55) can be written as

XT ·A ·X + 1 reduces to zero modulo the Gröbner basis G. (56)
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This is a linear system of equations in the unknown entries of the sym-
metric matrix A. We wish to decide whether A lies in cone PSD(V ). Thus
the question whether the given ideal I has a real zero or not has been re-
formulated as a decision problem of semidefinite programming. A positive
solution A to the semidefinite programming problem provides a certificate
for the non-existence of real roots.

The following ideal (for n = 3) appeared as an example in Lecture 2:

I = 〈 z2 + 1
5
x− 1

5
y + 2

25
, y2 − 1

5
x+ 1

5
z + 2

25
,

x2 + 1
5
y − 1

5
z + 2

25
, xy + xz + yz + 1

25
〉

The four given generators are a Gröbner basis. We have R[x, y, z]/I ' R6 .

The column vector of standard monomials is X =
(
1, x, y, z, xz, yz

)T
.

We wish to show that I has no real zeros, by finding a representation (55).
We use the software SOStools which was developed by Pablo Parrilo and his
collaborators. It is available at http://www.cds.caltech.edu/sostools/.

The following SOStools sessions were prepared by Ruchira Datta. Many
thanks and compliments to Ruchira. We write g1, g2, g3, g4 for the given
generators of the ideal I. Our decision variables are find p1, a sum of squares,
and p2, p3, p4, p5, arbitrary polynomials. They are supposed to satisfy

p1 + 1 + p2 · g1 + p3 · g2 + p4 · g3 + p5 · g4 = 0.

Here is how to say this in SOStools:

>> clear; maple clear; echo on

>> syms x y z;

>> vartable = [x; y; z];

>> prog = sosprogram(vartable);

>> Z = [ 1; x; y; z; x*z; y*z ];

>> [prog,p{1}] = sossosvar(prog,Z);

>> for i = 1:4

[prog,p{1+i}] = sospolyvar(prog,Z);

end;

>> g{1} = z^2 + x/5 - y/5 + 2/25;

>> g{2} = y^2 - x/5 + z/5 + 2/25;

>> g{3} = x^2 + y/5 - z/5 + 2/25;

>> g{4} = x*y + x*z + y*z + 1/25;

>> expr = p{1} + 1;
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>> for i = 1:4

expr = expr + p{1+i}*g{i};

end;

>> prog = soseq(prog,expr);

>> prog = sossolve(prog);

The program prepares the semidefinite programming problem (SDP) and
then it calls on another program SeDuMi for solving the SDP by interior
point methods. The numerical output produced by SeDuMi looks like this:

SeDuMi 1.05 by Jos F. Sturm, 1998, 2001.

Alg = 2: xz-corrector,

Step-Differentiation, theta = 0.250, beta = 0.500

eqs m = 35, order n = 87, dim = 117, blocks = 2

nnz(A) = 341 + 0, nnz(ADA) = 563, nnz(L) = 336

it : b*y gap delta rate t/tP* t/tD* feas cg cg

0 : 2.82E-01 0.000

1 : 3.23E+00 6.35E-03 0.000 0.0225 0.9905 0.9900 -0.07 1 1

2 : 2.14E-04 3.33E-06 0.000 0.0005 0.9999 0.9999 0.97 1 1

3 : 2.15E-11 3.34E-13 0.000 0.0000 1.0000 1.0000 1.00 1 1

iter seconds digits c*x b*y

3 0.8 Inf 0.0000000000e+00 2.1543738837e-11

|Ax-b| = 2.1e-12, [Ay-c]_+ = 6.2E-12,|x|= 7.5e+01,|y|= 2.3e-11

Max-norms: ||b||=1, ||c|| = 0,

Cholesky |add|=0, |skip| = 0, ||L.L|| = 2.79883.

Residual norm: 2.1405e-12

cpusec: 0.8200

iter: 3

feasratio: 1.0000

pinf: 0

dinf: 0

numerr: 0

The bottom two entries pinf: 0 and dinf: 0 indicate that the SDP
was feasible and a solution p1, . . . , p5 has been found. At this point we
may already conclude that I has no real zeros. We can now ask SOStools to
display the sum of squares p1 it has found. This is done by typing

>> SOLp1 = sosgetsol(prog,p{1})
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Rather than looking at the messy output, let us now return to our general
discussion. Suppose that I is a zero-dimensional ideal which has real roots,
perhaps many of them. Then we might be interested in selecting the best
real root, in the sense that it maximizes some polynomial function.

Real Root Optimization Problem
Given a polynomial f ∈ S, minimize f(u) subject to u ∈ V(I) ∩ Rn .

This problem is equivalent to finding the largest real number λ such that
f(x) − λ is non-negative on V(I) ∩ Rn . In the context of semidefinite
programming, it makes sense to consider the following optimization problem:

Sum of Squares in an Artinian Ring
Given a polynomial f ∈ S, maximize λ ∈ R subject to

XT · A ·X − f(x) + λ ∈ I and A positive semidefinite.

The latter problem can be easily solved using semidefinite programming,
and it always leads to a lower bound λ for the true minimum. But they need
not be equal. The following simple example in one variable illustrates the
issue. Consider the following two problems on the real line R:

(a) Minimize x subject to x2 − 5x+ 6 = 0.

(b) Minimize x subject to x4 − 10x3 + 37x2 − 60x + 36 = 0.

The quartic in (b) is the square of the quadric in (a), so the solution to
both problems is x = 2. Consider now the Sum of Squares problems:

(a’) Maximize λ such that x− λ is a sum of squares modulo 〈x2− 5x+ 6〉.
(b’) Maximize λ such that x− λ is a sum of squares modulo 〈x4 − 10x3 +

37x2 − 60x+ 36〉.
The solution to the semidefinite program (a’) is λ = 2 as desired, since

(x− 2) = (x− 2)2 − (x2 − 5x+ 6).

On the other hand, by allowing polynomials of higher and higher degrees in
our sum of squares representations, we can get a solution to problem (b’)
arbitrarily close to λ = 2, but can never reach it. However, for some finite
degrees the solution we find numerically will be equal to λ to within numerical
error. The following SOStools session produces (numerically) polynomials
p1 of degree six and p2 of degree two such that x + 1 = p1 + p2 · g:
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>> clear; maple clear; echo on

>> syms x lambda

>> prog=sosprogram([x],[lambda]);

>> Z = monomials([x],0:3);

>> [prog,p1] = sossosvar(prog,Z);

>> Z = monomials([x],0:2);

>> [prog,p2] = sospolyvar(prog,Z);

>> g = x^4 - 10*x^3 + 37*x^2 - 60*x + 36;

>> prog=soseq(prog,x-lambda-p1-p2*g);

>> prog=sossetobj(prog,-lambda);

>> prog = sossolve(prog);

Size: 20 7

SeDuMi 1.05 by Jos F. Sturm, 1998, 2001.

Alg = 2: xz-corrector, Step-Differentiation, theta = 0.250

eqs m = 7, order n = 13, dim = 25, blocks = 2

...

iter seconds digits c*x b*y

24 1.7 Inf -1.9999595418e+00 -1.9999500121e+00

...

>> SOLlambda = sosgetsol(prog,lambda)

SOLlambda = 2

>> SOLp1 = sosgetsol(prog,p1)

SOLp1 =

23216 + 6420.6*x - 21450.1*x^2 - 9880.2*x^3

+ 18823*x^4 - 7046.8*x^5 + 830.01*x^6

>> SOLp2 = sosgetsol(prog,p2)

SOLp2 =

-644.95 - 1253.2*x - 830.01*x^2
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From the numerical output we see that λ is between 1.99995 and 1.99996,
although this is displayed as 2. The discrepancy between (a’) and (b’) is
explained by the fact that the second ideal is not radical.

The following result, which is due to Parrilo (2002), shows the SOStools

computation just shown will always work well for a radical ideal I.

Theorem 60. Let I be a zero-dimensional radical ideal in S = R[x1 , . . . , xn],
and let g ∈ S be a polynomial which is nonnegative on V(I) ∩ Rn . Then g
is a sum of squares in S/I.

Proof. For each real root u of I, pick a polynomial pu(x) which vanishes
on V(I)\{u} but pu(u) = 1. For each pair of imaginary roots U = {u, u},
we pick a polynomial qU(x) with real coefficients which vanishes on V(I)\U
but qU(u) = qU (u) = 1, and we construct a sum of squares sU(x) in S =
R[x1 , . . . , xn] such that g is congruent to sU modulo 〈(x− u)(x− u)〉. The
following polynomial has real coefficients and is obviously a sum of squares:

G(x) =
∑

u∈V(I)∩Rn

g(u) · pu(x)
2 +

∑
U∈V(I)\Rn

sU(x) · qU(x)2.

By construction, the difference g(x)−G(x) vanishes on the complex variety
of I. Since I is a radical ideal, the Nullstellensatz implies that g(x)−G(x)
lies in I. This proves that the image of g(x) in S/I is a sum of squares.

Corollary 61. If I is radical then the Real Root Optimization Problem is
solved exactly by its relaxation Sum of Squares in an Artinian Ring.

7.3 Global Optimization

In this section we discuss the problem of finding the global minimum of a
polynomial function on Rn , along the lines presented in more detail in (Parrilo
& Sturmfels 2001). Let f be a polynomial in R[x1 , . . . , xn] which attains a
minimum value f∗ = f(u) as u ranges over all points in Rn . Our goal is to
find the real number f∗. Naturally, we also wish to find a point u at which
this value is attained, but let us concentrate on finding f∗ first.

For example, the following class of polynomials is obviously bounded
below and provides a natural test family:

f(x1, . . . , xn) = x2d
1 + x2d

2 + · · ·+ x2d
n + g(x1, . . . , xn) (57)
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where g is an arbitrary polynomial of degree at most 2d − 1. In fact, it is
possible to deform any instance of our problem to one that lies in this family,
but we shall not dwell on this point right now.

An optimal point u ∈ Rn of our minimization problem is a zero of the
critical ideal

I =
〈 ∂f
∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

〉 ⊆ S.

Hence one possible approach would be to locate the real roots of I and then
to minimize f over that set. For instance, in the situation of (57), the n
partial derivatives of f are already of Gröbner basis of I with respect to
the total degree term order, so it should be quite easy to apply any of the
methods we already discussed for finding real roots. The trouble is that the
Bézout number of the critical ideal I equals (2d − 1)n. This number grows
exponentially in n for fixed d. A typical case we might wish to solve in
practice is minimizing a quartic in eleven variables. For 2d = 4 and n = 11
we get (2d− 1)n = 311 = 177, 147. What we are faced with is doing linear
algebra with square matrices of size 177, 147, an impossible task.

Consider instead the following relaxation of our problem due to N. Shor.

Global Minimization: SOS Relaxation
Find the largest λ ∈ R such that f(x1, . . . , xn)− λ is a sum of squares.

The optimal value λ∗ for this problem clearly satisfies λ∗ ≤ f∗. Using the
well-known examples of positive polynomials which are not sums of squares,
one can construct polynomials f such that λ∗ < f ∗. For instance, consider
Motzkin’s polynomial

f(x, y) = x4y2 + x2y4 − 3x2y2. (58)

For this polynomial we even have λ∗ = −∞ and f ∗ = 0. However, the experi-
ments in (Parrilo & Sturmfels 2001) suggest that the equality f∗ = λ∗ almost
always holds in random instances. Moreover, the semidefinite algorithm for
computing λ∗ allows us to certify f∗ = λ∗ and to find a matching u ∈ Rn in
these cases.

The SOS Relaxation can be translated into a semidefinite programming
problem where the underlying vector space is the space of polynomials of
degree at most d,

V = R[x1 , . . . , xn]≤d ' R(n+d
d ).
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Note that the dimension
(

n+d
d

)
of this space grows polynomially in n when

d is fixed. For a concrete example consider again the problem of minimizing
a quartic in eleven variables. Here d = 2 and n = 11, so we are dealing with
symmetric matrices of order

(
n+d

d

)
=
(
13
2

)
= 78. This number is consider-

ably smaller than 177, 147. Linear algebra for square matrices of order 78
is quite tractable, and a standard semidefinite programming implementation
finds the exact minimum of a random instance of (57) in about ten minutes.
Here is an explicit example in SOStools, with its SeDuMi output surpressed:

>> clear; maple clear; echo on

>> syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 lambda;

>> vartable = [x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11];

>> prog=sosprogram(vartable,[lambda]);

>> f = x1^4 + x2^4 + x3^4 + x4^4 + x5^4 + x6^4 + x7^4 + x8^4

+ x9^4 + x10^4 + x11^4 - 59*x9 + 45*x2*x4 - 8*x3*x11

- 93*x1^2*x3 + 92*x1*x2*x7 + 43*x1*x4*x7 - 62*x2*x4*x11

+ 77*x4*x5*x8 + 66*x4*x5*x10 + 54*x4*x10^2 - 5*x7*x9*x11;

>> prog=sosineq(prog,f+lambda);

>> prog=sossetobj(prog,lambda);

>> prog=sossolve(prog);

>> SOLlambda=sosgetsol(prog,lambda)

SOLlambda =

.12832e8

With a few more lines of SOStools code, we can now verify that λ∗ =
0.12832e8 = f ∗ holds and we can find a point u ∈ R11 such that f(u) = f∗.

7.4 The Real Nullstellensatz

In this section we consider an arbitrary system of polynomial equations and
inequalities in n real variables x = (x1, . . . , xn). The Real Nullstellensatz
states that such a system either has a solution u ∈ Rn or there exists a
certain certificate that no solution exists. This result can be regarded as
a common generalization of Hilbert’s Nullstellensatz (for polynomial equa-
tions over C ) and of Linear Programming duality (for linear inequalities over
R). The former states that a set of polynomials f1, . . . , fr either has a com-
mon complex zero or there exists a certificate of non-solvability of the form
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∑r
i=1 pifi = 1, where the pi are polynomial multipliers. One of the many

equivalent formulations of Linear Programming duality states the following:
A system of strict linear inequalities h1(x) > 0, . . . , ht(x) > 0 either has a
solution, or there exists nonnegative real numbers αi, not all zero, such that

t∑
i=1

αi · hi(x) = 0.

Such an identity is an obvious certificate of non-solvability.
The Real Nullstellensatz states the existence of certificates for all poly-

nomial systems. The following version of this result is due to Stengle (1974).

Theorem 62. The system of polynomial equations and inequalities

f1(x) = 0, f2(x) = 0, . . . , fr(x) = 0,

g1(x) ≥ 0, g2(x) ≥ 0, . . . , gs(x) ≥ 0,

h1(x) > 0, h2(x) > 0, . . . , ht(x) > 0.

either has a solution in Rn , or there exists a polynomial identity∑r
i=1 αifi +

∑
ν∈{0,1}s(

∑
j bjν)

2 · gν1
1 · · · gνs

s

+
∑

ν∈{0,1}t(
∑

j cjν)
2 · hν1

1 · · ·hνt
t +

∑
k d

2
k +

∏t
l=1 h

ul
l = 0,

where uj ∈ N and ai, bjν , cjν, dk are polynomials.

It is instructive to consider some special cases of this theorem. For in-
stance, consider the case r = s = 0 and t = 1. In that case we must decide
the solvability of a single strict inequality h(x) > 0. This inequality has no
solution, i.e., −h(x) is a nonnegative polynomial on Rn , if and only if there
exists an identity of the following form

(
∑

j

cj)
2 · h +

∑
k

d2
k + hu = 0.

