
COMPUTATIONAL COMMUTATIVE ALGEBRA NOTES

ALEXANDER M. KASPRZYK

1. Reference Material

The official course textbook is [CLO07]. This is an excellent book; the style is clear

and the material accessible. For this reason, I intend to follow the text quite closely. It is

likely, however, that you will need further resources. If you’re finding a particular concept

tricky, or you wish to explore a topic further, try looking in one of the following books

(all available from the library).

Commutative algebra. Commutative algebra will provide the machinery we require

before any progress can be made. The introductory book [Sha00] is formal in tone, and

covers the material in a clear fashion. If you find the flavour not to your liking, then [Rei95]

is an excellent (although trickier) alternative. If you enjoy the course, then at some point

you will need to tackle [AM69]. The graduate–level book [Eis95] covers everything and

then some, however the material is presented at a much more abstract level than we shall

require.

Algebraic geometry. We turn to Algebraic Geometry to motivate our progress. In par-

ticular, we shall consider affine varieties. Here you are best consulting [Rei88] or [SKKT00].

Both books are approachable. If you wish to explore further, then [Sha94] is your best

bet.

Gröbner bases. Aside from the course text book, [AL94] and [KR00] are excellent ref-

erences. For the more enthusiastic, [Eis95] covers all the material we shall see, but at a

much higher level of abstraction.

To the horizon. If you finish the course and want to learn more, an obvious start is

to work through the remainder of [CLO07]. You should also read [AM69, Rei95, Rei88]

mentioned above. Cox, Little, and O’Shea have written an excellent sequel, [CLO05].

Kreuzer and Robbiano’s second book [KR05] in their computational commutative algebra

series is also very good. You might like to look at [Sch03] too.

http://erdos.math.unb.ca/∼kasprzyk/
kasprzyk@unb.ca.
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2. A note on computing software

It is important that you have access to some commutative algebra software. In the

department you can access Maple. Two useful tutorials, by C. Hillar and by J. Roberts,

which you may wish to work through are:

http://www.math.tamu.edu/∼chillar/files/introduction-maple.pdf
http://www.math.umn.edu/∼roberts/math5385/matlabinfo/mapleinfo.html

You may also wish to install some software on your own computer. One possibility is to

use Sage1, available for free from:

http://www.sagemath.org/

Other very powerful packages, also freely available, are AXIOM 2, Macaulay2 3, and GAP 4:

http://axiom-wiki.newsynthesis.org/

http://www.math.uiuc.edu/Macaulay2/

http://www-gap.mcs.st-and.ac.uk/

You can read more about the various options in [CLO07, Appendix C].

If you intend to work at home, or for some reason you want to avoid using Maple, you

should try to install a commutative algebra package on your own computer at the earliest

opportunity. It would be useful if you could report back how it went. I’ve successfully

managed to install Sage, Macaulay2, GAP, and CoCoA on Mac OS X and can help

anybody who is having difficulty.

The use of computing software will be essential if you wish to avoid a serious amount

of calculation. The calculations we shall be performing are best done by a computer, no

matter how allergic you believe you are to this concept. Life’s too short not to use a

computer. Honestly.

3. Commutative algebra

This is not intended to be a course on commutative algebra in general; commutative

algebra is a vast subject, from which we need only the most basic ideas. Unfortunately

we must hurry through the material, covering only what is absolutely essential. If you

find our journey too brief then you should consult the books recommended in Section 1.

Although we introduce only a few pieces of machinery, we’ll quickly discover that ob-

vious questions can be exceedingly difficult to answer. A methodical approach to solving

1Tutorial at http://www.sagemath.org/doc/html/tut/.
2Introduction at http://www.dcs.st-and.ac.uk/∼mnd/documentation/axiom tutorial/.
3Consult [EGSS02] (also available online at http://www.math.uiuc.edu/Macaulay2/Book/).
4Manual at http://www-gap.mcs.st-and.ac.uk/Manuals/doc/htm/index.htm.

http://www.math.tamu.edu/~chillar/files/introduction-maple.pdf
http://www.math.umn.edu/~roberts/math5385/matlabinfo/mapleinfo.html
http://www.sagemath.org/
http://axiom-wiki.newsynthesis.org/
http://www.math.uiuc.edu/Macaulay2/
http://www-gap.mcs.st-and.ac.uk/
http://www.sagemath.org/doc/html/tut/
http://www.dcs.st-and.ac.uk/~mnd/documentation/axiom_tutorial/
http://www.math.uiuc.edu/Macaulay2/Book/
http://www-gap.mcs.st-and.ac.uk/Manuals/doc/htm/index.htm


COMPUTATIONAL COMMUTATIVE ALGEBRA NOTES 3

these problems is provided by Gröbner bases, however you’ll have to wait until Section 8

to see how.

Basic Definitions.

Definition 3.1. A field is a set k endowed with two binary operations:

· : k × k→ k + : k × k→ k

(a, b) 7→ a · b (a, b) 7→ a+ b

called multiplication and addition respectively. The triple (k, ·,+) satisfies:

(1) Associativity

(a · b) · c = a · (b · c) and (a+ b) + c = a+ (b+ c) for all a, b, c ∈ k.

(2) Commutativity

a · b = b · a and a+ b = b+ a for all a, b ∈ k.

(3) Distributivity

a · (b+ c) = a · b+ a · c for all a, b, c ∈ k.

(4) Identities

There exists an element in k, denoted by 1, such that 1 · a = a for all a ∈ k.

There exists an element in k, denoted by 0, such that 0 + a = a for all a ∈ k.

(5) Additive Inverse

For each a ∈ k there exists some b ∈ k such that a + b = 0. Such a b is unique

(prove this); we usually denote it by −a.

(6) Multiplicative Inverse

For each a ∈ k, a 6= 0 there exists some b ∈ k such that a · b = 1. Such a b is

unique (prove this); we usually denote it by a−1.

Exercise 3.2. Some familiar fields are Q,R and C. Check in each case that they do indeed

satisfy the conditions of Definition 3.1. Why has Z been omitted from this list?

Exercise 3.3. A less familiar example of a field is the set of two elements, {0, 1}, endowed

with multiplication and addition as follows:

· 0 1

0 0 0

1 0 1

+ 0 1

0 0 1

1 1 0

In fact this is simply arithmetic over Z performed modulo two. Check that this really is

a field. We denote this field by F2 or Z/(2).
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Exercise 3.4. Inspired by Exercise 3.3, let us consider the set of three elements {0, 1, 2} and

endow it with multiplication and addition given by the usual multiplication and addition

on Z reduced module three. So, for example, 1 + 2 = 0 (since 1 + 2 = 3 ≡ 0 (mod 3) in Z),

and 2 + 2 = 1 (since 2 + 2 = 4 ≡ 1 (mod 3) in Z). Check that the resulting multiplication

and addition tables are given by:

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Finally, verify that this defines a field. We shall denote it by F3 or by Z/(3).

Exercise 3.5. What about reducing modulo four, to define Z/(4). Is this a field? If not,

why not? Consider Z/(5) and Z/(6). Any ideas how to decide in general whether Z/(n)

is a field? Test your conjecture with an example or two.

Definition 3.6. A commutative ring is a set R along with two binary operations · and

+ such that the triple (R, ·,+) satisfies the following:

(1) Associativity

(a · b) · c = a · (b · c) and (a+ b) + c = a+ (b+ c) for all a, b, c ∈ k.

(2) Commutativity

a · b = b · a and a+ b = b+ a for all a, b ∈ k.

(3) Distributivity

a · (b+ c) = a · b+ a · c for all a, b, c ∈ k.

(4) Identities

There exists an element in k, denoted by 1, such that 1 · a = a for all a ∈ k.

There exists an element in k, denoted by 0, such that 0 + a = a for all a ∈ k.

(5) Additive Inverse

For each a ∈ k there exists some b ∈ k such that a + b = 0. Such a b is unique

(prove this); we usually denote it by −a.

Remark 3.7. Note that these conditions of Definition 3.6 are the same as conditions (1)-

(6) of Definition 3.1; we do not however require the existence of a multiplicative inverse.

Note also that nothing in these conditions excludes the case when 1 = 0. In this case, R

is the zero ring denoted by 0.

Example 3.8. An example of a familiar ring is Z. Another example which should be fa-

miliar to you is the polynomial ring over R with one indeterminate, which we donote by
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R[x] (addition and multiplication are just the standard polynomial addition and multi-

plication). More generally k[x] is a ring for any field k. More generally still, we can allow

finitely many indeterminates k[x1, . . . , xn].

Exercise 3.9. Why is R[x] (or, for that matter, k[x]) not a field? Can you think of a way

to enlarge R[x] to create a field?

Definition 3.10. Let R be a commutative ring such that for all a, b ∈ R with a · b = 0,

either a = 0 or b = 0. We call R an integral domain (or sometimes simply a domain).

Exercise 3.11. Prove that any field k, when regarded as a commutative ring, is an integral

domain.

Remark 3.12. From Exercise 3.11 we see that integral domains are sort of “half-way”

towards being a field. It is natural to look for an example of an integral domain which

is not a field. Fortunately we don’t need to look very far: our rings in Example 3.8 will

suffice. An example of a ring which is not an integral domain is Z/(4).

Definition 3.13. Let R be a commutative ring, and I ⊂ R a subset satisfying:

(1) 0 ∈ I
(2) If a, b ∈ I then a+ b ∈ I (i.e. I is closed under addition)

(3) If a ∈ R, b ∈ I then a · b ∈ I.

Then we call I an ideal.

Remark 3.14. Note that condition (3) of Definition 3.13 tells us that I is closed under

multiplication.

Example 3.15. Ideals are crucially important objects. Let us consider the ring Z, and

define the set:

(n) := {kn | k ∈ Z} , for any n ∈ Z.

Then (n) is an ideal for any n ∈ Z (you should check that the conditions are satisfied).

We can attempt to extend this construction by defining:

(n,m) := {kn, km | k ∈ Z} , for any n,m ∈ Z.

This attempt isn’t good enough, however, since the resulting set is not an ideal. For

example, using this definition, consider (2, 3). This obviously contains 2 and 3, but does
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not contain the number 2 + 3 = 5 and so is not closed under addition. The correct

definition to use is:

(n,m) := {kn+ k′m | k, k′ ∈ Z} , for any n,m ∈ Z.

Now we see that (n,m) is always an ideal. Can you see how to generalise this to an

arbitrary finite number of generators (n1, . . . , nm)?

Polynomial Rings.

Example 3.16. Another important place to look for ideals is in the polynomial ring

k[x1, . . . , xn] (remember that k can be any field, but you are best of thinking of R or,

even better, C). We shall consider k[x] := {a+ bx | a, b ∈ k}. Let f ∈ k[x] be any

function in the polynomial ring. We define the ideal generated by f to be:

(f) := {gf | g ∈ k[x]} (c.f. Example 3.15).

You should check that this really does define an ideal.

Consider (x). Any non-zero element in this ideal is a function of the form xg(x). I.e.

it contains a factor x. Hence x = 0 is a root of any function in (x). Now consider any

function g ∈ k[x] such that g(0) = 0. Then g factorises in the form g(x) = xh(x) for

some polynomial h ∈ k[x]. But this implies that g ∈ (x). Thus we see that the ideal (x)

is precisely those polynomials which have a root at x = 0.

Exercise 3.17. Repeat the steps in Example 3.16 for the ideal (x − 3) ⊂ R[x]. Describe

the intersection (x) ∩ (x− 3). Is this intersection an ideal?

Definition 3.18. Let f1, . . . , fm be polynomials in a polynomial ring k[x1, . . . , xn]. Set:

(f1, . . . , fm) = {h1f1 + . . .+ hmfm | hi ∈ k[x1, . . . , xn]} .

Then (f1, . . . , fm) is an ideal, called the ideal generated by f1, . . . , fm.

Lemma 3.19. The set (f1, . . . , fm) in Definition 3.18 really is an ideal.

Proof. First we observe that 0 ∈ (f1, . . . , fm), by setting all the hi = 0. Now suppose that

f =
∑
aifi and g =

∑
bifi are two elements in (f1, . . . , fm). Then:

f + g =
∑

aifi +
∑

bifi =
∑

(ai + bi)fi ∈ (f1, . . . , fm).

Finally, let p ∈ k[x1, . . . , xn]. Then:

pf = p
∑

aifi =
∑

paifi ∈ (f1, . . . , fm).

�
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Remark 3.20. As in Example 3.16, the ideal in Definition 3.18 has a nice interpretation

in terms of roots. Given f1, . . . , fm ∈ k[x1, . . . , xn] we set each polynomial equal to zero,

obtaining the system of equations:

f1 = 0,
...

fm = 0.

From these equations we can derive others. We are free to multiply any fi by any other

polynomial hi, and to add together the resulting equations, with the result:

h1f1 + . . .+ hmfm = 0 for any hi ∈ k[x1, . . . , xn].

But this is precisely the definition of (f1, . . . , fm).

Example 3.21. Let us consider ideal generated by the polynomials x + 1, y − 2 ∈ R[x, y].

We obtain the system of equations:

x+ 1 = 0,

y − 2 = 0.

In other words, x = −1, y = 2. Now let us consider an arbitrary element in (x+ 1, y− 2).

This element will be of the form:

(x+ 1)h1(x, y) + (y − 2)h2(x, y), for some h1, h2 ∈ R[x, y].

Clearly this is zero when x = −1, y = 2.

Definition 3.22. We say that an ideal I ⊂ k[x1, . . . , xn] is finitely generated if there

exists f1, . . . , fm ∈ k[x1, . . . , xn] such that I = (f1, . . . , fm). We call f1, . . . , fm a basis for

I.

Remark 3.23. Although all the ideals we have seen so far are finitely generated, this need

not always be the case. In 1890 David Hilbert5 proved that any ideal of a polynomial ring

k[x1, . . . , xn] is finitely generated (Theorem 7.9). His proof was very abstract for the time,

and was famously denounced as “theology, not mathematics” by his peers. The brilliant

mathematician Emmy Noether6 generalised Hilbert’s results still further, cutting right to

the heart of the matter in her study of what we now call Noetherian rings.

Example 3.24. As you might expect, non-finitely generated ideals do exist.

5For a brief biography of Hilbert, see
http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Hilbert.html.
6For a brief biography of Noether, see
http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Noether Emmy.html.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hilbert.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Noether_Emmy.html
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(1) Consider the infinitely generated polynomial ring k[x1, x2, x3, . . .]. Clearly the

ideal (x1, x2, x3, . . .) cannot be finitely generated.

(2) Consider the ring R generated by all polynomials of the form c+ xf(x, y), where

c ∈ k and f ∈ k[x, y]. With a little thought, we see that we can rewrite this more

succinctly as:

R = k[x, xy, xy2, . . .].

The ideal (x, xy, xy2, . . .) is clearly not finitely generated.

Remark 3.25. Given an ideal I which we know to be finitely generated, it is a natural to

ask how we can find a bases for I. Gröbner bases answer precisely this question.

Exercise 3.26. Prove that the ideals (x, y), (x + y, x − y), and (x + xy, y + xy, x2, y2) in

k[x, y] are equal. Thus we see that there may exist many different choices of bases for a

finitely generated ideal. Moreover, the number of generators is not unique. This situation

is fundamentally different from that encountered in linear algebra.