Here u is either 0 or 1. In either case, we can solve for −h and conclude
that −h is a ratio of two sum of squares of polynomials. This expression can
obviously be rewritten as a sum of squares of rational functions. This proves:

Corollary 63. (Artin 1925) Every polynomial which is nonnegative on Rn

is a sum of squares of rational functions.
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Another case deserves special attention, namely, the case s = t = 0.
There are no inequalities, but we are to solve r polynomial equations

f1(x) = f2(x) = · · · = fr(x) = 0. (59)

For this polynomial system, the expression
∏t

l=1 h
ul
l in the Real Nullstellen-

satz certificate is the empty product, which evaluates to 1. Hence if (59) has
no real solutions, then there exists an identity

r∑
i=1

αifi + 1 = 0.

This implies that Theorem 59 holds not just in the zero-dimensional case.

Corollary 64. Let I be any ideal in S = R[x1 , . . . , xn] whose real variety
V(I)∩Rn is empty. Then −1 is a sum of squares of polynomials modulo I.

Here is our punchline, first stated in the dissertation of Pablo Parrilo
(2000): A Real Nullstellensatz certificate of bounded degree can be computed
by semidefinite programming. Here we can also optimize parameters which
appear linearly in the coefficients.

This suggests the following algorithm for deciding a system of polynomial
equations and inequalities: decide whether there exists a witness for infea-
sibility of degree ≤ D, for some D � 0. If our system is feasible, then we
might like to minimize a polynomial f(x) over the solution set. The D’th
SDP relaxation would be to ask for the largest real number λ such that the
given system together with the inequality f(x)− λ < 0 has an infeasibility
witness of degree D. This generalizes what was proposed in the previous
section.

It is possible, at least in principle, to use an a priori bound for the degree
D in the Real Nullstellensatz. However, the currently known bounds are still
very large. Lombardi and Roy recently announced a bound which is triply-
exponential in the number n of variables. We hope that such bounds can be
further improved, at least for some natural families of polynomial problems
arising in optimization.

Here is a very simple example in the plane to illustrate the method:

f := x− y2 + 3 ≥ 0 , g := y + x2 + 2 = 0. (60)
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By the Real Nullstellensatz, the system {f ≥ 0, g = 0} has no solution
(x, y) in the real plane R2 if and only if there exist polynomials s1, s2, s3 ∈
R[x, y] that satisfy the following:

s1 + s2 · f + 1 + s3 · g ≡ 0 , where s1 and s2 are sums of squares. (61)

The D’th SDP relaxation of the polynomial problem {f ≥ 0, g = 0} asks
whether there exists a solution (s1, s2, s3) to (61) where the polynomial s1 has
degree ≤ D and the polynomials s2, s3 have degree ≤ D − 2. For each fixed
integer D > 0 this can be tested by semidefinite programming. Specifically,
we can use the program SOStools. For D = 2 we find the solution

s1 = 1
3

+ 2
(
y + 3

2

)2
+ 6

(
x− 1

6

)2
, s2 = 2, s3 = −6.

The resulting identity (61) proves that the polynomial system {f ≥ 0, g =
0} is inconsistent.

7.5 Symmetric Matrices with Double Eigenvalues

The material in this section is independent from the previous sections. It is
inspired by a lecture of Peter Lax in the Berkeley Mathematics Colloquium in
February 2001 and by discussions with Beresford Parlett and David Eisenbud.

Given three real symmetric n × n-matrices A0, A1 and A2, how many
matrices of the form A0 + xA1 + yA2 have a double eigenvalue ? Peter Lax
(1998) proved that there is always at least one such matrix if n ≡ 2 (mod 4).
We shall extend the result of Lax as follows:

Theorem 65. Given three general symmetric n×n-matrices A0, A1, A2, there
are exactly

(
n+1

3

)
pairs of complex numbers (x, y) for which A0 +xA1 + yA2

has a critical double eigenvalue.

A critical double eigenvalue is one at which the complex discriminantal
hypersurface ∆ = 0 (described below) is singular. This theorem implies the
result of Lax because all real double eigenvalues are critical, and(
n+ 1

3

)
=

1

6
· (n− 1) ·n · (n+ 1) is odd if and only if n ≡ 2 (mod 4).

In the language of algebraic geometry, Theorem 65 states that the com-
plexification of the set of all real n × n-symmetric matrices which have a
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double eigenvalue is a projective variety of degree
(

n+1
3

)
. Surprisingly, this

variety is not a hypersurface but has codimension 2. We also propose the
following refinement of Theorem 65 in terms of real algebraic geometry:

Conjecture 66. There exist real three symmetric n×n-matrices A0, A1 and
A2 such that all

(
n+1

3

)
complex solutions (x, y) to the problem in Theorem

65 have real coordinates.

Consider the case n = 3. The discriminant ∆ of the symmetric matrix

X =


a b c
b d e
c e f


 (62)

is the discriminant of its characteristic polynomial. This is an irreducible
homogeneous polynomial with 123 terms of degree 6 in the indeterminates
a, b, c, d, e, f . It can be written as a sum of squares of ten cubic polynomials:

∆ = 2(−acd+ acf + b2c− bde+ bef − c3 + cd2 − cdf)2

+ 2(−abd + abf + b3 − bc2 + bdf − bf2 − cde+ cef)2

+ 2(abd− abf + ace− b3 − bdf + be2 + bf 2 − cef)2

+ 2(abe− acd+ acf − bde− c3 + cd2 − cdf + ce2)2

+ 2(−a2e+ abc + ade+ aef − bcd− c2e− def + e3)2

+ 2(−a2e + abc+ ade + aef − b2e− bcf − def + e3)2

+ 14(b2e−bcd+ bcf−c2e)2 + 14(ace−bc2 + be2−cde)2

+ 14(abe−b2c−bef + ce2)2 + (a2d− a2f − ab2 + ac2

−ad2 + af 2 + b2d− c2f + d2f − de2 − df 2 + e2f)2

This polynomial defines a hypersurface in complex projective 5-space P5.
What we are interested in is the complexification of the set of real points of
this hypersurfaces. This is the subvariety of P5 defined by the ten cubic poly-
nomials appearing in the above representation of ∆. These cubics arise from
the following determinantal presentation of our variety due to Ilyushechkin
(1992). Consider the following two 3× 6-matrices of linear forms:

F T =


−b b 0 a− d −e c
−c 0 c −e a− f b
0 −e e −c b d− f



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G =


 1 1 1 0 0 0

a d f b c e
a2+b2+c2 b2+d2+e2 c2+e2+f 2 ab+bd+ce ac+be+cf bc+de+ef




The kernel of either matrix equals the row span of the other matrix,

G · F =


0 0 0

0 0 0
0 0 0




and this holds even when we take the kernel or row span as modules over
the polynomial ring S = R[a, b, c, d, e, f ]. In other words, we have an exact
sequence of free S-modules:

0 −→ S3 F−→ S6 G−→ S3

The set of ten cubics defining our variety coincides with the set of non-zero
maximal minors of F and also with the set of non-zero maximal minors of
G. For instance, the 12-term cubic in the last summand of our formula for
∆ equals the determinant of the last three columns of F or of the first three
columns of F . In fact, we have the following identity

∆ = det
(
F T ·diag(2, 2, 2, 1, 1, 1)·F ) = det

(
G·diag(1, 1, 1, 2, 2, 2)·GT

)
.

The following two facts are easily checked with maple:

1. The subvariety of projective 5-space P5 defined by the 3× 3-minors of
either F or G is irreducible of codimension 2 and degree 4.

2. There exists a real 2-plane in P 5 whose intersection with that subvariety
consists of four distinct points whose coordinates are real.

These two points are exactly what is claimed for n = 3 in our conjecture.

The exact sequence and the above formula for ∆ exist for all values of n.
This beautiful construction is due to Ilyushechkin (1992). We shall describe
it in commutative algebra language. We write Sym2(R

n) for the space of
symmetric n×n-matrices, and we write ∧2(R

n) for the space of antisymmet-
ric n× n-matrices. These are real vector spaces of dimension

(
n+1

2

)
and

(
n
2

)
respectively. Let X = (xij) be a symmetric n×n-matrix with indeterminate
entries. Let S = R[X] denote the polynomial ring over the real numbers
generated by the

(
n+1

2

)
variables xij and consider the free S-modules

∧2(S
n) = ∧2(R

n)⊗ S and Sym2(S
n) = Sym2(R

n)⊗ S.
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Lemma 67. The following is an exact sequence of free S-modules:

0 −→ ∧2(S
n)

F−→ Sym2(S
n)

G−→ Sn −→ 0, (63)

where the maps are defined as

F (A) = AX −XA and G(B) =
(
trace(BX i)

)
i=0,...,n−1

.

Proof. It is easily seen that the sequence is a complex and is generically exact.
The fact that it is exact follows from the Buchsbaum-Eisenbud criterion
(Eisenbud 1995, Theorem 20.9), or, more specifically, by applying (Eisenbud
1995, Exercise 20.4) to the localizations of S at maximal minors of F .

The following sum of squares representation is due to Ilyushechkin (1992).

Theorem 68. The discriminant of a symmetric n× n-matrix X equals

∆ = det
(
FT · F) = det

(
G ·GT ), (64)

where F and G are matrices representing the maps F and G in suitable bases.

We now come to the proof of Theorem 65.

Proof. The dual sequence to (63) is also exact and it provides a minimal
free resolution of the module coker(FT ). This module is Cohen-Macaulay of
codimension 2 and the resolution can be written with degree shifts as follows:

0 −→ ⊕n
i=1S(−i) GT−→ S(−1)(

n+1
2 ) F T−→ S(n

2).

The Hilbert series of the shifted polynomial ring S is xi · (1− x)−(n+1
2 ) .

The Hilbert series of the module S(−1)(
n+1

2 ) is
(

n+1
2

) · x · (1− x)−(n+1
2 ). The

Hilbert series of the module coker(FT ) is the alternating sum of the Hilbert
series of the modules in (64), and it equals{(

n

2

)
−
(
n+ 1

2

)
· x+

n∑
i=1

xi

}
· (1− x)−(n+1

2 ).

Removing a factor of (1 − x)2 from the parenthesized sum, we can rewrite
this expression for the Hilbert series of coker(FT ) as follows:{ n∑

i=2

(
i

2

)
xn−i

}
· (1− x)−(n+1

2 )+2.
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We know already that coker(FT ) is a Cohen-Macaulay module of codimen-
sion 2. Therefore we can conclude the following formula for its degree:

degree
(
coker(F T )

)
=

n∑
i=2

(
i

2

)
=

(
n + 1

3

)
. (65)

Finally, let X be the support of the module coker(FT ). Thus X is precisely
our codimension 2 variety which is cut out by the vanishing of the maximal
minors of the matrix X. The generic fiber of the vector bundle on X repre-
sented by coker(FT ) is a one-dimensional space, since the rank drop of the
matrix F is only one if the underlying symmetric matrix has only one double
eigenvalue and n − 2 distinct eigenvalues. We conclude that the degree of
X equals the degree of the module coker(FT ). The identity in (65) now
completes the proof of Theorem 65.

7.6 Exercises

(1) Solve the following one-variable problem, a slight modification of (b’),
using SOStools: Minimize x subject to x4−10x3+37x2−61x+36 = 0.

(2) Take g(x1, x2, . . . , x10) to be your favorite inhomogeneous polynomial of
degree three in ten variables. Make sure it looks random enough. Use
SOStools to find the global minimum in R10 of the quartic polynomial

x4
1 + x4

2 + · · ·+ x4
10 + g(x1, x2, . . . , x10).

(3) Nina and Pascal stand in the playground 10 meters apart and they
each hold a ball of radius 10 cm. Suddenly they throw their balls at
each other in a straight line at the same constant speed, say, 1 meter
per second. At what time (measured in seconds) will their balls first
hit? Formulate this using polynomial equations (and inequalities?) and
explain how semidefinite programming can be used to solve it. Nina
next suggests to Pascal that they replace their balls by more interesting
semialgebraic objects, for instance, those defined by xai +ya2 +za3 ≤ 1
for arbitrary integers a1, a2, a3. Update your model and your SDP.

(4) Find the smallest positive real number a such that the following three
equations have a common solution in R3 :

x6+1+ay2+az = y6+1+az2+ax = z6+1+ax2+ay = 0.
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(5) What does the Duality Theorem of Semidefinite Programming say?
What is the dual solution to the SDP problem which asks for a sum
of squares representation of f(x) − λ? Can you explain the cryptic
sentence “With a few more lines...” at the end of the third section?

(6) Write the discriminant ∆ of the symmetric 3× 3-matrix (62) as a sum
of squares, where the number of squares is as small as possible.

8 Polynomial Systems in Statistics

In this lecture we encounter three classes of polynomial systems arising in
statistics and probability. The first one concerns the algebraic conditions
characterizing conditional independence statements for discrete random vari-
ables. Computational algebra provides usefuls tool for analyzing such state-
ments and for making inferences about conditional independence. The second
class consists of binomial equations which represent certain moves for Markov
chains. We discuss work of (Diaconis, Eisenbud & Sturmfels 1998) on the use
of primary decomposition for quantifying the connectivity of Markov chains.
The third class are the polynomial equations satisfied by the maximum like-
lihood equations in a log-linear model. We discuss several reformulations
of these equations, in terms of posinomials and in terms of entropy max-
imization, and we present a classical numerical algorithm, called iterative
proportional scaling, for solving the maximum likelihood equations. For ad-
ditional background regarding the use of Gröbner bases in statistics we refer
to the book Algebraic Statistics by Pistone, Riccomagno and Wynn (2001).

8.1 Conditional Independence

The set of probability distributions that satisfy a conditional independence
statement is the zero set of certain polynomials and can hence be studied
using methods from algebraic geometry. We call such a set an independence
variety. In what follows we describe the polynomials defining independence
varieties and we present some fundamental algebraic problems about them.

Let X1, . . . , Xn denote discrete random variables, where Xi takes values in
the set [di] = {1, 2, . . . , di}. We write D = [d1]× [d2]×· · ·× [dn] so that RD
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denotes the real vector space of n-dimensional tables of format d1×d2×· · ·×
dn. We introduce an indeterminate pu1u2...un which represents the probability
of the event X1 = u1, X2 = u2, . . . , Xn = un. These indeterminates generate
the ring R[D] of polynomial functions on the space of tables RD .

A conditional independence statement about X1, X2, . . . , Xn has the form

A is independent of B given C (in symbols: A ⊥ B |C) (66)

where A, B and C are pairwise disjoint subsets of {X1, . . . , Xn}. If C is the
empty set then (66) just reads A is independent of B.

Proposition 69. The independence statement (66) translates into a set of
quadratic polynomials in R[D] indexed by(∏

Xi∈A[di]

2

)
×
(∏

Xj∈B[dj]

2

)
×
∏

Xk∈C

[dk]. (67)

Proof. Picking any element of the set (67) means chosing two distinct ele-
ments a and a′ in

∏
Xi∈A[di], two distinct elements b and b′ in

∏
Xj∈B[dj],

and an element c in
∏

Xk∈C [dk], and this determines an expression involving
probabilities:

Prob(A = a, B = b, C = c) · Prob(A = a′, B = b′, C = c)

− Prob(A = a′, B = b, C = c) · Prob(A = a, B = b′, C = c).

To get our quadrics indexed by (67), we translate each of the probabilities
Prob( · · · · · · ) into a linear polynomial in R[D]. Namely, Prob(A = a, B =
b, C = c) equals the sum of all indeterminates pu1u2···un which satisfy:

• for all Xi ∈ A, the Xi-coordinate of a equals ui,

• for all Xj ∈ B, the Xj-coordinate of b equals uj, and

• for all Xk ∈ C, the Xk-coordinate of c equals uk.

We define IA⊥B|C to be the ideal in the polynomial ring R[D] which is gener-
ated by the quadratic polynomials indexed by (67) and described above.

We illustrate the definition of the ideal IA⊥B|C with some simple examples.
Take n = 3 and d1 = d2 = d3 = 2, so that RD is the 8-dimensional space of
2× 2× 2-tables, and

R[D] = R[p111 , p112, p121, p122, p211, p212, p221, p222].
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The statement {X2} is independent of {X3} given {X1} describes the ideal

IX2⊥X3|X1
= 〈p111p122 − p112p121, p211p222 − p212p221〉. (68)

The statement {X2} is independent of {X3} determines the principal ideal

IX2⊥X3 = 〈 (p111 + p211)(p122 + p222) − (p112 + p212)(p121 + p221) 〉. (69)

The ideal IX1⊥{X2,X3} representing the statement {X1} is independent of
{X2, X3} is generated by the six 2× 2-subdeterminants of the 2× 4-matrix(

p111 p112 p121 p122

p211 p212 p221 p222

)
(70)

The variety VA⊥B|C is defined as the set of common zeros in CD of the
polynomials in IA⊥B|C . Thus VA⊥B|C is a set of complex d1 × · · · × dn-

tables, but in statistics applications we only care about the subset V≥0
A⊥B|C of

tables whose entries are non-negative reals. These correspond to probability
distributions that satisfy the independence fact A ⊥ B|C. We also consider
the subsets V RA⊥B|C of real tables and V >0

A⊥B|C of strictly positive tables. The
variety VA⊥B|C is irreducible because the ideal IA⊥B|C is a prime ideal.

Many statistical models for categorical data can be described by a finite
set of independence statements (66). An independence model is such a set:

M =
{
A(1)⊥B(1)|C(1), A(2)⊥B(2)|C(2), . . . , A(m)⊥B(m)|C(m)

}
.

This class of models includes all directed and undirected graphical models,
to be discussed below. The ideal of the model M is defined as the sum

IM = IA(1)⊥B(1)|C(1) + IA(2)⊥B(2)|C(2) + · · · + IA(m)⊥B(m)|C(m).

The independence variety is the set of tables which satisfy these polynomials:

VM = VA(1)⊥B(1)|C(1) ∩ VA(2)⊥B(2)|C(2) ∩ · · · ∩ VA(m)⊥B(m)|C(m).

Problem 70. For which models M is the independence ideal IM a prime
ideal, and for which models M is the independence variety VM irreducible?

As an example consider the following model for binary random variables:

MyModel =
{
X2 ⊥ X3 , X1 ⊥ {X2, X3}

}
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The ideal of this model is neither prime nor radical. It decomposes as

IMyModel = IX2⊥X3 + IX1⊥{X2,X3} = ISegre ∩
(
P 2 + IX1⊥{X2,X3}

)
(71)

where the first component is the independence ideal for the model

Segre =
{
X1 ⊥ {X2, X3}, X2 ⊥ {X1, X3}, X3 ⊥ {X1, X2}

}
Thus ISegre is the prime ideal of the Segre embedding of P1×P1×P1 into
P7. The second component in (71) is a primary ideal with radical

P = 〈 p111 + p211, p112 + p212, p121 + p221, p122 + p222 〉.
Since this ideal has no non-trivial zeros in the positive orthant, we conclude
that MyModel is equivalent to the complete independence model Segre.

V ≥0
MyModel = V ≥0

Segre.

Thus the equation (71) proves the following rule for binary random variables:

X2 ⊥ X3 and X1 ⊥ {X2, X3} implies X2 ⊥ {X1, X3} (72)

It would be very nice project to determine the primary decompositions for
all models on few random variables, say n ≤ 5. A catalogue of all resulting
rules is likely to be useful for applications in artificial intelligence.

Clearly, some of the rules will be subject to the hypothesis that all prob-
abilities involved be strictly positive. A good example is Proposition 3.1 in
(Lauritzen 1996, page 29), which states that, for strictly positive densities,

X1 ⊥ X2 |X3 and X1 ⊥ X3 |X2 implies X1 ⊥ {X2, X3}.
It corresponds to the primary decomposition

IX1⊥X2 |X3 + IX1⊥X3 |X2

= IX1⊥{X2,X3} ∩ 〈p111, p122, p211, p222〉 ∩ 〈p112, p121, p212, p221〉.
The conditional independence statement (66) is called saturated if

A ∪ B ∪ C = {X1, X2, . . . , Xn}.
In that case IA⊥B|C is a generated by differences of monomials. Such an
ideal is called a binomial ideal. Recall from Lecture 5 that every binomial
ideal has a primary decomposition into binomial ideals.

Proposition 71. The ideal IM is a binomial ideal if and only if the model
M consists of saturated independence statements.
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8.2 Graphical Models

The property that the ideal IM is binomial holds for the important class
of undirected graphical models. Let G be an undirected graph with vertices
X1, X2, . . . , Xn. ¿From the graph G one derives three natural sets of satu-
rated independence conditions:

pairwise(G) ⊆ local(G) ⊆ global(G). (73)

See (Lauritzen 1996, page 32) for details and definitions. For instance,
pairwise(G) consists of all independence statements

Xi ⊥ Xj | {X1, . . . , Xn}\{Xi, Xj}

where Xi and Xj are not connected by an edge in G. It is known that
the ideal Iglobal(G) is prime if and only if G is a decomposable graph. This
situation was studied by Takken (1999), Dobra and Sullivant (2002) and
Geiger, Meek and Sturmfels (2002). These authors showed that the quadratic
generators of Iglobal(G) form a Gröbner basis.

Problem 72. For decomposable graphical models G, including chains, study
the primary decomposition of the binomial ideals Ipairwise(G) and Ilocal(G).

For a general undirected graph G, the following problem makes sense:

Problem 73. Study the primary decomposition of the ideal Iglobal(G).

The most important component in this decomposition is the prime ideal

TG := (Ipairwise(G) : p∞) = (Iglobal(G) : p∞). (74)

This equation follows from the Hemmersley-Clifford Theorem. Here p de-
notes the product of all the indeterminates pu1u2...un. The ideal TG is called
the toric ideal of the graphical model G. The most basic invariants of any
projective variety are its dimension and its degree. There is an easy formula
for the dimension of the variety of TG, but its degree remains mysterious:

Problem 74. What is the degree of the toric ideal TG of a graphical model?
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Example 75. We illustrate these definitions and problems for the graph G
which is the 4-chain X1 – X2 – X3 – X4. Here each Xi is a binary random
variable. The ideal coding the pairwise Markov property equals Ipairwise(G) =

〈 p1121p2111 − p1111p2121, p1112p2111 − p1111p2112, p1112p1211 − p1111p1212,

p1122p2112 − p1112p2122, p1122p2121 − p1121p2122, p1122p1221 − p1121p1222,

p1221p2211 − p1211p2221, p1212p2211 − p1211p2212, p2112p2211 − p2111p2212,

p1222p2212 − p1212p2222, p1222p2221 − p1221p2222, p2122p2221 − p2121p2222 〉

Solving these twelve binomial equations is not so easy. First, Ipairwise(G)

is not a radical ideal, which means that there exists a polynomial f with
f 2 ∈ Ipairwise(G) but f 6∈ Ipairwise(G). Using the division algorithm modulo
Ipairwise(G), one checks that the following binomial enjoys this property

f = p1111p1212p1222p2121 − p1111p1212p1221p2122.

An ideal basis of the radical of Ipairwise(G) consists of the 12 quadrics and
eight quartics such as f . The variety defined by Ipairwise(G) has 33 irreducible
components. One these components is defined by the toric ideal

TG = Ipairwise(G) + 〈 p1122p2221 − p1121p2222, p1221p2212 − p1212p2221,

p1222p2211 − p1211p2222, p1112p2211 − p1111p2212, p1222p2121 − p1221p2122,

p1121p2112 − p1112p2121, p1212p2111 − p1211p2112, p1122p2111 − p1111p2122 〉

The twenty binomial generators of the toric ideal TG form a Gröbner basis.
The corresponding toric variety in P15 has dimension 8 and degree 34.

Each of the other 32 minimal primes of Ipairwise(G) is generated by a subset
of the indeterminates. More precisely, among the components of our model
there are four linear subspaces of dimension eight, such as the variety of

〈 p0000, p0011, p0100, p0111, p1000, p1011, p1100, p1111 〉,

there are 16 linear subspaces of dimension six, such as the variety of

〈p0000, p0001, p0010, p0011, p0100, p0111, p1011, p1100, p1101, p1111〉,

and there are 12 linear subspaces of dimension four, such as the variety of

〈p0000, p0001, p0010, p0011, p1000, p1001, p1010, p1011, p1100, p1101, p1110, p1111〉. (75)
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Each of these irreducible components gives a simplex of probability distribu-
tions which satisfies the pairwise Markov property but does not factor in the
four-chain model. For instance, the ideal in (75) represents the tetrahedron
consisting of all probability distributions with X1 = 0 and X2 = 1.

In this example, the solution to Problem 74 is 34. The degree of any
projective toric variety equals the normalized volume of the associated convex
polytope. In setting of (Sturmfels 1995), this polytope is given by an integer
matrix A. The integer matrix A which encodes the toric ideal our TG equals




1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




The convex hull of the 16 columns of this matrix is an 8-dimensional polytope
in R12 . The normalized volume of this polytope equals 34.

We can generalize the definition of the toric ideal TG from graphical mod-
els to arbitrary independence modelsM. For any subset A of {X1, . . . , Xn}
and any element a of

∏
Xi∈A[di], we consider the linear forms Prob(A = a)

whoich is the sum all indeterminates pu1u2···un such that the Xi-coordinate
of a equals ui for all Xi ∈ A. Let p denote the product of all such linear
forms Prob(A = a). We define the following ideal by saturation:

TM = ( IM : p∞ ).

Problem 76. Is TM the vanishing ideal of the set of those probability distri-
butions which are limits of strictly positive distributions which satisfy M.

An affirmative answer to this question would imply that TM is always a
radical ideal. Perhaps it is even always prime? A nice example is the model
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M = {X1 ⊥ X2, X1 ⊥ X3, X2 ⊥ X3} for three binary random variables. Its
ideal IM is the intersection of four prime ideals, the last one of which is TM:

IM = 〈Prob(X1 = 1),Prob(X1 = 2),Prob(X2 = 1),Prob(X2 = 2) 〉
∩ 〈Prob(X1 = 1),Prob(X1 = 2),Prob(X3 = 1),Prob(X3 = 2) 〉
∩ 〈Prob(X2 = 1),Prob(X2 = 2),Prob(X3 = 1),Prob(X3 = 2) 〉
∩ 〈 p112p221 + p112p222 − p121p212 − p121p222 − p122p212 + p122p221,

p121p212 − p111p221 − p111p222 + p121p211 − p211p222 + p212p221,

p111p212 + p111p222 − p112p211 − p112p221 + p211p222 − p212p221,

p111p221 + p111p222 − p121p211 + p121p222 − p122p211 − p122p221,

p111p122 + p111p222 − p112p121 − p112p221 + p121p222 − p122p221 〉.

The five generators for TM are a Gröbner basis with leading terms underlined.
An important class of non-saturated independence models arise from di-

rected graphs as in (Lauritzen 1996, Section 3.2.2). Let G be an acylic
directed graph with vertices X1, X2, . . . , Xn. For any vertex Xi, let pa(Xi)
denote the set of parents of Xi in G and let nd(Xi) denote the set of non-
descendants of Xi in G. The directed graphical model of G is described by
the following set of independence statements:

local(G) =
{
Xi ⊥ nd(Xi) | pa(Xi) : i = 1, 2, . . . , n

}
.

Theorem 3.27 in (Lauritzen 1996) tell us that this model is well-behaved.

Problem 77. Is the ideal Ilocal(G) prime, and hence equal to Tlocal(G)?

Assuming that the answer is “yes” we simply write IG = Ilocal(G) =
Tlocal(G) for the prime ideal of the directed graphical model G. It is known
that decomposable models can be regarded as directed ones. This suggests:

Problem 78. Does the prime ideal IG of a directed graphical model G
have a quadratic Gröbner basis, generalizing the known Gröbner basis for
decomposable (undirected graphical) models?

As an example consider the directed graph G on four binary random
variables with four edges X1 → X2, X1 → X3, X2 → X4 and X3 → X4. Here

local(G) =
{
X2 ⊥ X3 |X1 , X4 ⊥ X1 | {X2, X3}

}
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and the prime ideal associated with this directed graphical model equals

IG = 〈 (p1111 + p1112)(p1221 + p1222)− (p1121 + p1122)(p1211 + p1212),

(p2111 + p2112)(p2221 + p2222)− (p2121 + p2122)(p2211 + p2212),

p1111p2112 − p1112p2111 , p1121p2122 − p1122p2121,

p1211p2212 − p1212p2211 , p1221p2222 − p1222p2221〉

This ideal is a complete intersection, i.e. its variety has codimension six. The
six quadrics form a Gröbner basis with respect to a suitable monomial order.

In summary, statistical models described by conditional independence
statements furnish a wealth of interesting algebraic varieties which are cut
out by quadratic equations. Gaining a better understanding of independence
varieties and their equations is likely to have a significant impact for the study
of multidimensional tables and its applications to problems in statistics.

8.3 Random Walks on the Integer Lattice

Let B be a (typically finite) subset of the integer lattice Zn. The elements of
B are regarded as the moves or steps in a random walk on the lattice points in
the non-negative orthant. More precisely, let GB be the graph with vertices
the set Nn of non-negative integer vectors, where a pair of vectors u, v is
connected by an edge if and only if either u−v or v−u lies in B. The problem
to be addressed in this section is to characterize the connected components
of the graph GB. Having a good understanding of the connected components
and their higher connectivity properties is a necessary precondition for any
study of specific Markov chains and their mixing time.

Example 79. Let n = 5 and consider the set of moves

B =
{

(1,−1,−1, 1, 0) , (1,−1, 0,−1, 1) , (0, 1,−1,−1, 1)
}
.

These three vectors span the kernel of the matrix

A =

(
1 1 1 1 1
1 2 3 4 5

)

The two rows of the matrix A represent the sufficient statistics of the walk
given by B. Two vectors u, v ∈ N5 lie in the same component of GB only if
they have the same sufficient statistics. The converse is not quite true: we
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need additional inequalities. Two non-negative integer vectors u and v lie in
the same connected component of GB if and only if A · u = A · v and

u1 + u2 + u3 ≥ 1, u1 + u2 + u4 ≥ 1, u2 + u4 + u5 ≥ 1, u3 + u4 + u5 ≥ 1

and v1 + v2 + v3 ≥ 1, v1+v2+v4 ≥ 1, v2+v4+v5 ≥ 1, v3 + v4 + v5 ≥ 1.