Exercise 3.27. Given the ideal (x4− 1, x6− 1) ⊂ k[x], we should like to know whether we

can write this ideal using just one generator. In fact we can. Prove that (x4−1, x6−1) =

(x2 − 1). Knowing this, it is now easy to decide whether a given polynomial f lies in the

ideal or not. Why is this? Is x3 − x contained in the ideal? What about x6 + x4?

Definition 3.28. An ideal I of a polynomial ring k[x1, . . . , xn] is called a principal ideal

if it can be generated by a single polynomial I = (f), for some f ∈ k[x1, . . . , xn]. Equiv-

alently, I is principal if there exists a basis of size one.

Remark 3.29. As we saw in Exercise 3.27, deciding whether a particular polynomial is

contained in a given ideal or not is easy if we can write our ideal as a principal ideal. This

suggests three questions:

(1) Can we decide whether an ideal is principal or not?

(2) If an ideal is principal, how do we find a bases of size one?

(3) If an ideal is not principal, how do we decide whether a given element is contained

in the ideal?

Gröbner bases allow us to answer all three questions.

Exercise 3.30. To demonstrate how difficult things can become, are the following two

statements true?

(1) y2 − xz ∈ (y − x2, z − x3)
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(2) x3 + 4x2 + 3x− 7 ∈ (x3 − 3x+ 2, x4 − 1, x6 − 1)

[Hint: For (2) use Exercise 3.27 to express the ideal using only two elements. Now attempt

to express the ideal as a principal ideal. If you can do this, you can readily find the answer.]

We shall answer (2) in Example 5.11. (1) shall have to wait until Example 6.25, however

it will take until Example 8.10 for a really satisfying solution.

4. Affine varieties

Now that we’ve covered the basic definitions of commutative algebra, we can look briefly

at Algebraic Geometry. Once again this is a huge subject from which we shall see only

the most elementary concepts. For an enjoyable history, see [Rei88, §8].

Forwards to affine varieties...

Definition 4.1. Let k be a field and n ∈ Z>0. We define the n-dimensional affine space

over k to be the set:

kn = {(a1, . . . , an) | ai ∈ k} .

Remark 4.2. It is also common to denote the affine space kn by An
k (or simply An). We

call one-dimensional affine space k1 = k the affine line, and two-dimensional affine space

k2 the affine plane. (And yes, affine space really is as simple as you’re thinking it is.)

Let f ∈ k[x1, . . . , xn] be a polynomial. Then f is a function from n-dimensional affine

space to the field k:

f : kn → k.

To spell it out: the point (a1, . . . , an) ∈ kn in affine space is mapped to f(a1, . . . , an) ∈ k.

(And yes, once again this really is that simple.)

Definition 4.3. Let k be a field, and let f1, . . . , fm ∈ k[x1, . . . , xn] be a finite number of

polynomials. Then

V(f1, . . . , fm) := {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ m}

is called the affine variety defined by f1, . . . , fm.

Remark 4.4. An affine variety V(f1, . . . , fm) is simply the set of solutions to the system

of equations:

f1 = 0,
...

fm = 0.
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For example, the affine variety V(2x− y) ⊂ R2 corresponds to the graph of the function

y = 2x. Similarly the variety V(x2 + y2 − 1) is the circle of radius one centred at the

origin. Any polynomial y = f(x1, . . . , xn) can be viewed as an affine variety; namely as

V(f(x1, . . . , xn)− y) in kn+1.

Example 4.5. It is easy to produce examples of affine varieties. Here are three examples

to make you think:

(1) The conic sections (circles, ellipses, parabolas, and hyperbolas) are all affine vari-

eties. You know how the conic sections are related (if not, look it up); does that

give you any ideas about the affine varieties?

(2) The graph of y = 1
x

corresponds to an affine variety – we simply multiply through

by x, obtaining V(xy − 1).

(3) Similarly the graph of any rational function is also an affine variety (see Defini-

tion 4.6).

Definition 4.6. Let k[x1, . . . , xn] be a polynomial ring over a field k. A rational function

is a quotient f
g

of two polynomials f, g ∈ k[x1, . . . , xn], g 6= 0. Two rational functions
f1
g1

and f2
g2

are equal provided that f1 · g2 = f2 · g1. The set of all rational functions (in

x1, . . . , xn and with coefficients in k) is denoted k(x1, . . . , xn).

Exercise 4.7. Look once more at Exercise 3.9. Have you any thoughts? Can you prove

what you’re thinking?

Remark 4.8. If you have access to computer graphing software such as Maple (or Grapher

on Max OS X, which can be found in the folder /Applications/Utilities), this gives

you the perfect opportunity to play with plotting various graphs under the guise of ex-

perimenting with affine varieties. For some pictures see [CLO07, pg. 7] or the wonderful

plots in [SKKT00].

Example 4.9. An important example is the twisted cubic. This is the variety V(y−x2, z−
x3) (c.f. Example 3.30 (1)). It’s given by the intersection of y = x2 and z = x3 in k3. You

should plot both equations and their intersection. Notice that y = x2 cuts out a surface

in k3, as does z = x3. Their intersection is a curve (see Figure 1).

Definition 4.10. Let I ⊂ k[x1, . . . , xn] be an ideal. Then

V(I) := {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ I}

is called the affine variety defined by I.
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Figure 1. The twisted cubic is the curve given by the intersection of the

surfaces y = x2 and z = x3.

Remark 4.11. Although superficially Definition 4.10 seems to be a significant abstraction

of Definition 4.3, really very little has changed. Recall from Remark 3.23 that ideals of

polynomial rings are finitely generated. Hence we can write I = (f1, . . . , fm) for some

f1, . . . , fm ∈ k[x1, . . . , xn] and the two definitions become equivalent.

Example 4.12. Let I = (z2 − x2 − y2) ⊂ k[x, y, z]. Then the variety V(I) ⊂ k3 is a cone

with apex at the origin, pictured in Figure 2.

Exercise 4.13. Consider the affine varieties U = V(x, y), V = V(x + y, x − y), and

W = V(x + xy, y + xy, x2, y2). You should be able to see that U = V = W = {(0, 0)}.
Compare this result with Exercise 3.26. What about the varieties V(x4 − 1, x6 − 1) and

V(x2 − 1) (see Exercise 3.27)?

Exercise 4.14. Suppose that (f1, . . . , fm) = (g1, . . . , gs). Show that V(f1, . . . , fm) =

V(g1, . . . , gs).

Remark 4.15. Exercise 4.14 is an important result. What it says is that by changing the

basis of the ideal, you can make it easier to determine the variety. For example, if you
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Figure 2. The cone in R3 given by z2 = x2 + y2.

can write your ideal as a principal ideal (f), then the resulting variety corresponds to

the graph f = 0. Unfortunately being able to find “nice” bases for an ideal is one of the

things we don’t yet know how to do (see Remark 3.29).

Example 4.16. You mustn’t get carried away by Exercise 4.14. The converse statement

is slightly more subtle, and requires knowledge of the radical ; we shall return to this in

Section 10.

Consider V(x) and V(x2) in R2. Clearly these two varieties are equal (they both cor-

respond to the y-axis) however the ideals (x) and (x2) are different (for instance, x ∈ (x)

but x /∈ (x2)). It is not a coincidence that squaring x gives us an element in (x2).

...And backwards to commutative algebra.

Definition 4.17. Let V ⊂ kn be an affine variety. Then

I(V ) := {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }

is called the ideal of V .