Returning to the general case, let L denote the sublattice of Zn generated
by B. Computing the sufficient statistics amounts to computing the image
under the canonical map Zn→ Zn/L. If Zn/L is torsion-free then this map
can be represented by an integer matrix A. A necessary condition for u and
v to lie in the same component of GB is that they have the same image under
the linear map A. Thus we are looking for conditions (e.g. linear inequalities)
which, in conjunction with the obvious condition u−v ∈ L, will ensure that
v can be reached from u in a random walk on Nn using steps from B only.

We encode every vector u in B by a difference of two monomials, namely,

xu+ − xu− =
∏

i:ui>0

xui
i −

∏
j:uj<0

x
−uj

j .

Let IB denote the ideal in S = Q [x1 , . . . , xn] generated by the binomials
xu+ − xu− where u runs over B. Thus every binomial ideal encountered in
these lectures can be interpreted as a graph on non-negative lattice vectors.

Theorem 80. Two vectors u, v ∈ Nn lie in the same connected component
of GB if and only if the binomial xu − xv lies in the binomial ideal IB.

Our algebraic approach in studying the connectivity properties of graph
GB is to compute a suitable ideal decomposition:

IB = IL ∩ J1 ∩ J2 ∩ · · · ∩ Jr.

This decomposition could be a binomial primary decomposition, or if could be
some coarser decomposition where each Ji has still many associated primes.
The key requirement is that membership in each component Ji should be
describable by some easy combinatorial condition. Sometimes we can only
give sufficient conditions for membership of xu − xv in each Ji, and this will
lead to sufficient conditions for u and v being connectable in GB. The lattice
ideal IL encodes the congruence relation modulo L = ZB. Two vectors u
and v in Nn have the same sufficient statistics if and only if xu − xv lies in
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IL. Note that the lattice ideal IL is prime if and only if Zn/L is torsion-free.
This ideal always appears in the primary decomposition of IB because(

IB : (x1x2 · · ·xn)∞
)

= IL.

This identity of ideals has the following interpretation for our application:
Two vectors u, v ∈ N5 lie in the same component of GB only if they have the
same sufficient statistics and their coordinates are positive enough.

Our discussion implies that Gröbner basis software can be used to deter-
mine the components of the graph GB. For instance, the system of inequali-
ties in Example 79 is the output o3 of the following Macaulay 2 session:

i1 : R = QQ[x1,x2,x3,x4,x5];

i2 : IB = ideal(x1*x4-x2*x3,x1*x5-x2*x4,x2*x5-x3*x4);

i3 : toString ass(IB)

o3 = { ideal(x1,x2,x3), ideal(x1,x2,x4),

ideal(x2,x4,x5), ideal(x3,x4,x5),

ideal(x4^2-x3*x5, x3*x4-x2*x5, x2*x4-x1*x5,

x3^2-x1*x5, x2*x3-x1*x4, x2^2-x1*x3) }

i4 : IB == intersect ass(IB)

o4 = true

Two-dimensional contigency tables are ubiquitous in statistics, and it is a
basic problem to study random walks on the set of all contigency tables with
fixed margins. For instance, consider the set N4×4 of non-negative integer
4×4-matrices. The ambient lattice Z4×4 is isomorphic to Z16. The sufficient
statistics are given by the row sums and column sums of the matrices. Equiv-
alently, the sublattice L consists of all matrices in Z4×4 whose row sums and
column sums are zero. The lattice ideal IL is the prime ideal generated by
the thirty-six 2× 2-minors of a 4× 4-matrix (xij) of indeterminates.

A natural question is to study the connectivity of the graph GB defined
by some basis B for the lattice L. For instance, take B to be the set of nine
adjacent 2× 2-moves. The corresponding binomial ideal equals

IB = 〈 x12x21 − x11x22, x13x22 − x12x23, x14x23 − x13x24,

x22x31 − x21x32, x23x32 − x22x33, x24x33 − x23x34,

x32x41 − x31x42, x33x42 − x32x43, x34x43 − x33x44〉.
Theorem 80 tells us that two non-negative integer 4 × 4-matrices (aij) and
(bij) with the same row and column sums can be connected by a sequence of
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adjacent 2× 2-moves if and only if the binomial∏
1≤i,j≤4

x
aij

ij −
∏

1≤i,j≤4

x
bij

ij lies in the ideal IB.

The primary decomposition of IB was computed in Lecture 5. This primary
decomposition implies the following combinatorial result:

Proposition 81. Two non-negative integer 4×4-matrices with the same row
and column sums can be connected by a sequence of adjacent 2× 2-moves if
both of them satisfy the following six inequalities:

(i) a21 + a22 + a23 + a24 ≥ 2;

(ii) a31 + a32 + a33 + a34 ≥ 2;

(iii) a12 + a22 + a32 + a42 ≥ 2;

(iv) a13 + a23 + a33 + a43 ≥ 2;

(v) a12 + a22 + a23 + a24 + a31 + a32 + a33 + a43 ≥ 1;

(vi) a13 + a21 + a22 + a23 + a32 + a33 + a34 + a42 ≥ 1.

We remark that these sufficient conditions remain valid if (at most) one
of the four inequalities “≥ 2” is replaced by “≥ 1.” No further relaxation of
the conditions (i)–(vi) is possible, as is shown by the following two pairs of
matrices, which cannot be connected by an adjacent 2× 2-walk:


0 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1


 ←→




0 0 0 0
0 0 1 1
0 1 0 0
0 1 0 0







0 0 1 0
1 1 0 0
0 0 0 2
0 0 0 0


 ←→




0 0 0 1
0 0 1 1
1 1 0 0
0 0 0 0




The necessity of conditions (v) and (vi) is seen from the disconnected pairs

n n 0 n
0 0 0 n
n 0 0 0
n 0 n n


 ←→



n 0 n n
n 0 0 0
0 0 0 n
n n 0 n


 for any integer n ≥ 0.
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Such minimally disconnected pairs of matrices are derived by computing
witnesses for the relevant associated primes of IB.

Random walks arising from graphical models play a significant role in the
statistical study of multi-dimensional contigency tables. A noteworthy real-
world application of these techniques is the work on the U.S. census data by
Stephen Fienberg and his collaborators at the National Institute of Statistical
Sciences (http://www.niss.org/). Studying the connectivity problems of
these random graphs is precisely the issue of Problems 72 and 73. Namely,
given a graphG, each of the three sets of independence facts in (73) translates
into a set of quadratic binomials and hence into a random walk on all tables
with margins in the graphical model G. The primary decompositions of
the binomial ideals Ipairwise(G), Ilocal(G) and Iglobal(G) will furnish us with
conditions under which two multi-dimensional tables are connected in under
the random walk. Example 75 is a good place to start; see Exercise (3) below.

We conclude with the family of circuit walks which is very natural from
a mathematical perspective. Let A be a d × n-integer matrix and L =
kerZ(A) ⊂ Zn as before. The ideal IL is prime; it is the toric ideal associated
with A. A non-zero vector u = (u1, . . . , un) in L is called a circuit if its
coordinates ui are relatively prime and its support supp(u) = { i : ui 6= 0}
is minimal with respect to inclusion. We shall consider the walk defined by
the set C of all circuits in L. This makes sense for two reasons:

• The lattice L is generated by the circuits, i.e., ZC = L.

• The circuits can be computed easily from the matrix A.

Here is a simple algorithm for computing C. Initialize C := ∅. For any
(d+ 1)-subset τ = {τ1, . . . , τd+1} of {1, . . . , n} form the vector

Cτ =
d+1∑
i=1

(−1)i · det(Aτ\{τi}) · eτi
,

where ej is the j’th unit vector and Aσ is the submatrix of A with column
indices σ. If Cτ is non-zero then remove common factors from its coordinates.
The resulting vector is a circuit and all circuits are obtained in this manner.

Example 82. Let d− 2, n = 4 and A =

(
0 2 5 7
7 5 2 0

)
. Then

C = ±{ (3,−5, 2, 0), (5,−7, 0, 2), (2, 0,−7, 5), (0, 2,−5, 3)
}
.
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It is instructive – for Exercise (4) – to check that the Z-span of C equals
L = kerZ(A). (For instance, try to write (1,−1,−1, 1) ∈ L as a Z-linear
combination of C). We shall derive the following result: Two L-equivalent
non-negative integer vectors (A,B,C,D) and (A′, B′, C ′, D′) can be connected
by the circuits if both of them satisfy the following inequality

min

{
max{A,B,C,D}, max{B, 9

4
C,

9

4
D}, max{9

4
A,

9

4
B, C}

}
≥ 9.

The following two L-equivalent pairs are not connected in the circuit walk:

(4, 9, 0, 2)↔ (5, 8, 1, 1) and (1, 6, 6, 1)↔ (3, 4, 4, 3). (76)

To analyze circuit walks in general, we consider the circuit ideal IC gener-
ated by the binomials xu+ − xu− where u = u+ − u− runs over all circuits
in L. The primary decomposition of circuit ideals was studied in Section 8
of (Eisenbud and Sturmfels 1996). We summarize the relevant results. Let
pos(A) denote the d-dimensional convex polyhedral cone in Rd spanned by
the column vectors of A. Each face of pos(A) is identified with the subset
σ ⊂ {1, . . . , n} consisting of all indices i such that the i’th column of A lies
on that face. If σ is a face of pos(A) then the ideal Iσ := 〈 xi : i 6∈ σ〉+ IL
is prime. Note that I{1,...,n} = IL and I{} = 〈x1, x2, . . . , xn〉.
Theorem 83. (Eisenbud and Sturmfels 1996; Section 8)

Rad(IC) = IL and Ass(IC) ⊆
{
Iσ : σ is a face of pos(A)

}
.

Applying the techniques of binomial primary decomposition to the circuit
ideal IC gives connectivity properties of the circuit walk in terms of the faces
of the polyhedral cone pos(A). Let us see how this works for Example 82.
We choose variables a, b, c, d for the four columns of A. The cone pos(A) =
pos{(7, 0), (5, 2), (2, 5), (0, 7)} equals the nonnegative quadrant in R2 . It has
one 2-dimensional face, labeled {a, b, c, d}, two 1-dimensional faces, labeled
{a} and {d} and one 0-dimensional face, labeled {}. The toric ideal is

IL = 〈 ad− bc, ac4 − b3d2, a3c2 − b5, b2d3 − c5, a2c3 − b4d 〉. (77)

The circuit ideal equals

IC = 〈 a3c2 − b5, a5d2 − b7, a2d5 − c7, b2d3 − c5 〉.
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It has the minimal primary decomposition

IC = IL ∩ 〈 b9, c4, d4, b2d2, c2d2, b2c2 − a2d2, b5 − a3c2 〉
∩ 〈 a4, b4, c9, a2b2, a2c2, b2c2 − a2d2, c5 − b2d3 〉

∩ (〈a9, b9, c9, d9〉 + IC
)
.

The second and third ideals are primary to I{a} = 〈b, c, d〉 and to I{d} =
〈a, b, c〉. This primary decomposition implies the inequality in (82) because

〈a9, b9, c9, d9〉 ∩ 〈b9, c4, d4〉 ∩ 〈a4, b4, c9〉 ∩ IL ⊂ IC.

Returning to our general discussion, Theorem 83 implies that for each
face σ of the polyhedral cone pos(A) there exists a non-negative integer Mσ

such that
IL ∩

⋂
σ face

〈 xi : i 6∈ σ 〉Mσ ⊂ IC.

Corollary 84. For each proper face σ of pos(A) there is an integer Mσ such
that any two L-equivalent vectors (a1, . . . , an) and (b1, . . . , bn) in Nn with∑

i6∈σ

ai ≥ Mσ and
∑
i6∈σ

bi ≥ Mσ for all proper faces σ of pos(A)

can be connected in the circuit walk.

This suggests the following research problem.

Problem 85. Find bounds for the integers Mσ in terms of the matrix A.

The optimal value of Mσ seems to be related to the singularity of the
toric variety defined by IL along the torus orbit labeled σ: The worse the
singularity is, the higher the value of Mσ. It would be very interesting to
understand these geometric aspects. In Example 82 the optimal values are

M{} = 15 and M{a} = 11 and M{d} = 11.

Optimality is seen from the pairs of disconnected vectors in (76).
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8.4 Maximum Likelihood Equations

We fix a d × n-integer matrix A = (aij) with the property that all column
sums of A are equal. As before we consider the polyhedral cone pos(A)
and the sublattice L = kerZ(A) of Zn. The toric ideal IL is the prime
ideal in Q [x1 , . . . , xn] generated by all binomials xu+ − xu− where u runs
over L. We write V+

L for the set of zeros of IL in the non-negative orthant
Rn
≥0 . This set is the log-linear model associated with A. Log-linear models

include undirected graphical models and other statistical models defined by
saturated independence facts. For instance, the graphical model for a four-
chain of binary random variables corresponds to the 12 × 16-matrix A in
Example 75. If an element p of Rn

≥0 has coordinate sum 1 then we regard p
as a probability distribution. The vector A · p in Rd is the sufficient statistic
of p, and p is independent in the log-linear model A if and only if p ∈ V+

L .
The following result is fundamental both for statistics and for toric geometry.

Theorem 86. For any vector p ∈ Rn
≥0 there exists a unique independent

vector p∗ ∈ V+
L with the same sufficient statistics as p, i.e., A · p∗ = A · p.

The vector p∗ is called the maximum likelihood estimate for p in the model
A. Computing the maximum likelihood estimate amounts to solving a system
of polynomial equations. We write 〈Ax−Ap〉 for the ideal generated by the
d linear polynomial

∑n
j=1 aij(xj − pj) for i = 1, 2, . . . , d. The maximum

likelihood ideal for the non-negative vector p in the log-linear model A is

IL + 〈Ax− Ap〉 ⊂ Q [x1 , . . . , xn]. (78)

We wish to find the zero x = p∗. Theorem 86 can be reworded as follows.

Corollary 87. Each maximum likelihood ideal (78) has precisely one non-
negative real root.

Proofs of Theorem 86 and Corollary 87 are based on convexity consid-
erations. One such proof can be found in Chapter 4 of Fulton (1993). In
toric geometry, the matrix A represents the moment map from V+

L , the non-
negative part of the toric variety, onto the polyhedral cone pos(A). The
version of Theorem 86 appearing in (Fulton 1993) states that the moment
map defines a homeomorphism from V+

L onto pos(A).
As an example consider the log-linear model discussed in Example 82.

Let us compute the maximum likelihood estimate for the probability distri-
bution p = (3/7, 0, 0, 4/7). The maximum likelihood ideal is given by the
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two coordinates of Ax = Ap and the five binomial generators of (77). More
precisely, the maximum likelihood ideal (78) for this example equals

〈 x2x3 − x1x4, x
5
3 − x2

2x
3
4, x

5
2 − x3

1x
2
3, x1x

4
3 − x3

2x
2
4, x

2
1x

3
3 − x4

2x4,

0x1 + 2x2 + 5x3 + 7x4 − b1 , 7x1 + 5x2 + 2x3 + 0x4 − b2 〉
with b1 = 3 and b2 = 4. This ideal has exactly one real zero x = p∗, which is
necessarily non-negative by Corollary 87. We find numerically

p∗ =
(
0.3134107644, 0.2726959080, 0.2213225526, 0.1925707745

)
.

There are other parameter values, for instance b1 = 1, b2 = 50, for which the
above ideal has three real zeros. But always only of them is non-negative.