Proposition 4.18. The set I(V ) really is an ideal.
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Proof. Clearly the zero polynomial 0 ∈ I(V ). Now suppose that f, g ∈ I(V ). Then for

any (a1, . . . , an) ∈ V we have:

f(a1, . . . , an) + g(a1, . . . , an) = 0 + 0 = 0

and so f + g ∈ I(V ). Now let h ∈ k[x1, . . . , xn]. We have that:

h(a0, . . . , an)f(a0, . . . , an) = h(a0, . . . , an) · 0 = 0

and so hf ∈ I(V ). �

Example 4.19. Let V = {(0, 0)} ⊂ k2 be the affine variety consisting only of the origin. We

shall show that I(V ) = (x, y). Clearly any polynomial of the form f(x, y) ·x+ g(x, y) ·y ∈
k[x, y], f, g ∈ k[x, y], vanishes at the origin. Hence (x, y) ⊂ I(V ).

For the other inclusion let f =
∑

i,j aijx
iyj ∈ k[x, y] be such that f(0, 0) = 0. Then

a00 = 0, and so:

f = a00 +
∑
i,j 6=0,0

aijx
iyj

= 0 +
(∑

i,j

i>0

aijx
i−1yj

)
x+

(∑
j>0

a0jy
j−1
)
y ∈ (x, y).

Hence I(V ) ⊂ (x, y) and we’re done.

Remark 4.20. Näıvely, it would be wonderful if I(V(f1, . . . , fm)) = (f1, . . . , fm). Although

Example 4.16 shows that this is not true in general, we do always have an inclusion.

Proposition 4.21. (f1, . . . , fm) ⊂ I(V(f1, . . . , fm)).

Proof. Let f ∈ (f1, . . . , fm). Then we can write:

f =
m∑
i=1

hifi, for some hi ∈ k[x1, . . . , xn].

But the fi vanish on V(f1, . . . , fm), thus so does f . Hence f ∈ I(V(f1, . . . , fm)). �

Example 4.22. Let V and W be affine varieties in kn. Prove that V ⊂ W if and only if

I(W ) ⊂ I(V ). In other words, passing between varieties and ideals reverses the order of

inclusion.
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5. Polynomials in k[x]

We restrict our attention to polynomials in one indeterminate – a case you should

already be familiar with. We will see how to write any ideal (f1, . . . , fm) ∈ k[x] as a

principal ideal. Knowing how to do this allows us to decide whether a given polynomial

g ∈ k[x] is contained in our ideal. In the next section we shall generalise these results to

an arbitrary polynomial ring k[x1, . . . , xn].

Definition 5.1. Let f ∈ k[x] be a non-zero polynomial. Then we can write f in the form:

f = a0x
m + a1x

m−1 + . . .+ am, where ai ∈ k, a0 6= 0.

The degree of f , denoted deg(f) is m. The leading term of f , denoted by LT(f), is a0x
m.

Proposition 5.2 (Division Algorithm in k[x]). Let g ∈ k[x] be a non-zero polynomial.

Every f ∈ k[x] can be written uniquely in the form:

f = gq + r

for some q, r ∈ k[x], where either r = 0 or deg(r) < deg(g).

Proof. Begin by setting q = 0 and r = f . It is certainly true that f = gq+ r. Inductively,

set:

q′ = q +
LT(r)

LT(g)
, r′ = r − LT(r)

LT(g)
g.

Then:

q′g + r′ =
(
q +

LT(r)

LT(g)

)
g +

(
r − LT(r)

LT(g)
g
)

= qg + r

= f.

Suppose that deg(r) ≥ deg(g). Writing r = a0x
m + . . . + am, and g = b0x

k + . . . + bk,

where a0 6= 0 and b0 6= 0, we have that m ≥ k. Then:

r − LT(r)

LT(g)
g = (a0x

m + . . .)− a0

b0
xm−k(b0x

k + . . .),

and we see that either the degree of r must drop, or the whole expression vanishes. Since

the degree is finite, eventually either deg(r) < deg(g) or r = 0. When this occurs, we are

done.

Finally, we need to show uniqueness. Suppose that f = qg + r = q̃g + r̃, where

either deg(r) < deg(g) or r = 0, and either deg(r̃) < deg(g) or r̃ = 0. If r 6= r̃ then

deg(r − r̃) < deg(g). Since (q − q̃)g = r̃ − r we see that q − q̃ 6= 0. Hence:

deg(r̃ − r) = deg((q − q̃)g) = deg(q − q̃) + deg(g) ≥ deg(g).
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This is a contradiction. Hence r = r̃ and we see that q = q̃. �

Example 5.3. Let f = x3 + x2 − 1 and g = x+ 2. Following the proof of Proposition 5.2,

the first step is to set q = 0 and r = f . We now ask, “Is deg(r) < deg(g), or is r = 0?”. If

the answer is yes then we stop; q and r equal their unique values. In this case the answer

is no, so we make calculate a new q and r as follows:

New q = q +
LT(r)

LT(g)

= 0 +
x3

x

= x2.

New r = r − LT(r)

LT(g)
g

= x3 + x2 − 1− x3

x
(x+ 2)

= −x2 − 1.

We now repeat the process. Is deg(r) < deg(g), or is r = 0? The answer is still no. So:

New q = x2 +
−x2

x

= x2 − x.

New r = −x2 − 1− −x
2

x
(x+ 2)

= 2x− 1.

Once again we ask, “Is deg(r) < deg(g), or is r = 0?” No.

New q = x2 − x+
2x

x

= x2 − x+ 2.

New r = 2x− 1− 2x

x
(x+ 2)

= −5.

This time we’re done, with the answer:

x3 + x2 − 1 = (x+ 2)(x2 − x+ 2)− 5.

Remark 5.4. To perform this computation in Maple, type rem(x^3+x^2-1,x+2,x); to

calculate r, and quo(x^3+x^2-1,x+2,x); to calculate q.
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Example 5.5. The wonderful thing about Proposition 5.2 is the fact that q and r are

unique. Thus it doesn’t matter how you find your q and r; so long as either deg(r) <

deg(g) or r = 0 you have the unique answer.

Let us repeat Example 5.3 using long division. We get:

x2 − x+ 2

x+ 2 x3 + x2 − 1

x3 + 2x2

− x2 − 1

− x2 − 2x

2x− 1

2x+ 4

− 5

We see that q = x2 − x+ 2 and r = −5, as expected.

Corollary 5.6. Let f ∈ k[x] be a non-zero polynomial. Then f has at most deg(f) roots

in k.

Proof. We proceed by induction on the degree deg(f). If deg(f) = 0 then f is a non-zero

constant, and we are done. Suppose that the result is true for all polynomials of degree

less than m, and suppose that f has degree equal to m. If f has no roots in k then we are

done. Otherwise, let a ∈ k be a root. Dividing f by x− a, by Proposition 5.2 we obtain

f = q(x− a) + r for some r ∈ k. Hence:

0 = f(a) = q(a)(a− a) + r = r,

and so f = q(x− a). Since q has degree less than m, the result follows. �

Corollary 5.7. Every ideal I ⊂ k[x] is principal. Furthermore, if I = (f) for some

f ∈ k[x], then f is unique up to multiplication by a non-zero scalar in k.

Proof. If I = {0} then we are done, since I = (0). Suppose instead that f ∈ I is a

non-zero polynomial of minimum degree. We claim that (f) = I.

The inclusion (f) ⊂ I is obvious. In the opposite direction, let g ∈ I. By Proposition 5.2

we can write g = qf + r, where either deg(r) < deg(f) or r = 0. Note that r = g − qf
and so lies in I. Hence by minimality of f we have that r = 0. Thus f = qf and so lies

in (f).