The maximum likelihood ideal deserves further study from an algebraic
point of view. First, for special points p in Rn

≥0 , it can happen that the
ideal (78) is not zero-dimensional. It would be interesting to characterize
those special values of p. For generic values of p, the ideal (78) is always
zero-dimensional and radical, and it is natural to ask how many complex
zeros it has. This number is bounded above by the degree of the toric ideal
IL, and for many matrices A these two numbers are equal. For instance, in
the above example, the degree of IL is seven and the maximum likelihood
equations have seven complex zeros.

Interestingly, these two numbers are not equal for most of the toric ideals
which actually arise in statistics applications. For instance, for the four-chain
model in Example 75, the degree of IL is 34 but the degree of the ideal (78)
is 1; see Exercise (7) below. An explanation is offered by Proposition 4.18
in (Lauritzen 1998) which gives a rational formula for maximum likelihood
estimation in a decomposable graphical model. This raises the following
question for nondecomposable graphical models.

Problem 88. What is the number of complex zeros of the maximum likeli-
hood equations for a nondecomposable graphical model G ?

Geiger, Meek and Sturmfels (2002) proved that this number is always
greater than one. It would be nice to identify log-linear models other than
decomposable graphical models whose maximum likelihood estimator is ra-
tional. Equivalently, which toric varieties have a birational moment map?

Problem 89. Characterize the integer matrices A whose the maximum like-
lihood ideal (78) has exactly one complex solution, for each generic p.
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In the final version of these lecture notes, what will follow is the con-
nection between maximum likelihood estimation, entropy minimization and
optimization problems involving posinomials. Moreover, we shall present the
method of iterative proportional scaling which is widely used among statisti-
cians for computing p∗ from p. I hope to have this material included soon.

8.5 Exercises

(1) Let X1, X2, X3, X4 be binary random variables and consider the model

M =
{
X1 ⊥ X2|X3 , X2 ⊥ X3|X4 , X3 ⊥ X4|X1 , X4 ⊥ X1|X2

}
.

Compute the ideal IM and find the irreducible decomposition of the
variety VM. Does every component meet the probability simplex?

(2) Let G be the cycle on five binary random variables. List the generators
of the binomial ideal Ipairwise(G) and compute the toric ideal TG.

(3) Give a necessary and sufficient condition for two 2×2×2×2-contigency
tables with the same margins in the four-chain model to be connected
by pairwise Markov moves. In other words, use the primary decompo-
sition of Example 75 to analyze the associated random walk.

(4) Prove that each sublattice L of Zn is spanned by its subset C of circuits.

(5) Determine and interpret the three numbers M{}, M{a} and M{d} for

circuit walk defined by the matrix A =

(
0 3 7 10
10 7 3 0

)
.

(6) Compute the maximum likelihood estimate p∗ for the probability dis-
tribution p = (1/11, 2/11, 3/11, 6/11) in the log-linear model specified
by the 2× 4-matrix A in the previous exercise.

(7) Write the maximum likelihood equations for the four-chain model in
Example 75 and show that it has only one complex solution x = p∗.
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9 Tropical Algebraic Geometry

The tropical semiring is the extended real line R∪{−∞} with two arithmetic
operations called tropical addition and tropical multiplication. The tropical
sum of two numbers is their maximum and the tropical product of two num-
bers is their sum. We use the familiar symbols “+” and “×” to denote these
operations as well. The tropical semiring

(
R ∪ {−∞},+,×) satisfies many

of the usual axioms of arithmetic such as (a + b)× c = (axc) + (bxc). The
additive unit is −∞, the multiplicative unit is the real number 0, and x2

denotes x× x. Tropical polynomials make perfect sense. Consider the cubic
f(x) = 5 + (1)× x + (0)× x2 + (−4)× x3. Then, tropically, f(3) = 6. In
this lecture we study the problem of solving systems of polynomial equations
in the tropical semiring. The relationship to classical polynomial equations is
given by valuation theory, specifically by considering Puiseux series solutions.

9.1 Tropical Geometry in the Plane

A tropical polynomial f(x) in n unknowns x = (x1, . . . , xn) is the maximum
of a finite set of linear functions with N-coefficients. Hence the graph of f(x)
is piecewise linear and convex. We define the variety of f(x) as the set of
points x ∈ Rn at which f(x) is not differentiable. This is consistent with the
intuitive idea that we are trying to solve f(x) = −∞, given that −∞ is the
additive unit. Equivalently, the variety of f(x) is the set of all points x at
which the maximum of the linear functions in f(x) is attained at least twice.

Let us begin by deriving the solution to the general quadratic equation

ax2 + bx + c “ = 0 ” (79)

Here a, b, c are arbitrary real numbers. We wish to compute the tropical
variety of (79). In ordinary arithmetic, this amounts to solving the equation

max
{
a+ 2x, b + x, c

}
is attained twice. (80)

This is equivalent to

a + 2x = b + x ≥ c or a+ 2x = c ≥ b + x or b+ x = c ≥ a+ 2x.

¿From this we conclude: The tropical solution set to the quadratic equation
(79) equals {b−a, c−b} if a+c ≤ 2b, and it equals {(c−a)/2} if a+c ≥ 2b.
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Our next step is the study of tropical lines in the plane. A tropical line
is the tropical variety defined by a polynomial

f(x, y) = ax + by + c,

where a, b, c are fixed real numbers. The tropical line is a star with three
rays emanating in the directions West, South and Northeast. The midpoint
of the star is the point (x, y) = (c− a, c− b). This is the unique solution of
a+x = b+ y = c, meaning that the maximum involved in f(x, y) is attained
not just twice but three times. The following result is easily seen:

Proposition 90. Two general tropical lines always intersect in a unique
point. Two general points always lie on a unique tropical line.

Figure: Tropical Lines

Consider now an arbitrary tropical polynomial in two variables

f(x, y) =
∑

(i,j)∈A
ωijx

iyj.

Here A is a finite subset of Z2. Note that it is important to specify the
support set A because the term ωijx

iyj is present even if ωij = 0. For any
two points (i′, j′), (i′′, j′′) in A, we consider the system of linear inequalities

ωi′j′ + i′x+ j′y = ωi′′j′′ + i′′x+ j′′y ≥ ωij + ix+ jy for (i, j) ∈ A. (81)
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The solution set of (81) is either empty, or a point, or a line segment or a ray
in R2 . The union of these solution sets, as (i′, j′), (i′′, j′′) ranges over pairs
of distinct points in A, is the tropical curve defined by f(x, y).

We use the following method to compute and draw this curve. For each
point (i, j) in A, plot the point (i, j, ωij) in 3-space. The convex hull of these
points is a 3-dimensional polytope. Consider the set of upper faces of this
polytope. These are the faces which have an upward pointing outer normal.
The collection of these faces maps bijectively onto the convex hull of A under
deleting the third coordinates. It defines a regular subdivision ∆ω of A.

Proposition 91. The solution set to (81) is a segment if and only if (i′, j′)
and (i′′, j′′) are connected by an interior edge in the regular subdivision ∆ω,
and it is a ray if and only if they are connected by a boundary edge of ∆ω.
The tropical curve of f(x, y) is the union of these segments and rays.

An analogous statement holds in higher dimensions: The tropical hyper-
surface of a multivariate polynomial f(x1, . . . , xn) is an unbounded polyhe-
dral complex geometrically dual to the regular subdivision ∆ω of the support
of f . If the coefficients of the tropical polynomial f are sufficiently generic,
then ∆ is a regular triangulation and the hypersurface is said to be smooth.
Returning to the case n = 2, here are a few examples of smooth curves.

Example 92. (Two Quadratic Curves) A smooth quadratic curve in the
plane is a trivalent graph with four vertices, connected by three bounded
edges and six unbounded edges. These six rays come in three pairs which
go off in directions West, South and Northeast. The primitive vectors on
the three edges emanating from any vertex always sum to zero. Our first
example is

f1(x, y) = 0x2 + 1xy + 0y2 + 1x + 1y + 0.

The curve of f1(x, y) has the four vertices (0, 0), (1, 0), (0, 1) and (−1,−1):
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Figure: A quadratic curve

We now gradually increase the coefficient from 1 to 3 and we observe
what happens to our curve during this homotopy. The final curve is

f3(x, y) = 0x2 + 1xy + 0y2 + 3x + 1y + 0.

This curve has the four vertices (−3,−1), (−1, 1), (1, 2) and (3, 2):

Figure: Another quadratic curve

Example 93. (Two Elliptic Curves) The genus of a smooth tropical curve
is the number of bounded regions in its complement. The two quadratic
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curves have divide the plane into six regions, all of them unbounded, so their
genus is zero. A tropical elliptic curve has precisely one bounded region in its
complement. A smooth cubic curve in the projective plane has this property:

Figure: A cubic curve

Of course, we can also pick a different support set whose convex hull has
exactly one interior lattice point. An example is the square of side length 2.
It corresponds to a curve of bidegree (2, 2) in the product of two projective
lines P 1 × P 1. Such curves are elliptic, as the following picture shows:

Figure: A biquadratic curve

The result of Proposition 90 can be extended from tropical lines to tropical
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curves of any degree, and, in fact, to tropical hypersurfaces in any dimension.

Theorem 94. (Tropical Bézout-Bernstein) Two general tropical curves of
degrees d and e intersect in d·e points, counting multiplicities as explained be-
low. More generally, the number of intersection points of two tropical curves
with prescribed Newton polygons equals the mixed area of these polygons.

We need to explain the multiplicities arising when intersecting two trop-
ical curves. Consider two lines with rational slopes in the plane, where the
primitive lattice vectors along the lines are (u1, v1) and (u2, v2). The two
lines meet in exactly one point if and only if the determinant u1v2 − u2v1 is
nonzero. The multiplicity of this intersection point is defined as |u1v2−u2v1|.

This definition of multiplicity ensures that the total count of the inter-
section points is invariant under parallel displacement of the tropical curves.
For instance, in the case of two curves in the tropical projective plane, we
can displace the curves of degree d and e in such a way that all intersection
points are gotten by intersecting the Southern rays of the first curve with
the Eastern rays of the second curve. Clearly, there are precisely d · e such
intersection points, and their local multiplicities are all one.

To prove the tropical Bernstein theorem, we use exactly the same method
as in Lecture 3. Namely, we observe that the union of the two curves is the
geometric dual of a mixed subdivision of the Minkowski sum of the two
Newton polygons. The mixed cells in this mixed subdivision correspond to
the intersection points of the two curves. The local intersection multiplicity at
such a point, |u1v2−u2v1|, is the area of the corresponding mixed cell. Hence
the mixed area, which is the total area of all mixed cells, coincides with the
number of intersection points, counting multiplicity. The following picture
demonstrates this reasoning for the intersection of two quadratic curves.
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Figure: The tropical Bezout theorem

9.2 Amoebas and their Tentacles

Let X be any subvariety of the n-dimensional algebraic torus (C ∗)n. The
amoeba of X is defined to be the image log(X) of X under the coordinatewise
logarithm map from (C ∗)n into Rn :

log : (C ∗)n → Rn , (z1, . . . , zn) 7→ (
log|z1|, log|z2|, . . . , log|zn|

)
(82)

The computational study of amoebas is an important new direction in the
general field of “Solving Polynomial Equations”. Even testing membership
in the amoeba is a non-trivial problem. Consider the question whether or not
the origin (0, 0, . . . , 0) lies in log(X), where X is given by its vanishing ideal
of Laurent polynomials. This problem is equivalent to the following: Given a
system of polynomial equations over the complex numbers, does there exist
a solution all of whose coordinates are complex numbers of unit length ?

We shall not pursue this question any further here. Instead, we shall
take a closer look at the tentacles of the amoeba. The term amoeba was
coined by Gel’fand, Kapranov and Zelevinsky (1994). In the case when X is
a hypersurface, the complement of X in Rn is a union of finitely many open
convex regions, at most one for each lattice point in the Newton polytope
of the defining polynomial of X. For n = 2, the amoeba does look like one
of these biological organisms, with unbounded tentacles going off to infinity.
These tentacle directions are normal to the edges of the Newton polygon, just
like the tentacles of a tropical curve. We shall see that this no coincidence.
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Given any variety X in (C ∗)n we define a subset B(X) of the unit (n−1)-
sphere Sn−1 in Rn as follows. A point p ∈ Sn−1 lies in B(X) if and only if
there exists a sequence of vectors p(1), p(2), p(3), . . . in Rn such that

p(r) ∈ log(X) ∩ r · Sn−1 for all r ≥ 1 and lim
r→∞

1

r
· p(r) = p.

The set B(X) was first introduced by George Bergman (1971) who called it
the logarithmic limit set of the variety X. We write B̃(X) for the subset of
all vectors p in Rn such that either p = 0 or 1

||p|| · p lies in B̃(X). We refer

to B(X) as the Bergman complex of X and to B(X) as the Bergman fan of
X. These objects are polyhedral by the following result:

Theorem 95. The Bergman fan B̃(X) of a d-dimensional irreducible subva-
riety X of (C ∗)n is a finite union of rational d-dimensional convex polyhedral
cones with apex at the origin. The intersection of any two cones is a common
face of each. Hence B(X) is a pure (d− 1)-dimensional polyhedral complex.

Before discussing the proof of this theorem, let us to consider some special
cases of low dimension or low codimension. Clearly, if X = X1∪X2∪· · ·∪Xr

is a reducible variety then its Bergman complex equals B(X) = B(X1) ∪
B(X2) ∪ · · · ∪ B(Xr). We start out with the case when each Xi is a point.

• d = 0: If X is a finite subset of (C ∗)n then B(X) is the empty set.

• d = 1: If X is a curve then B(X) is a finite subset of the unit sphere.
The directions in B(X) are called critical tropisms in singularity theory.

• d = 2: If X is a surface then B(X) is a graph embedded in the unit
sphere Sn−1. This geometric graph retains all the symmetries of X.

• d = n− 1: If X is a hypersurface whose defining polynomial polyno-
mial has the Newton polytope P then B(X) is the intersection of Sn−1

with the collection of proper faces in the normal fan of P . Thus B(X)
is a radial projection of the (n− 1)-skeleton of the dual polytope P ∗.

Bergman (1971) showed that B(X) is a discrete union of spherical poly-
topes, and he conjectured that this union is finite and equidimensional. This
conjecture was proved using valuation theory by Bieri and Groves (1984). In
what follows we shall outline a simpler proof using Gröbner bases.
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Let I be any ideal in the polynomial ring R = C [x±1
1 , . . . , x±1

n ]. For
instance, I could be the prime ideal defining our irreducible variety X.

For a fixed weight vector ω ∈ Rn , we use the following notation. For
any Laurent polynomial f =

∑
cαx

α, the initial form inω(f) is the sum of
all terms cαx

α such that the inner product ωα is maximal. The initial ideal
inω(I) is the ideal generated by the initial forms inω(f) where f runs over
I. Note that inω(I) will be the unit ideal in R if ω is chosen sufficiently
generic. We are interested in the set of exceptional ω for which inω(I) does
not contain any monomials (i.e. units). This is precisely the Bergman fan.

Lemma 96. Let X be any variety in (C ∗)n and I its vanishing ideal. Then

B̃(X) =
{
ω ∈ Rn : inω(I) does not contain a monomial }.

We sometimes use the notation B̃(I) for the Bergman fan of an ideal I,
defined by the above formula, and similarly B(I) for the Bergman complex.

Consider the closure of X in n-dimensional complex projective space Pn

and let J denote the homogeneous ideal in S = C [x0 , x1, . . . , xn] which
defines this closure. The ideal J is computed from I by homogenizing the
given generators and saturating with respect to the ideal 〈x0〉. For any
ω ∈ Rn , the initial ideal inω(I) is computed as follows: form the vector (0, ω)
in Rn+1 , compute the initial ideal in(0,ω)(J) and then replace x0 by 1.

Corollary 97. B̃(X) =
{
ω ∈ Rn : in(0,ω)(J) contains no monomial in S

}
.

Proof of Theorem 95: Two vectors ω and ω′ in Rn are considered equivalent
for J if in(0,ω)(J) = in(0,ω′)(J). The equivalence classes are the relatively
open cones in a complete fan in Rn called the Gröbner fan of J . This fan is
the outer normal fan of the state polytope of J . See Chapter 2 in (Sturmfels
1995) for details. If C is any cone in the Gröbner fan then we write inC(J)
for inω(J) where ω is any vector in the relative interior of C.

The finiteness and completeness of the Gröbner fan together with Corol-
lary 97 imply that B̃(X) is a finite union of rational polyhedral cones in Rn .
Indeed, B̃(X) is the support of the subfan of the Gröbner fan of J consisting
of all Gröbner cones C such that inC(J) contains no monomial. Note that if
C is any such cone then the Bergman fan of the zero set XC of the initial
ideal inC(J) in (C ∗)n equals

B̃(XC) = B̃(X) + R · C. (83)
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What remains to be proved is that the maximal Gröbner cones C which lie in
B̃(X) all have the same dimension d. For that we need the following lemma.

Lemma 98. Let K be a homogeneous ideal in the polynomial ring S, con-
taining no monomials, and X(K) its zero set in the algebraic torus (C ∗)n.
Then the following are equivalent:

(1) Every proper initial ideal of K contains a monomial.

(2) There exists a subtorus T of (C ∗)n such that X(K) consists of finitely
many T -orbits.

(3) B̃(X(K)) is a linear subspace of Rn .

Proof of Theorem 95 (continued): Let C be a cone in the Gröbner fan
of J which is maximal with respect to containment in B̃(X). The ideal
K = inC(J) satisfies the three equivalent properties in Lemma 98. The
projective variety defined by K is equidimensional of the same dimension
as the irreducible projective variety defined by J . Equidimensionality fol-
lows, for instance, from (Kalkbrener & Sturmfels 1995). We conclude that
dim(X(K)) = dim(X) = d. Hence the subtorus T in property (2) and the
subspace in property (3) of Lemma 98 both have dimension d. It follows
from (83) that

B̃(X(K)) = B̃(XC) = R · C,
and we conclude that the Gröbner cone C has dimension d, as desired. �

Proof of Lemma 98: Let L denote the linear subspace of Rn consisting of all
vectors ω such that inω(K) = K. In other words, L is the common lineality
space of all cones in the Gröbner fan of K. A non-zero vector (ω1, . . . , ωn) lies
in L if and only if the one-parameter subgroup { (tω1 , . . . , tωn) : t ∈ C ∗ }
fixes K. The subtorus T generated by these one-parameter subgroups of
(C ∗)n has the same dimension as L, and it fixes the variety X(K). We now
replace (C ∗)n by its quotient (C ∗)n/T , and we replace Rn by its quotient
Rn/L. This reduces our lemma to the following easier assertion: For a ho-
mogeneous ideal K which contains no monomial the following are equivalent:

(1’) For any non-zero vector ω, the initial ideal inω(K) contains a monomial.

(2’) X(K) is finite.
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(3’) B̃(X(K)) = {0}.
The equivalence of (1’) and (3’) is immediate from Corollary 97, and the

equivalence of (2’) and (3’) follows from Theorem 3 in (Bergman 1971). It
can also be derived from the well-known fact that a subvariety of (C ∗)n is
compact if and only if it is finite. �

Our proof suggests the following algorithm for computing the Bergman
complex of an algebraic variety. First compute the Gröbner fan, or the
state polytope, of the homogenization of its defining ideal. See Chapter 3
of (Sturmfels 1995) for details. For certain nice varieties we might know
a universal Gröbner basis and from this one can read off the Gröbner fan
more easily. We then check all d-dimensional cones C in the Gröbner fan,
or equivalently, all (n − d)-dimensional faces of the state polytope, and for
each of them we determine whether or not inC(I) contains a monomial. This
happens if and only if the reduced Gröbner basis of inC(I) in any term order
contains a monomial. Here is a nice example to demonstrate these methods.

Example 99. The Bergman complex of the Grassmannian G2,5 of lines in
P 4 is the Petersen graph. The Grassmannian G2,5 is the subvariety of P 9

whose prime ideal is generated by the following five quadratic polynomials:

p03p12 − p02p13 + p01p23 , p04p12 − p02p14 + p01p24 ,
p04p13 − p03p14 + p01p34 , p04p23 − p03p24 + p02p34 ,

p14p23 − p13p24 + p12p34.
(84)

A universal Gröbner basis consists of these five quadrics together with fifteen
cubics such as p01p02p34 − p02p03p14 + p03p04p12 + p04p01p23. The ideal of
G2,5 has 132 initial monomial ideals. They come in three symmetry classes:

〈p02p13, p02p14, p04p13, p04p23, p14p23〉 12 ideals ,
〈p02p14, p04p13, p04p23, p14p23, p01p23〉 60 ideals ,

〈p01p14p23, p01p24, p03p12, p03p14, p03p24, p13p24〉 60 ideals .

We regard G2,5 as the 7-dimensional variety in (C ∗)10 consisting of all nonzero
vectors (p01, . . . , p34) formed by the 2×2-minors of any complex 2×5-matrix.
Hence n = 10 and d = 7. The common lineality space L of all Gröbner cones
has dimension 5; hence the state polytope of G2,5 is 5-dimensional as well.
Working modulo L as in the proof of Lemma 98, we conclude that B̃(G2,5) is
a finite union of 2-dimensional cones in a 5-dimensional space. Equivalently,
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it is a finite union of spherical line segments on the 4-dimension sphere. We
consider B̃(G2,5) in this embedding as a graph in the 4-sphere.

By doing a local computation for the Gröbner cones of the three distinct
reduced Gröbner bases (modulo symmetry), we found that this graph has 10
vertices and 15 edges. The vertices are the rays spanned by the vectors −eij ,
the images modulo L of the negated unit vectors in R10 . The corresponding
initial ideal is gotten by erasing those monomials which contain variable pij .
It is generated by three quadratic binomials and two quadratic trinomials.

Two vertices are connected by an edge if and only if the index sets of the
two unit vectors are disjoint. Hence the graph B̃(G2,5) is isomorphic to the
graph whose vertices are the 2-subsets of {0, 1, 2, 3, 4} and whose edges are
disjoint pairs. This is the Petersen graph. The edges correspond to the fifteen
deformations of G2,5 to a toric variety. See Example 11.9 in (Sturmfels 1995).
For instance, the initial ideal corresponding to the disjoint pair ({0, 1}, {3, 4})
is gotten by setting the two underlined variables to zero in (84).

9.3 The Bergman Complex of a Linear Space

We next compute the Bergman complex of an arbitrary linear subspace in
terms of matroid theory. Let I be an ideal in Q [x1 , . . . , xn] generated by (ho-
mogeneous) linear forms. Let d be the dimension of the space of linear forms
in I. A d-subset {i1, . . . , id} of {1, . . . , n} is a basis if there does not exist
a non-zero linear form in I depending only on {x1, . . . , xn} \ {xi1 , . . . , xid}.
The collection of bases is denoted M and called the matroid of I.

In the following, we investigate the Bergman complex of an arbitrary ma-
troid M of rank d on the ground set {1, 2, . . . , n}. We do not even require the
matroid M to be representable over any field. One of many axiomatization
of abstract matroids goes like this: take any collection M of (n− d)-subsets
σ of {1, 2, . . . , n} and take and form the convex hull of the points

∑
i∈σ ei

in Rn . Then M is a matroid if and only if every edge of this convex hull is a
parallel translate of the difference ei − ej two unit vectors. In this case, we
call the above convex hull the matroid polytope of M .

Fix any vector ω ∈ Rn . We are interested in all the bases of M having
minimum ω-cost. The set of these optimal bases is itself the set of bases of a
matroid Mω of rank d on {1, . . . , n}. The matroid polytope of Mω is the face
of the matroid polytope of M at which the linear functional ω is minimized.
An element of the matroid is a loop if it does not occur in any basis.
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In the amoeba framework the correspondence between the tentacle char-
acterization and the matroid characterization can be stated as follows.

Lemma 100. Let I be an ideal generated by linear forms, M be the associated
matroid and ω ∈ Rn . Then inω(I) does not contain a single variable if and
only if Mω does not contain a loop.

We may assume without loss of generality that ω is a vector of unit length
having coordinate sum zero. The set of these vectors is

Sn−2 =
{
ω ∈ Rn : ω1 + ω2 + · · ·+ ωn = 0 and ω2

1 + ω2
2 + · · ·+ ω2

n = 1
}
.

The Bergman complex of an arbitrary matroid M is defined as the set

B(M) :=
{
ω ∈ Sn−2 : Mω has no loops

}
.

Theorem 101. The Bergman complex B(M) of a rank d matroid is a pure
(d− 2)-dimensional polyhedral complex embedded in the (n− 2)-sphere.

Clearly, B(M) is a subcomplex in the spherical polar to the matroid
polytope of M . The content of this theorem is that each face of the matroid
polytope of M whose matroid Mω has no loops, and is minimal with this
property, has codimension n − d + 1. If M is represented by a linear ideal
I then B(M) coincides with B(X) where X is the variety of I in (C ∗)n. In
this case, Theorem 101 is simply a special case of Theorem 95. However,
when M is not representable, then we need to give a new proof of Theorem
101. This can be done using an inductive argument involving the matroidal
operations of contraction and deletion.

We wish to propose the combinatorial problem of studying the complex
B(M) for various classes of matroids M . For instance, for rank(M) = 3 we
always get a subgraph of the ridge graph of the matroid polytope, and for
rank(M) = 4 we get a two-dimensional complex. What kind of extremal
behavior, in terms of face numbers, homology etc...etc... can we expect ?
What is the most practical algorithm for computing B(M) from M ?

Example 102. Let M be the uniform matroid of rank d on {1, 2, . . . , n}.
Then B(M) is the set of all vectors ω in Sn−2 whose largest n − d + 1 co-
ordinates are all equal. This set can be identified with the (d − 2)-skeleton
of the (n − 1)-simplex. For instance, let M the uniform rank 3 matroid on
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{1, 2, 3, 4, 5}. Then B(M) is the complete graph K5, which has ten edges,
embedded in the 3-sphere S3 with vertices

( 1

2
√

5
,

1

2
√

5
,

1

2
√

5
,

1

2
√

5
,− 2√

5

)
,
( 1

2
√

5
,

1

2
√

5
,

1

2
√

5
,− 2√

5
,

1

2
√

5

)
, . . .

These five vectors are normal to five of the ten facets of the second hyper-
simplex in R5 , which is the polytope conv

{
ei + ej : 1 ≤ i < j ≤ 5

}
.

Example 103. Let M be the rank 3 matroid on {1, 2, 3, 4, 5} which has eight
bases and two non-bases {1, 2, 3} and {1, 4, 5}. Then B(M) is the complete
bipartite graph K3,3, given with a canonical embedding in the 3-sphere S3.

Example 104. Consider the codimension two subvariety X of (C ∗)6 defined
by the following two linear equations:

x1 + x2 − x4 − x5 = x2 + x3 − x5 − x6 = = 0.

We wish to describe its Bergman complex B(X), or, equivalently, by Theo-
rem 105 below, we wish to solve these two linear equations tropically. This
amounts to finding all initial ideals of the ideal of these two linear forms
which contain no variable, or equivalently, we are interested in all faces of
the polar of the matroid polytope which correspond to loopless matroids.

We can think of x1, x2, . . . , x6 as the vertices of a regular octahedron,
where the affine dependencies are precisely given by our equations. The
Bergman complex B(X) has 9 vertices, 24 edges, 20 triangles and 3 quad-
rangles. The 9 vertices come in two symmetry classes. There are six vertices
which we identify with the vertices xi of the octahedron. The other three ver-
tices are drawn in the inside of the octahedron: they correspond to the three
symmetry planes. We then take the boundary complex of the octahedron
plus certain natural connection to the three inside points.

9.4 The Tropical Variety of an Ideal

We now connect tropical geometry with algebraic geometry in the usual sense.
The basic idea is to introduce an auxiliary variable t and to take exponents
of t as the coefficients in a tropical polynomial. More precisely, let f be any
polynomial in Q [ t , x1, x2, . . . , xn ], written as a polynomial in x1, . . . , xn,

f =
∑
a∈A

pa(t) · xa1
1 x

a2
2 · · ·xan

n .
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We define the tropicalization of f to be the polynomial

trop(f) =
∑
a∈A

(−lowdeg(pa)) · xa1
1 x

a2
2 · · ·xan

n ∈ N [x1 , . . . , xn],

where lowdeg(pa) is the largest integer u such that tu divides pa(t). For
instance, for any non-zero rational numbers a, b and c, the polynomial

f = a · t3x5
1 + b · t7x5

1 + c · t2x1x
4
2.

has the tropicalization

trop(f) = (−3) · x5
1 + (−2) · x1x

4
2.

The negation in the definition of trop(f) is necessary because we are
taking the maximum of linear forms when we evaluate a tropical polynomial.
On the other hand, when working with Puiseux series, as in the definition of
log(X) below, we always take the minimum of the occurring exponents.

Given any ideal I in Q [t, x1 , . . . , xn], we defined its tropical variety to be
the tropical variety in Rn defined by the tropical polynomials trop(f) as f
runs over all polynomials in I. If the auxiliary variable t does not appear in
any of the generators if I then I can be regarded as an ideal in Q [x1 , . . . , xn].
In this case we recover the Bergman complex.

Theorem 105. Let I be an ideal in Q [x1 , . . . , xn] and X the variety it defines
in (C ∗)n. Then the tropical variety trop(I) equals the Bergman fan B(X).

In the more general case when t does appear in I, the tropical vari-
ety trop(I) is not a fan but it is a polyhedral complex with possibly many
bounded faces. We have seen many examples of tropical curves at the begin-
ning of this lecture. In those cases, I is a principal ideal in Q [x, y].

Consider the algebraically closed field K = C {{t}} of Puiseux series.
Every Puiseux series x(t) has a unique lowest term a · tu where a ∈ C ∗ and
u ∈ Q . Setting val(f) = u, this defines the canonical valuation map

val : (K∗)n → Qn , (x1, x2, . . . , xn) 7→ (
val(x1), val(x2), . . . , val(xn)

)
.

If X is any subvariety of (K∗)n then we can consider the its image val(X)
in Qn . The closure of val(X) in Rn is called the amoeba of X.

Theorem 106. Let I be any ideal in Q [t, x1 , . . . , xn] and X its variety in
(K∗)n. Then the following three subsets of Rn coincide:
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• The negative −val(X) of the amoeba of the variety X ⊂ (K∗)n,

• the tropical variety trop(I) of I,

• the intersection of the Bergman complex B(I) in Sn with the Southern
hemisphere {t < 0}, identified with Rn via stereographic projection.