To prove uniqueness up to non-zero multiplication, suppose that (f) = (g). Since

f ∈ (g) there exists some h ∈ k[x] such that f = hg. Thus deg(f) = deg(h) + deg(g).
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Interchanging the roles of f and g we conclude that deg(f) = deg(g), and so h is a

non-zero constant. �

Definition 5.8. A greatest common divisor of polynomials f, g ∈ k[x] is a polynomial h

such that:

(1) h divides f and g;

(2) If p is another polynomial dividing both f and g then p divides h.

We often write gcd(f, g) for h.

Exercise 5.9. By using Proposition 5.2, prove that a gcd(f, g) exists and is unique up to

multiplication by a non-zero scalar in k. Prove also that gcd(f, g) is a generator of the

ideal (f, g).

Remark 5.10. Given two polynomials f, g ∈ k[x], the Euclidean Algorithm can be used to

compute gcd(f, g). Begin by setting h = f and s = g. If s = 0 then h = gcd(f, g) and

we’re done. Otherwise we use Proposition 5.2 to write h = qs+ r and inductively set:

h′ = s, s′ = r.

Since either deg(r) < deg(g) or r = 0, we see that at each step in the induction the degree

of r falls. Since degrees are finite, we conclude that eventually r = 0 and h = qs. We

claim that, when this occurs, s = gcd(f, g).

To prove this we simply observe that the ideals (h, s) and (h−qs, s) = (r, s) = (s′, h′) are

equal. Hence by Exercise 5.9 we have that gcd(h, s) = gcd(h′, s′) at each step. Inductively

we see that gcd(f, g) = gcd(h, s) and, at the final step when r = 0, we have gcd(h, s) =

gcd(0, s) = s.

Example 5.11. We shall return to Exercise 3.27 and use the Euclidean Algorithm to show

that (x4− 1, x6− 1) = (x2− 1). By taking care in our lay-out, the algorithm is very clear.

We start by setting h = x4 − 1 and s = x6 − 1. At each step we calculate h = qs+ r and

set h′ = s, s′ = r. We obtain:

h = qs + r

x4 − 1 = 0(x6 − 1) + (x4 − 1)

x6 − 1 = x2(x4 − 1) + (x2 − 1)

x4 − 1 = (x2 + 1)(x2 − 1) + 0

The final value of s is x2 − 1. Hence we conclude that (x4 − 1, x6 − 1) = (x2 − 1), as

desired.
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Remark 5.12. To perform this computation in Maple, enter the command:

gcd(x^4-1,x^6-1);

Definition 5.13. We can generalise Definition 5.8 to a finite number of polynomials

f1, . . . , fm ∈ k[x], where m ≥ 2. We call h a greatest common divisor of f1, . . . , fm, and

write h = gcd(f1, . . . , fm), if:

(1) h divides fi for all 1 ≤ i ≤ m;

(2) If p is another polynomial dividing each fi, 1 ≤ i ≤ m, then p divides h.

Exercise 5.14. Let f1, . . . , fm ∈ k[x], where m ≥ 2. Prove that:

(1) gcd(f1, . . . , fm) exists and is unique up to multiplication by a non-zero scalar.

(2) Let h = gcd(f1, . . . , fm). Then (h) = (f1, . . . , fm).

(3) gcd(f1, . . . , fm) = gcd(f1, gcd(f2, . . . , fm)).

Remark 5.15. Exercise 5.14 is an important result. Part (2) tells us that we can write

any ideal (f1, . . . , fm) ⊂ k[x] as a principal ideal, provided that we can find the great-

est common divisor of the fi. Part (3) tells us how to do this. Namely, we calculate

hm−1 := gcd(fm−1, fm) using the Euclidean Algorithm (Remark 5.10). Then, inductively,

we calculate hi := gcd(fi, hi+1) (again using the Euclidean Algorithm). The value h1 is a

greatest common divisor of the fi.

Since every ideal I ⊂ k[x] is finitely generated, we conclude that every ideal in k[x] is

principal. We call k[x] a principal ideal domain.

Example 5.16. Consider the ideal (x3 − 3x + 2, x4 − 1, x6 − 1) ⊂ k[x]. We shall decide

whether x3 + 4x2 + 3x− 7 is contained in this ideal or not (see Exercise 3.30 (2)).

First we need to write our ideal as a principal ideal. To do this we need to find

gcd(x3−3x+2, x4−1, x6−1). By Exmple 5.11 we know that gcd(x4−1, x6−1) = x2−1.

Thus gcd(x3 − 3x+ 2, x4 − 1, x6 − 1) = gcd(x3 − 3x+ 2, x2 − 1).

h = qs + r

x3 − 3x+ 2 = x(x2 − 1) + (−2x+ 2)

x2 − 1 = (−x
2
− 1

2
)(−2x+ 2) + 0

Hence gcd(x3− 3x+ 2, x2− 1) = −2x+ 2. Since we are allowed to multiply by a non-zero

scalar (Exercise 5.14 (1)) we may write gcd(x3 − 3x+ 2, x2 − 1) = x− 1.

By Exercise 5.14 (2) we have that (x3 − 3x + 2, x4 − 1, x6 − 1) = (x − 1). It is easy

to decide whether x3 + 4x2 + 3x− 7 ∈ (x− 1). You can use long division if you wish, or

the Division Algorithm. In this particular case, however, things are easy. We know that
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any f ∈ (x − 1) can be written in the form f(x) = (x − 1)h(x) for some h ∈ k[x]. In

particular, f(1) = 0. Setting x = 1 in x3 + 4x2 + 3x − 7 gives 1 6= 0. We conclude that

x3 + 4x2 + 3x− 7 /∈ (x3 − 3x+ 2, x4 − 1, x6 − 1).

Remark 5.17. Maple doesn’t have a command to calculate gcd(f1, . . . , fm) in one step.

To calculate gcd(x3 − 3x+ 2, x4 − 1, x6 − 1) you would type:

gcd(x^3-3*x+2,gcd(x^4-1,x^6-1));

To check for inclusion, use the rem command.

6. Monomial orderings and a Division Algorithm

We shall see how to generalise the results of Section 5 to an arbitrary polynomial ring

k[x1, . . . , xn]. First, we need to make a choice which didn’t exists in k[x]: how do we order

the indeterminants x1, . . . , xn when running a generalised Division Algorithm?

Monomial orderings.

Definition 6.1. We call xα1
1 x

α2
2 . . . xαn

n ∈ k[x1, . . . , xn] a monomial of total degree α1 +

. . .+ αn.

Remark 6.2. It is convenient to write xα := xα1
1 x

α2
2 . . . xαn

n , where α = (α1, α2, . . . , αn) ∈
Zn
≥0. We see that there is a one-to-one correspondence between monomials in k[x1, . . . , xn]

and the points of Zn
≥0. Multiplication of two monomials xα and xβ corresponds with

addition of the points α and β. I.e. xα · xβ = xα+β ↔ α + β.

We write |α| = |(α1, α2, . . . , αn)| := α1 + . . . + αn for the total degree of α. Obviously

|α| equals the total degree of xα.

Definition 6.3. A total order (or linear order) on Zn
≥0 is a binary relation > satisfying:

(1) > is transitive

For any α, β, γ ∈ Zn
≥0, α > β and β > γ implies α > γ;

(2) > is trichotomous

For any α, β ∈ Zn
≥0, precisely one of the following holds:

(a) α > β,

(b) α = β,

(c) β > α.
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Example 6.4. In Z≥0 our usual notion of inequality is a total order. On Z2
≥0 we could

define (a, b) > (a′, b′) if and only if either a > a′ or a = a′ and b > b′. Under this ordering

we see that, for example, (3, 2) > (2, 2) and (5, 7) > (5, 1). You should check that this

defines a total order.

Remark 6.5. Given a total order > on Zn
≥0, you can extend it to an order on monomials

in k[x1, . . . , xn] by defining xα > xβ if and only if α > β.