Let us illustrate Theorem 106 for our most basic example, the solution
to the quadratic equation. Suppose n = 1 and consider an ideal of the form

I = 〈αtax2 + βtbx + γtc 〉,
where α, β, γ are non-zero rationals and a, b, c are integers with a + c ≥ 2b.
Then trop(I) is the variety of the tropicalization (−a)x2 + (−b)x + (−c)
of the ideal generator. Since (−a) + (−c) ≤ 2(−b), we have trop(I) =
{a− b, b− c}. The variety of X in the affine line over K = C {{t}} equals

X =
{−β

α
tb−a + · · · , −γ

β
tc−b + · · ·}.

Hence val(X) = {b − a, c − b} = trop(I). The Bergman fan B̃(I) of the
bivarite ideal I is a one-dimensional fan in the (t, x)-plane R2 , consisting of
three rays. These rays are generated by (−1, a−b), (−1, b−c) and (2, c−a),
and hence the intersection of B̃(I) with the line t = −1 is precisely trop(I).

9.5 Exercises

(1) Draw the graph and the variety of the tropical polynomial

f(x) = 10 + 9x + 7x2 + 4x3 + 0x4.

(2) Draw the graph and the variety of the tropical polynomial

f(x, y) = 1x2 + 2xy + 1y2 + 3x + 3y + 1.

(3) Let I be the ideal of 3× 3-minors of a 3× 4-matrix of indeterminates.
Compute the Bergman complex B(I) of this ideal.

(4) The Bergman complex B(M) of a rank 4 matroid M on {1, 2, 3, 4, 5, 6}
is a polyhedral surface embedded in the 4-sphere. What is the maxi-
mum number of vertices of B(M), as M ranges over all such matroids?

145



(5) Let I be a complete intersection ideal in Q [t, x1 , x2, x3] generated by
two random polynomials of degree three. Describe trop(I) ⊂ R3 .

10 The Ehrenpreis-Palamodov Theorem

Every system of polynomials translates naturally into a system of linear
partial differential equations with constant coefficients. The equation∑

ci1i2...inx
i1
1 x

i2
2 · · ·xin

n = 0 (85)

corresponds to the following partial differential equation

∑
ci1i2...in

∂i1+i2+···+inf

∂xi1
1 ∂x

i2
2 · · ·∂xin

n

= 0 (86)

for an unknown function f = f(x1, . . . , xn). In this lecture we argue that
it is advantageous to regard polynomials as linear PDE, especially when the
given polynomials have zeros with multiplicities or embedded components.
In the 1960’s Ehrenpreis and Palamodov proved their famous Fundamental
Principle which states that all solutions to a system of linear PDE with con-
stant coefficients have a certain integral representation over the underlying
complex variety. What follows is an algebraic introduction to this subject.

10.1 Why Differential Equations ?

There are very good reasons for passing from polynomials to differential
equations. Let us illustrate this for one simple quadratic equation in one
variable:

x2 = α2 (87)

where α is a real parameter. This equation has two distinct solutions, namely
x = α and x = −α, provided the parameter α is non-zero. For α = 0, there
is only one solution, namely x = 0, and conventional algebraic wisdom tells
us that this solution is to be regarded as having multiplicity 2. In the design
of homotopy methods for solving algebraic equations, such multiple points
create considerable difficulties, both conceptually and numerically.
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Consider the translation of (87) into an ordinary differential equation:

f ′′(x) = α2 · f(x). (88)

The solution space Vα to (88) is always a two-dimensional complex vector
space, for any value of α. For α 6= 0, this space has a basis of exponentials,

Vα = C
{

exp(α · x), exp(−α · x)},
but for α = 0 these two basis vectors become linearly independent. However,
there exists a better choice of basis which works for all values of α, namely,

Vα = C
{

exp(α · x), 1

2α

(
exp(α · x) − exp(−α · x)) }, (89)

This new basis behaves gracefully when we take the limit α→ 0:

V0 = C
{

1 , x
}
.

The representation (89) displays Vα as a rank 2 vector bundle on the affine
α-line. There was really nothing special about the point α = 0 after all. Per-
haps this vector bundle point of view might be useful in developing new reli-
able homotopy algorithms for numerically computing the complicated scheme
structure which is frequently hidden in a given non-radical ideal.

Our second example is the following system of three polynomial equations

x3 = yz , y3 = xz , z3 = xy. (90)

These equations translate into the three differential equations

∂3f

∂x3
=

∂2f

∂y∂z
,

∂3f

∂y3
=

∂2f

∂x∂z
and

∂3f

∂z3
=

∂2f

∂x∂y
. (91)

The set of entire functions f(x, y, z) which satisfy these differential equations
(91) is a complex vector space. This vector space has dimension 27, the
Bézout number of (90). A solution basis for (91) is given by{

exp(x + y + z), exp(x− y − z), exp(y − x− z), exp(z − x− y),
exp(x+ iy − iz), exp(x− iy + iz), exp(y + ix− iz), exp(y − ix + iz),

exp(z + ix− iy), exp(z − ix + iy), exp(iy + iz − x), exp(−iy − iz − x),
exp(ix + iz −y), exp(−ix− iz −y), exp(ix + iy −z), exp(−ix− iy −z),
1, x, y, z, z2, y2, x2, x3 + 6yz, y3 + 6xz, z3 + 6xy, x4 + y4 + z4 + 24xyz

}
Here i =

√−1. Using the results to be stated in the next sections, we can
read off the following facts about our equations from the solution basis above:
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(a) The system (90) has 17 distinct complex zeros, of which 5 are real.

(b) A point (a, b, c) is a zero of (90) if and only if exp(ax + by + cz) is a
solution to (91). All zeros other than the origin have multiplicity one.

(c) The multiplicity of the origin (0, 0, 0) as a zero of (90) is eleven. This
number is the dimension of the space of polynomial solutions to (91).

(d) Every polynomial solution to (91) is gotten from the one specific solu-
tion, namely, from x4+y4+z4+24xyz, by taking successive derivatives.

(e) The local ring of (90) at the origin is Gorenstein.

We conclude that our solution basis to (91) contains all the information one
might ask about the solutions to the polynomial system (90). The aim of this
lecture is to extend this kind of reasoning to arbitrary polynomial systems,
that is, to arbitrary systems of linear PDE with constant coefficients.

Our third and final example is to reinforce the view that, in a sense, the
PDE formulation reveals a lot more information than the polynomial formu-
lation. Consider the problem of solving the following polynomial equations:

xi
1 + xi

2 + xi
3 + xi

4 = 0 for all integers i ≥ 0. (92)

The only solution is the origin (0, 0, 0, 0), and this zero has multiplicity 24.
In the corresponding PDE formulation one seeks to identify the vectorspace
of all functions f(x1, x2, x3, x4), on a suitable subset of R4 or C 4 , such that

∂if

∂x1
i +

∂if

∂x2
i +

∂if

∂x3
i +

∂if

∂x4
i = 0 for all integers i ≥ 0. (93)

Such functions are called harmonic. The space of harmonic functions has
dimension 24. It consists of all successive derivatives of the discriminant

∆(x1, x2, x3, x4) = (x1−x2)(x1−x3)(x1−x4)(x2−x3)(x2−x4)(x2−x4).

Thus the solution space to (93) is the cyclic C
[

∂
∂x1
, ∂

∂x2
, ∂

∂x3
, ∂

∂x4

]
-module

generated by ∆(x1, x2, x3, x4). This is what “solving (92)” should really
mean.
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10.2 Zero-dimensional Ideals

We fix the polynomial ring Q [∂] = Q [∂1 , . . . , ∂n]. The variables have funny
names but they are commuting variables just like x1, . . . , xn in the previous
lectures. We shall be interesting finding the solutions of an ideal I in Q [∂].
Let F be a class of C∞-functions on Rn or on C n or on some subset thereof.
For instance F might be the class of entire functions on C n . Then F is a
module for the ring Q [∂]: polynomials in Q [∂] acts on F by differentiation.
More precisely, if p(∂1, ∂2, . . . , ∂n) is a polynomial of degree d then it acts
on F by sending a function f = f(x1, . . . , xn) in the class F to the result of
applying the differential operator p( ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
) to f .

The class of functions F in which we are solving should always be chosen
large enough in the following sense. If I is any ideal in Q [∂] and Sol(I) is its
solution set in F then the set of all polynomials which annihilates all functions
in Sol(I) should be precisely equal to I. What this means algebraically is
that F is supposed to be an injective cogenerator for Q [∂]. In what follows
we will consider functions which are gotten by integration from products of
exponentials and polynomials. The resulting class F is large enough.

We start out by reviewing the case of one variable, abbreviated ∂ = ∂1,
over the field C of complex numbers. Here I = 〈p〉 is a principal ideal in
C [∂], generated by one polynomial which factors completely:

p(∂) = a0 + a1∂ + a2∂
2 + a3∂

3 + · · · + ad∂
d

= (∂ − u1)
e1(∂ − u2)

e2 · · · (∂ − ur)
er

Here we can take F to be the set of entire functions on the complex plane
C . The ideal I represents the ordinary differential equation

ad · f (d)(x) + · · · + a2 · f ′′(x) + a1 · f ′(x) + a0 · f(x) = 0. (94)

The solution space Sol(I) consists of all entire function f(x) which satisfy
the equation (94). This is a complex vector space of dimension d = e1 +
e2 + · · ·+ er. A canonical basis for this space is given as follows:

Sol(I) =
{
xj · exp(ui · x) | i = 1, 2, . . . , r , j = 0, 1, . . . , ei − 1

}
. (95)

We see that Sol(I) encodes all the zeros together with their multiplicities.
We now generalize the formula (95) to PDEs in n unknowns which have

finite-dimensional solution space. Let I be any zero-dimensional ideal in
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C [∂] = C [∂1 , . . . , ∂n]. We work over the complex numbers C instead of the
rational numbers Q to keep things simpler. The variety of I is a finite set

V(I) = { u(1), u(2), . . . , u(r) } ⊂ C n ,

and the ideal has a unique primary decomposition

I = Q1 ∩ Q2 ∩ · · · ∩Qr,

where Qi is primary to the maximal ideal of the point u(i),

Rad(Qi) = 〈 ∂1 − u(i)
1 , ∂2 − u(i)

2 , . . . , ∂n − u(i)
n 〉.

Given any operator p in C [∂], we write p(∂ + u(i)) for the operator gotten

from p(∂) by replacing the variable ∂j with ∂j +u
(i)
j for all j ∈ {1, 2, . . . , n}.

The following shifted ideal is primary to the maximal ideal 〈∂1, . . . , ∂n〉:
shift(Qi) = 〈 p(∂ + u(i)) : p ∈ Qi 〉.

Let shift(Qi)
⊥ denote the complex vector space of all polynomials f ∈

C [x1 , . . . , xn] which are annihilated by all the operators in shift(Qi).

Lemma 107. The vector spaces shift(Qi)
⊥ and C [∂]/Qi are isomorphic.

Proof. Writing J = shift(Qi), we need to show the following. If J is a
〈∂1, . . . , ∂n〉-primary ideal, then C [∂]/J is isomorphic to the space J⊥ of
polynomial solutions of J . By our hypothesis, there exists a positive inte-
ger m such that 〈∂1, . . . , ∂n〉m lies in J . Hence J⊥ consists of polynomials
all of whose terms have degree less than m. Differentiating polynomials de-
fines a nondegenerate pairing between the finite-dimensional vector spaces
C [∂]/〈∂1 , . . . , ∂n〉m and C [x]<m = { polynomials of degree less than m}.
This implies that J equals the annihilator of J⊥ in C [∂]/〈∂1 , . . . , ∂n〉m, and
hence C [∂]/J and J⊥ are complex vector spaces of the same dimension.

In the next section we will show how to compute all polynomial solutions
of an ideal in C [∂]. Here we patch solutions from the points of V(I) together.

Theorem 108. The solution space Sol(I) of the zero-dimensional ideal I ⊂
C [∂] is a finite-dimensional complex vector space isomorphic to C [∂]/I. It
is spanned by the functions

q(x) · exp(u(i) · x) = q(x1, x2, . . . , xn) · exp(u
(i)
1 x1 + u

(i)
2 x2 + · · ·+ u(i)

n xn),

where i = 1, 2, . . . , r and q(x) ∈ shift(Qi)
⊥.
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Proof. An operator p(∂) annihilates the function q(x)·exp(u(i)·x) if and only
if the shifted operator p(∂+u(i)) annihilates the polynomial q(x). Hence the
given functions do lie in Sol(I). Moreover, if we let q(x) range over a basis
of shift(Qi)

⊥, then the resulting functions are C -linearly independent. We
conclude that the dimension of Sol(I) is at least the dimension of C [∂]/I. For
the reverse direction, we assume that every function f in F is characterized by
its Taylor expansion at the origin. Any set of such functions whose cardinality
exceeds the number of standard monomials of I, in any term order, is easily
seen to be linearly dependent over the ground field C .

We have demonstrated that solving a zero-dimensional ideal in C [∂] can
be reduced, by means of primary decomposition, to finding all polynomial
solutions of a system of linear PDE with constant coefficients. In the next
section we describe how to compute the polynomial solutions.

10.3 Computing Polynomial Solutions

In this section we switch back to our favorite ground field, the rational
numners Q , and we address the following problem. Let J be any ideal in
Q [∂] = Q [∂1 , . . . , ∂n]. We do not assume that J is zero-dimensional. We
are interested in the space Polysol(J) of polynomial solutions to J . Thus
Polysol(J) consists of all polynomials in Q [x] = Q [x1 , . . . , xn] which are an-
nihilated by all operators in J . Our problem is to decide whether Polysol(J)
is finite-dimensional and, in the affirmative case, to give a vector space basis.

The first step in our computation is to find the iterated ideal quotient

I =
(
J : (J : 〈∂1, ∂2, . . . , ∂n〉∞)

)
(96)

The ideal I is the intersection of all primary components of J which are not
contained in the maximal ideal 〈∂1, ∂2, . . . , ∂n〉. Such a primary component
cannot have any polynomial solutions, because an operator f(∂) cannot an-
nihilate a nonzero polynomial p(x) unless the constant term of f(∂) is zero.
This observation implies

Polysol(J) = Polysol(I). (97)

Proposition 109. The following three conditions are equivalent:

• The vector space Polysol(J) is finite-dimensional.
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• The ideal I is zero-dimensional.

• The ideal I is 〈∂1, . . . , ∂n〉-primary.

It is easy to test the second condition. We do so by computing the reduced
Gröbner basis of I with respect to any term order ≺ on Q [∂]. The conditions
in Proposition 109 are met if and only if every variable ∂i appears to some
power in the initial ideal in≺(I) = 〈 in≺(g) : g ∈ I 〉. Let B be the (finite)
set of monomials in Q [x1 , . . . , xn] which are annihilated by in≺(I). These
are precisely the ≺-standard monomials of I but written in the x-variables
instead of the ∂-variables. Clearly, the set B is a Q -basis of Polysol(in≺(I)).
Let N denote the set of monomials in Q [x1 , . . . , xn]\B.

For every non-standard monomial ∂α there is a unique polynomial

∂α −
∑
xβ∈B

cα,β · ∂β in the ideal I,

which is gotten by taking the normal form modulo G. Here cα,β ∈ Q .
Abbreviate β ! := β1!β2! · · ·βn!. For a standard monomial xβ, define

fβ(x) = xβ +
∑

xα∈N
cα,β

β!