Consider the total order >evn on Z≥0 given by:

a >evn b if and only if


both a and b are even and a > b under the usual ordering;

or both a and b are odd and a > b under the usual ordering;

or a is even and b is odd.

This ordering ranks the even numbers higher than the odd numbers, so that 1 <evn 3 <evn

5 <evn . . . <evn 0 <evn 2 <evn 4 <evn . . .. It exhibits strange behaviour under addition.

For example, 4 >evn 3, but adding 1 to both sides flips the order: 4+1 = 5 <evn 4 = 3+1.

If we were to give k[x] this ordering, we would find that x4 >evn x3, but multiplying

both sides by x gives x5 <evn x
4. In other words, multiplying or dividing by a common

factor can change the order. This is undesirable; imagine trying to construct a Division

Algorithm when the “greatest power of x” is constantly changing.

Hence we require that our monomial orderings remain unchanged under multiplication.

In Z2
≥0, we require that if α, β, γ ∈ Z2

≥0 are such that α > β, then α + γ > β + γ.

Definition 6.6. A monomial ordering on k[xa, . . . , xn] is a total order> on Zn
≥0 satisfying:

(1) > respects addition

If α, β, γ ∈ Z2
≥0 are such that α > β, then α + γ > β + γ;

(2) > is well-ordered

Every non-empty subset of Zn
≥0 has a smallest element under >.

We write xα > xβ if and only if α > β.

Proposition 6.7. An order > on Zn
≥0 is well-ordered if and only if every strictly decreas-

ing sequence α1 > α2 > α3 > . . . in Zn
≥0 terminates.

Proof. We prove the contrapositive: > is not well-ordered if and only if there is an infinite

strictly-decreasing sequence in Zn
≥0.

First assume that > is not a well-ordering. Then there exists a non-empty subset S of

Zn
≥0 with no smallest element under >. Pick any element α1 in S. Then there must exist α2

in S such that α1 > α2, since otherwise α1 would be a smallest element in S. Proceeding

in this fashion we may construct an infinitely long sequence α1 > α2 > α3 > . . ..
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Conversely suppose that α1 > α2 > α3 > . . . is an infinitely long strictly-decreasing

sequence. Then the set of all αi contains no smallest element under >, and we’re done. �

Exercise 6.8. Read about Noetherian rings and the chain conditions in an introductory

commutative algebra book.

Definition 6.9. Let α, β ∈ Zn
≥0. We write α >lex β if the left-most non-zero entry of

α− β is positive. We call >lex the lexicographic order.

Example 6.10. Lexicographic ordering is often compared with “dictionary ordering”. We

give a few examples:

(1) (1, 2, 3) >lex (0, 4, 5), or as monomials x1x
2
2x

3
3 >lex x

4
2x

5
3;

(2) (2, 2, 7) >lex (2, 2, 3), or as monomials x2
1x

2
2x

7
3 >lex x

2
1x

2
2x

3
3;

(3) (1, 1, 3, 0) >lex (1, 1, 0, 7), or as monomials x1x2x
3
3 >lex x1x2x

7
4.

Exercise 6.11. Prove that >lex gives a monomial ordering.

Remark 6.12. Notice that we have made a choice in our definition of lexicographic order-

ing, Namely, we have labelled the invariants x1, x2, . . . , xn, and decided that they should

have priority in that order (x1 > x2 > . . . > xn). Obviously any reordering of the xi
will give a different lexicographic ordering. There are n! possible reorderings, and hence

n! choices of lexicographic ordering. Unless otherwise stated, it is always assumed that

x1 > x2 > . . . > xn.

Definition 6.13. Let α, β ∈ Zn
≥0. We write α >grlex β if |α| > |β| or if |α| = |β| and

α >lex β. We call >grlex the graded lexicographic order.

Example 6.14. We give two examples:

(1) (0, 4, 5) >grlex (1, 2, 3) since |(0, 4, 5)| > |(1, 2, 3)|. Written as monomials we have

that x4
2x

5
3 >grlex x1x

2
2x

3
3;

(2) (1, 4, 4) >grlex (1, 3, 5) since |(1, 4, 4)| = |(1, 3, 5)| and (1, 4, 4) >lex (1, 3, 5). As

monomials, x1x
4
2x

4
3 >grlex x1x

3
2x

5
3.

Exercise 6.15. Prove that >grlex gives a monomial ordering.

Definition 6.16. Let α, β ∈ Zn
≥0. We write α >grevlex β if |α| > |β| or if |α| = |β| and

the right-most non-zero entry of α − β is negative. We call >grevlex the graded reverse

lexicographic order.
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Example 6.17. We give some examples:

(1) (0, 4, 5) >grevlex (1, 2, 3), or equivalently x4
2x

5
3;>grevlex x1x

2
2x

3
3;

(2) (1, 4, 4) >grevlex (1, 3, 5), or equivalently x1x
4
2x

4
3 >grevlex x1x

3
2x

5
3;

(3) (0, 2, 2) >grevlex (1, 0, 3), or equivalently x2
2x

2
3 >grevlex x1x

3
3;

(4) (1, 4, 1) >grevlex (4, 0, 2), or equivalently x1x
4
2x3 >grevlex x

4
1x

2
3.

Graded reverse lexicographic order can be confusing at first, however it has been shown to

be more efficient for some computations that either the lexicographic order or the graded

lexicographic order.

Example 6.18. We shall rewrite the polynomial f = −2xy2z3 + 5y2z2 + y4z5 + 4xz3 ∈
k[x, y, z] with the monomials in order: the “largest” monomial first, the “smallest” last.

(1) Lexicographic order

f = −2xy2z3 + 4xz3 + y4z5 + 5y2z2

(2) Graded lexicographic order

f = y4z5 − 2xy2z3 + 4xz3 + 5y2z2

(3) Graded reverse lexicographic order

f = y4z5 − 2xy2z3 + 5y2z2 + 4xz3

A division algorithm.

Definition 6.19. Let f =
∑
aαx

α ∈ k[x1, . . . , xn] be a polynomial, and let > be a

monomial order.

(1) The multidegree of f is multideg(f) := max{α | aα 6= 0}, where the maximum is

taken with respect to >.

(2) The leading coefficient of f is LC(f) := amultideg(f).

(3) The leading monomial of f is LM(f) := xmultideg(f).

(4) The leading term of f if LT(f) := LC(f)LM(f) = amultideg(f)x
multideg(f).

Example 6.20. Let’s consider f in Example 6.18. With respect to lexicographic order:

(1) multideg(f) = (1, 2, 3)

(2) LC(f) = −2

(3) LM(f) = xy2z3

(4) LT(f) = −2xy2z3.

Exercise 6.21. Repeat Example 6.20 using graded lexicographic order and using graded

reverse lexicographic order.



COMPUTATIONAL COMMUTATIVE ALGEBRA NOTES 23

Proposition 6.22 (Division Algorithm in k[x1, . . . , xn]). Let > be a monomial order on

Zn
≥0 and let f1, . . . , fs ∈ k[x1, . . . , xn]. Then every f ∈ k]x1, . . . .xn] can be written in the

form:

f = a1f1 + . . .+ asfs + r,

where ai, r ∈ k[x1, . . . , xn] and either r = 0 or none of the monomials in r are divisible

by any of LT(f1), . . . ,LT(fs). If aifi 6= 0 then multideg(f) ≥ multideg(aifi).

We call r a remainder of f on division by f1, . . . , fs.

Proof. See [CLO07, pp. 64–66] for the proof, which also describes the algorithm. �

Remark 6.23. Rather than dwell on the details, we shall understand the algorithm though

Examples 6.24 and 6.25. “Running” the division algorithm is little more that performing

glorified long division. The most difficult part is remembering to use whichever monomial

order has been chosen.