α!
xα. (98)

This sum is finite because I is 〈∂1, . . . , ∂n〉-primary, i.e., if |α| � 0, then
∂α ∈ I and hence cα,β = 0. We can also write it as a sum over all α ∈ Nn :

fβ(x) =
∑

α

cα,β
β!

α!
xα.

Theorem 110. The polynomials fβ, where xβ runs over the set B of standard
monomials, forms a Q -basis for the space I⊥ = Sol(I) = Polysol(I).

Proof. The polynomials fβ are Q -linearly independent. Therefore, it suffices
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to show g(∂)fβ(x) = 0 for g(∂) =
∑

u Cu∂
u ∈ I.

g(∂)fβ(x) =
∑

α

∑
u

cα,βCu
β!

α!
(∂uxα)

=
∑

α

∑
u≤α

cα,βCu
β!

(α− u)!x
α−u

=
∑

v

(∑
u

cu+v,βCu
β!

v!

)
xv where v = α− u

= β!
∑

v

1

v!

(∑
u

cu+v,βCu

)
xv.

The expression
∑

u cu+v,βCu is the coefficient of ∂β in the ≺-normal form of
∂vg(∂). It is zero since ∂vg(∂) ∈ I.

If I is homogeneous, then we can write

fβ = xβ +
∑

xα∈Nd

cα,β · β !

α !
· xα (99)

where the degree of xβ is d and Nd denotes the degree d elements in the set
N of non-standard monomials.

We summarize our algorithm for finding all polynomial solutions to a
system of linear partial differential equations with constant coefficients.

Input: An ideal J ∈ Q [∂].
Output: A basis for the space of polynomial solutions of J .

1. Compute the colon ideal I in formula (96).

2. Compute the reduced Gröbner basis of I for a term order ≺.

3. Let B be the set of standard monomials for I.

4. Output fβ(x1, . . . , xn) for fβ in (98), for all θβ ∈ B.

The following special case deserves particular attention. A homogeneous
zero-dimensional ideal I is called Gorenstein if there is a homogeneous poly-
nomial V (x) such that I = {p ∈ Q [∂] : p(∂)V (x) = 0 }. In this case
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I⊥ consists precisely of all polynomials which are gotten by taking successive
partial derivatives of V (x). For example, the ideal I generated by the elemen-
tary symmetric polynomials is Gorenstein. Here V (x) =

∏
1≤i<j≤n(xi − xj),

the discriminant, and I⊥ is the space of harmonic polynomials.
Suppose we wish to decide whether or not a ideal I is Gorenstein. We

first compute a Gröbner basis G of I with respect to some term order ≺. A
necessary condition is that there exists a unique standard monomial xβ of
maximum degree, say t. For every monomial xα of degree t there exists a
unique constant cα ∈ Q such that xα − cα · xβ ∈ I. We can find the cα’s by
normal form reduction modulo G. Define V :=

∑
α:|α|=t(cα/α !) · xα, and let

Q [∂]V be the Q -vector space spanned by the polynomials

∂uV =
∑

α:|α|=t−|u|
(cα+u/α !) · xα, (100)

where ∂u runs over all monomials of degree at most t.

Proposition 111. The ideal I is Gorenstein if and only if Q [∂]V = I⊥ if
and only if dimQ(Q [∂]V ) equals the number of standard monomials.

The previous two propositions provide a practical method for solving lin-
ear systems with constant coefficients. We illustrate this in a small example.

Example 112. For n = 5 consider the homogeneous ideal

I = 〈∂1∂3, ∂1∂4, ∂2∂4, ∂2∂5, ∂3∂5, ∂1 + ∂2 − ∂4, ∂2 + ∂3 − ∂5 〉.

Let ≺ be any term order with ∂5 ≺ ∂4 ≺ ∂3 ≺ ∂2 ≺ ∂1. The reduced Gröbner
basis of I with respect to ≺ equals

G =
{
∂1−∂3−∂4 +∂5, ∂2 +∂3−∂5, ∂

2
3 +∂4∂5, ∂3∂5, ∂

2
4 , ∂3∂4−∂4∂5, ∂

2
5

}
.

The underlined monomials generate the initial ideal in≺(I). The space of
polynomials annihilated by in≺(I) is spanned by the standard monomials

B =
{

1, x3, x4, x5, x4x5

}
.

There exists a unique standard monomial of maximum degree t = 2, so it
makes sense to check whether I is Gorenstein. For any quadratic monomial
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xixj , the normal form of xixj with respect to G equals cij · x4x5 for some
constant cij ∈ Q . We collect these constants in the quadratic form

V =
1

2

5∑
i=1

ciix
2
i +

∑
1≤i<j≤5

cijxixj

= x4x5 + x1x5 + x3x4 + x2x3 + x1x2 − 1

2
x2

3 −
1

2
x2

2 −
1

2
x2

1.

This polynomial is annihilated by I, and its initial monomial is annihilated by
in≺(I). We next compute the Q -vector space Q [∂]V of all partial derivatives
of V . It turns out that this space is five-dimensional. Using Proposition 111
we conclude that I is Gorenstein and its solution space I⊥ equals Q [∂]V .

10.4 How to Solve Monomial Equations

We consider an arbitrary monomial ideal M = 〈 ∂a(1)
, ∂a(2)

, . . . , ∂a(r) 〉 in
Q [∂]. The solution space Sol(M) consists of all functions f(x1, . . . , xn) which
have a specified set of partial derivatives vanish:

∂|a
(i)|f

∂x
a
(i)
1

1 · · · ∂xa
(i)
r

r

= 0 for i = 1, 2, . . . , r.

If M is zero-dimensional then Sol(M) is finite-dimensional with basis the
standard monomials B as in the previous section. Otherwise, Sol(M) is an
infinite-dimensional space. In what follows we offer a finite description.

We are interested in pairs (u, σ) consisting of a monomial xu, with u ∈ Nn ,
and a subset σ of {x1, x2, . . . , xn} with the following three properties:

1. ui = 0 for all i ∈ σ.

2. Every monomial of the form xu ·∏i∈σ x
vi
i lies in Sol(M).

3. For each j 6∈ σ there exists a monomial ∂
wj

j ·
∏

i∈σ ∂
vi
i which lies in M .

The pairs (u, σ) with these three properties are called the standard pairs
of the monomial ideal M . Computing the standard pairs of a monomial ideal
is a standard task in combinatorial commutative algebra. See (Hosten and
Smith 2001) for an implementation in Macaulay2. This is important for us
because the standard pairs is exactly what we want solving a monomial ideal.
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Theorem 113. A function f(x) is a solution to the ideal M of monomial
differential operators if and only if it can be written in the form

f(x1, . . . , xn) =
∑

xu1
1 · · ·xun

n · g(u,σ)

(
xi : i ∈ σ ),

where the sum is over all standard pairs of M .

Example 114. Let n = 3 and consider the monomial ideal

M = 〈 ∂2
1∂

3
2∂

4
3 , ∂

2
1∂

4
2∂

3
3 , ∂

3
1∂

2
2∂

4
3 , ∂

3
1∂

4
2∂

2
3 , ∂

4
1∂

2
2∂

3
3 , ∂

4
1∂

3
2∂

2
3 〉.

Thus Sol(M) consists of all function f(x1, x2, x3) with the property

∂9f

∂x2
i ∂x

3
j∂x

4
k

= 0 for all permutations (i, j, k) of {1, 2, 3}.

The ideal M has precisely 13 standard pairs:

(x3, {x1, x2}) , (1, {x1, x2}) , (x2, {x1, x3}) , (1, {x1, x3}) ,
(x1, {x2, x3}) , (1, {x2, x3}) , (x2

2x
2
3, {x1}) , (x2

3x
2
1, {x2}) , (x2

1x
2
2, {x3}) ,

(x3
1x

3
2x

3
3, {}) , (x2

1x
3
2x

3
3, {}) , (x3

1x
2
2x

3
3, {}) , (x3

1x
3
2x

2
3, {}).

We conclude that the solutions to M are the functions of the following form

x3 · f1(x1, x2) + f2(x1, x2) + x2 · g1(x1, x3) + g2(x1, x3)

+ x1 · h1(x1, x3) + h2(x1, x3) + x2
2x

2
3 · p(x1) + x2

1x
2
3 · q(x2) + x2

1x
2
2 · r(x2)

+ a1 · x3
1x

3
2x

3
3 + a2 · x2

1x
3
2x

3
3 + a3 · x3

1x
2
2x

3
3 + a4 · x3

1x
3
2x

2
3.

10.5 The Ehrenpreis-Palamodov Theorem

We are seeking a finite representation of all the solutions to an arbitrary
ideal I in C [∂] = C [∂1 , . . . , ∂n]. This representation should generalize both
the case of zero-dimensional ideals and the case of monomial ideals, and it
should reveal all polynomial solutions. Let us present two simple examples,
both for n = 3, which do not fall in the categories discussed so far.

Example 115. Consider the principal prime ideal I = 〈 ∂1∂3 − ∂2 〉.
The variety of I is a surface in C 3 parametrically given as (s, st, t) where s, t
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runs over all complex numbers. The PDE solutions to I are the functions
f(x1, x2, x3) which satisfy the equation

∂2f

∂x1∂x3
=

∂f

∂x2
.

In the setting of Ehrenpreis and Palamodov, every solution to this differential
equation can be expressed as a double integral of the form

f(x1, x2, x3) =

∫∫
exp
(
sx1 + stx2 + tx3

)
dsdt, (101)

where the integral is taken with respect to any measure on the complex
(s, t)-plane C 2 . For instance, we might integrate with respect to the measure
supported at two points (i, i) and (0, 17) and get a solution like

g(x1, x2, x3) = exp
(
ix1 − x2 + ix3

)
+ exp

(
17x3

)
.

Example 116. Let us consider the previous example but now add the re-
quirement that the second partials with respect to x2 and x3 should vanish
as well. That is, we now consider the larger ideal J = 〈 ∂1∂3 − ∂2 , ∂

2
2 , ∂

2
3 〉.

The ideal J is primary to 〈∂2, ∂3〉. It turns out that there are two kinds of
solutions: The first class of solutions are functions in the first variable only:

f(x1, x2, x3) = g(x1),

The second class of solutions takes the following form:

f(x1, x2, x3) = g(x1) · x3 + g′(x1) · x2.

In both cases, g is any differentiable function in one variable. It is instructive
to derive the second class as a special case from the integral formula (101).

We are now prepared to state the Ehrenpreis-Palamodov Theorem, in a
form that emphasizes the algebraic aspects over the analytic aspects. For
more analytic information and a proof of Theorem 117 see (Björk 1979).

Theorem 117. Given any ideal I in C [∂1 , . . . , ∂n], there exist finitely many
pairs (Aj , Vj) where Aj(x1, . . . , xn, ξ1, . . . , ξn) is a polynomial in 2n unknowns
and Vi ⊂ C n is the irreducible variety of an associated prime of I, such
that the following holds. If K is any compact and convex subset of Rn and
f ∈ C∞(K) is any solution to I, then there exist measures µj on Vj such that

f(ix1, . . . , ixn) =
∑

j

∫
Vj

Aj(X, ξ) exp(ix · ξ) dµj(ξ). (102)
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Here i2 = −1. Theorem 117 gives a precise characterization of the scheme
structure defined by I. Indeed, if I is a radical ideal then all Aj can be taken
as the constant 1, and the pairs (1, Vj) simply run over the irreducible compo-
nents of I. The main point is that the polynomials Aj(x, ξ) are independent
of the space F = C∞(K) in which the solutions lie. In the opinion of the
author, the true meaning of solving a polynomial system I is to exhibit the
associated primes of I together with their multiplier polynomials Aj(x, ξ).

Our earlier results on zero-dimensional ideals and monomial ideals can be
interpreted as special cases of the Ehrenpreis-Palamodov Theorem. In both
cases, the polynomials Aj(x, ξ) only depend on x and not on the auxiliary
variables ξ. In the zero-dimensional case, each Vj is a single point, say Vj =
{u(j)}. Specifying a measure µj on Vj means picking a constant multiplier for
the function exp(x ·u(j)). Hence we recover Theorem 108. If I is a monomial
ideal then each Vj is a coordinate subspace, indexed by a subset σ of the
variables, and we can take monomials xu1

1 · · ·xun
n for the Aj. Thus, in the

monomial case, the pairs (Aj , Vj) are the standard pairs of Theorem 113.
For general ideals which are neither zero-dimensional nor monomials, one

needs the appearance of the extra variables ξ = (ξ1, . . . , ξn) is the polynomials
Aj(x, ξ). A small ideal where this is necessary appears in Example 116.

Suppose we are given an ideal I in C [∂] and we wish to compute the
list of pairs (Aj , Vj) described in the Ehrenpreis-Palamodov Theorem. It is
conceptually easier to first compute a primary decomposition of I, and then
compute multipliers Aj for each primary component separately. This leads
to the idea of Noetherian operators associated to a primary ideal. In the
literature, it is customary to Fourier-dualize the situation and to think of the
Ai(x, ξ) as differential operators. We shall sketch this in the next section.

10.6 Noetherian Operators

In this section we consider ideals in the polynomial ring C [x] = C [x1 , . . . , xn].
Let Q be a primary ideal in C [x] and V its irreducible variety in C n .

Theorem 118. There exist differential operators with polynomial coeffi-
cients,

Ai(x, ∂) =
∑

j

cij · pj(x1, . . . , xn) · ∂j1
1 ∂

j2
2 · · ·∂jn

n , i = 1, 2, . . . , t,

with the following property. A polynomial f ∈ C [x] lies in the ideal Q if and
only if the result of applying Ai(x, ∂) to f(x) vanishes on V for i = 1, 2, . . . , t.
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The operators A1(x, ∂), . . . , Ar(x, ∂) are said to be Noetherian operators
for the primary ideal Q. Our computational task is to go back and fourth be-
tween the two presentations of a primary ideal Q. The first presentation is by
means of ideal generators, the second presentation is by means of Noetherian
operators. Solving the equations Q means to go from the first presenta-
tion to the second. The reverse process can be thought of as implicitization
and is equally important. The final version of these notes will contain some
interesting examples to demonstrate the usefulness of Noetherian operators.

10.7 Exercises

(1) Let a, b, c be arbitrary positive integers. How many linearly indepen-
dent (polynomial) functions f(x, y, z) satisfy the differential equations

∂af

∂xa
=

∂b+cf

∂yb∂zc
,

∂af

∂ya
=

∂b+cf

∂xb∂zc
and

∂af

∂za
=

∂b+cf

∂x∂y
?

(2) Let α1, α2, α3 be parameters and consider the differential equations

〈 ∂1 + ∂2 + ∂3 − α1, ∂1∂2 + ∂1∂3 + ∂2∂3 − α2, ∂1∂2∂3 − α3 〉

Find a solution basis which works for all values of the parameters
α1, α2, α3. One of your basis elements should have the form

(x1 − x2)(x1 − x3)(x2 − x3) + O(α1, α2, α3).

(3) Describe all solutions to the differential equations 〈 ∂1∂3−∂2
2 , ∂

3
2 , ∂

3
3 〉.

(4) The m’th symbolic power P (m) of a prime ideal P in a polynomial ring
C [x1 , . . . , xn] is the P -primary component in the ordinary power Pm.
What are the Noetherian operators for P (m)?
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