Example 6.24. We shall divide f = x2z+z+y3x−y2−x4y by f1 = z−x2y and f2 = xy−1.

Before we can do anything, we need to fix our monomial order. We shall use lexico-

graphic order. Writing the monomials of f with the “largest” first and the “smallest” last

we get f = −x4y + x2z + xy3 − y2 + z. Similarly for f1 and f2 we obtain f1 = −x2y + z

and f2 = xy − 1.

Now we keep divide the leading term of our polynomial by the leading term of f1, just

like you do with ordinary long division. When this is no longer possible, move on to using

f2. We repeat this process until neither leading term LT(f1) nor LT(f2) will divide the

leading term of our polynomial; we move this leading term to a remainder column, then

try again. At each step we make sure that we keep track of whether we were working

with f1 or f2. (This is all much simpler in practice than it sounds!)

Start by drawing a division table:

a1 :

a2 : r

−x2y + z

xy − 1
−x4y + x2z + xy3 − y2 + z

We use the a1 and a2 rows to keep track of whether we were dividing using f1 or f2. The

r column is where we shall collect together our remainder.
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LT(f1) = −x2y, which divides −x4y (i.e. x2LT(f1) = −x4y). Writing the factor x2 in

the a1 row, we obtain:

a1 : x2

a2 : r

−x2y + z

xy − 1
−x4y + x2z + xy3 − y2 + z

−x4y + x2z

xy3 − y2 + z

Since −x2y does not divide the new leading term xy3, we consider dividing by the leading

term of f2. We have that y2LT(f2) = xy3. We write y2 in the a2 row (since we’re working

with f2).

a1 : x2

a2 : y2 r

−x2y + z

xy − 1
−x4y + x2z + xy3 − y2 + z

−x4y + x2z

xy3 − y2 + z

xy3 − y2

z

Neither −x2y nor xy divide z; we move z to the remainder column and we’re finished.

a1 : x2

a2 : y2 r

−x2y + z

xy − 1
−x4y + x2z + xy3 − y2 + z

−x4y + x2z

xy3 − y2 + z

xy3 − y2

z → z

0

We’ve found that f = x2(−x2y + z) + y2(xy − 1) + z.

One of the interesting things about this division algorithm is that the results we get

depend on the order of the fi. Let’s repeat our calculation, but with f1 = xy − 1 and
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f2 = −x2y + z. We get:

a1 : −x3 + y2

a2 : r

xy − 1

−x2y + z
−x4y + x2z + xy3 − y2 + z

−x4y + x3

− x3 + x2z + xy3 − y2 + z → −x3

x2z + xy3 − y2 + z → −x3 + x2z

xy3 − y2 + z

xy3 − y2

z → −x3 + x2z + z

0

This time we get a very different answer, namely that f = (−x3 + y2)(xy − 1) + (−x3 +

x2z + z).

Example 6.25. We return now to consider Exercise 3.30 (1). Let f1 = y−x2, f2 = z−x3,

and f = y2−xz. If, after performing our division, we have remainder zero, then we know

that f = a1f1 + a2f2; i.e. we know that y2 − xz ∈ (y − x2, z − x3).

Using lexicographic order, let’s have a go. Remembering to reorder the monomials of

our polynomials, we have:

a1 :

a2 : r

−x2 + y

−x3 + z
−xz + y2 → −xz

y2 → −xz + y2

0

That wasn’t very successful. If we exchange f1 and f2 nothing improves. How about using

a different order? Try using graded lexicographic and graded reverse lexicographic. Still

not much use. Perhaps the remainder is always non-zero, and y2 − xz /∈ (y − x2, z − x3)?

Actually, no. Using lexicographic order but with y > x > z, we obtain (remembering to
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reorder the monomials):

a1 : y + x2

a2 : −x r

y − x2

−x3 + z
y2 − xz

y2 − yx2

yx2 − xz
yx2 − x4

x4 − xz
x4 − xz

0

Success! We see that y2− xz = (y+ x2)(y− x2)− x(z− x3). There is no remainder term,

and so we can conclude that y2 − xz ∈ (y − x2, z − x3).

Example 6.26. We shall see how to use Maple to calculate the remainders in Exercise 6.25.

First we need to tell Maple to use the Gröbner basis package:

with(Groebner);

To calculate the remainder for the first division, enter:

normalf(y^2-x*z,[y-x^2,z-x^3],plex(x,y,z));

This calculates the remainder when dividing y2−xz by y−x2 and z−x3, using lexicographic

order with x > y > z. You should get the answer y2 − xz, as we did above. Now we

repeat the calculation, but with the order y > x > z. Enter:

normalf(y^2-x*z,[y-x^2,z-x^3],plex(y,x,z));

This time the result is zero, as expected.

Remark 6.27. On the face of it, this division algorithm is far inferior to the division

algorithm in one indeterminant. We can cope with the results not being unique (in fact

there’s very little that can done about this). But whether or not we have a remainder

depends on the order we choose to perform our division with! How can this result be of

much use? Let’s see what we can salvage from this disaster.
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7. The Hilbert Basis Theorem

We shall prove a remarkable result of Hilbert, mentioned in Remark 3.23; every ideal in

a polynomial ring has a finite generating set. In the proof of this result we shall construct a

particularly “nice” basis for our ideal, called a Gröbner basis. Before we do that, however,

we need a result of Dickson7 concerning monomials in ideals.

Monomial ideals.

Definition 7.1. Let I ⊂ k[x1, . . . , xn] be an ideal. If there exists a subset A ⊂ Zn
≥0

(possibly infinite) such that I consists of all sums of the form f =
∑

α∈A hαx
α, where only

finitely many of the hα ∈ k[x1, . . . , xn] are non-zero, then we call I a monomial ideal. We

write I = (xα | α ∈ A).

Example 7.2. The ideal (x + y, x) ⊂ k[x, y] is a monomial ideal with A = {(1, 0), (0, 1)}
(since (x+ y, x) = (x, y)). The principal ideal (x+ y) ⊂ k[x, y] is not a monomial ideal.

Exercise 7.3. Let I = (xα | α ∈ A) be a monomial ideal. Show that if xβ ∈ I is a

monomial in I, then xβ = xα · xγ for some α ∈ A, γ ∈ Zn
≥0. In other words, we have that

β = α + γ. If you fix an α, then the set of all possible β such that xα divides xβ is just{
α + γ | γ ∈ Zn

≥0

}
.

Example 7.4. Consider the ideal I = (x2y5, x4y3, x5y2) ⊂ k[x, y]. Clearly this is a mono-

mial ideal, with A = {(2, 5), (4, 3), (5, 2)} ⊂ Z2
≥0. Consider the monomial x4y6 ∈ I. This

is divisible by, for example, the monomial x2y5; we have (4, 6) = (2, 5) + (2, 1). Alterna-

tively, we have that x4y6 = x4y3 · y3, and so (4, 6) = (4, 3) + (0, 3). This is illustrated in

Figure 3; the shaded region indicates all the monomials in I. If we regard I as a vector

space, then the monomials in the shaded region form a basis over k.

Theorem 7.5 (Dickson’s Lemma). Let I = (xα | α ∈ A) ⊂ k[x1, . . . , xn] be a monomial

ideal. Then I is generated by only finitely many of the α ∈ A.

Remark 7.6. Figure 3 suggests a proof to Theorem 7.5. Projecting onto the “x-axis” we

obtain the ideal J = (x2) ⊂ k[x]. Looking “up” from x2y0 the first monomial in I that we

see is x2y5. We now consider the five “horizontal strips” J0 = {xay0 | a > 2} , . . . , J4 =

{xay4 | a > 2}. In each case we look “along” the strip and make a note of the first

monomial in I that we hit. So for the strips J0 and J1 we see nothing. For J2 we see the

monomial x5y2, for J3 we see x4y3, and for J4 we see x4y4. This collection of monomials

generates I.

7For a brief biography of Dickson, see
http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Dickson.html.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Dickson.html
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(0,0)

(2,5)

(4,3)

(5,2)

(4,6)

Figure 3. The monomials generated by x2y5, x4y3 and x5y2. The mono-

mial x4y6 is indicated.

Proof of Theorem 7.5. We proceed by induction on n. If n = 1, let α ∈ A be the smallest

element in A. Then I = (xα1 ).

Assume that n > 1, and that the result is true for n−1. For convenience we shall label

the n indeterminants of the polynomial ring as x1, . . . , xn−1, y. We can project any mono-

mial xa1
1 . . . x

an−1

n−1 y
an = xαyan in k[x1, . . . , xn−1, y] to a monomial xα in k[x1, . . . , xn−1].

Then

J = (xα | (α, an) ∈ A, for some an ∈ Z≥0) ⊂ k[x1, . . . , xn−1]

is a monomial ideal. By the inductive hypothesis J = (xα1 , . . . , xαs), where each αi is the

projection of a point in A.

For each i = 1, . . . , s pick somemi ∈ Z≥0 such that xαiymi ∈ I. Letm = max{mi | i = 1, . . . , s}.
For each j = 0, . . . ,m we define the monomial ideal

Jj := (xβ | xβyj ∈ I) ⊂ k[x1, . . . , xn−1].

Again by the inductive hypothesis, each Jj has a finite generating set of monomials. Say

Jj = (xβj,1 , . . . , xβj,sj ).

Claim. I is generated by the following monomials:

xα1ym, . . . , xαsym,

xβ0,1 , . . . , xβ0,s0 ,

xβ1,1y, . . . , xβ1,s1y,
...

xβm−1,1ym−1, . . . , xβm−1,sm−1ym−1.
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Clearly the above monomials all lie in I by construction. Conversely, it is enough to

prove that every monomial in I is divisible by one of the monomials above (by Exer-

cise 7.3). Let xαyp be any monomial in I. If p ≥ m then xαyp is divisible by xαiym, for

some i = 1, . . . , s, by construction of J . If p < m then xαyp is divisible by xβp,iyp, for

some i = 1, . . . , sp, by construction of Jp.

Finally it remains to show that a finite set of monomial generators for I can be chosen

from A. Since each of the (finitely many) monomial generators above lies in I, by Exer-

cise 7.3 each is divisible by some monomial xa1
1 . . . x

an−1

n−1 y
an , where (a1, . . . , an−1, an) ∈ A.

By taking those elements in A, we have our result. �

The Hilbert Basis Theorem.

Definition 7.7. Let I ⊂ k[x1, . . . , xn] be a non-zero ideal. By LT(I) we mean the set of

leading terms of all polynomials in I (with respect to some monomial order). I.e.

LT(I) := {LT(f) | f ∈ I} .

By (LT(I)) we mean the ideal generated by the set LT(I).

Remark 7.8. Given a finitely generated ideal I = (f1, . . . , fn), it is tempting to believe

that the ideal generated by the leading terms of the fi is equal to (LT(I)); i.e. that

(LT(f1), . . . ,LT(fn)) = (LT(I)). Rather crucially for what’s to follow, this is not generally

the case.

For example, consider the ideal I = (x + y, x) ⊂ k[x, y]. Using lexicographic order, we

have that LT(x+ y) = LT(x) = x. Hence (LT(x+ y),LT(x)) = (x). Clearly y ∈ I, and

so y = LT(y) ∈ (LT(I)) 6= (x).

Theorem 7.9 (Hilbert Basis Theorem). Every ideal I ⊂ k[x1. . . . , xn] is finitely generated.

Proof. If I = {0} then we’re done. Assume that I 6= {0}. Clearly the ideal (LT(I)) is a

monomial ideal, and so by Theorem 7.5 we have that there exists a finite generating set

f1, . . . , fs ∈ I such that (LT(I)) = (LT(f1), . . . ,LT(fs)). We claim that I = (f1, . . . , fs).

Clearly (f1, . . . , fs) ⊂ I. In the opposite direction, consider any f ∈ I. We can apply

the Division Algorithm (Proposition 6.22) to obtain f = a1f1 + . . . + asfs + r, where

no term of r is divisible by any of LT(f1), . . . ,LT(fs). Clearly r ∈ I, and if r 6= 0 then

LT(r) ∈ (LT(I)) = (LT(f1) . . . ,LT(fs)). By Exercise 7.3 we have that LT(r) must be

divisible by one of the LT(fi). This is a contradiction. Hence r = 0 and so f ∈ (f1, . . . , fs).

The result follows. �
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8. Gröbner Bases and Buchberger’s algorithm

In the proof of Theorem 7.9 we constructed a particularly useful basis for our ideal; a

Gröbner basis. We now take the time to define this basis more formally, and to understand

what properties it has that makes it so special. Finally, we shall look at Buchberger’s

algorithm for calculating a Gröbner basis.

Perhaps the most astonishing thing is how recent all these ideas are. Gröbner bases

were first studied systematically by Bruno Buchberger8 in 1965, whilst he was Gröbner’s

PhD student. He formalised the definition of Gröbner basis, defined the S-polynomial,

discovered a result we now refer to as Buchberger’s Criterion, and developed Buchberger’s

algorithm for finding Gröbner bases.

A Gröbner basis.

Definition 8.1. Let I ⊂ k[x1, . . . , xn] be an ideal, and fix a monomial order. A finite

subset {g1, . . . , gs} ⊂ I such that (LT(g1), . . . ,LT(gs)) = (LT(I)) is said to be a Gröbner

basis of I.

Remark 8.2. It follows from Exercise 7.3 that {g1, . . . , gs} is a Gröbner basis of I if and

only if the leading term of any element in I is divisible by one of the LT(gi).

We saw in the proof of Theorem 7.9 that every non-zero ideal I ⊂ k[x1, . . . , xn] has a

Gröbner basis, and that a Gröbner basis for I is a basis for I. I.e. if (LT(g1), . . . ,LT(gs)) =

(LT(I)) then (g1, . . . , gs) = I.

Proposition 8.3. Let G = {g1, . . . , gs} be a Gröbner basis for a non-zero ideal I ⊂
k[x1, . . . , xn]. Let f ∈ k[x1, . . . , xn]. Then there exists a unique r ∈ k[x1, . . . , xn] such

that:

(1) No term of r is divisible by one of LT(g1), . . . ,LT(gs);

(2) There exists a g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no matter the order in which we

list the elements of G when running the division algorithm.

Proof. To prove existence is easy. By the division algorithm we have that f = a1g1 +

. . . + asgs + r, where r satisfies (1). The second condition is satisfied by simply setting

g = a1g1 + . . . + asgs. To prove uniqueness, suppose that f = g + r = g′ + r′. Then

r − r′ = g′ − g ∈ I and so if r 6= r′ then LT(r − r′) ∈ (LT(g1), . . . ,LT(gs)). Hence

LT(r − r′) is divisible by LT(gi) for some 1 ≤ i ≤ s. But since no term of either r or

8If you’re interested, Buchberger’s website is at:
http://www.risc.uni-linz.ac.at/people/buchberg/.

http://www.risc.uni-linz.ac.at/people/buchberg/
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r′ is divisible by LT(gi), this is a contradiction (you should prove why this is so). Hence

r − r′ = 0 and uniqueness follows. �

Corollary 8.4. Let I ⊂ k[x1, . . . , xn] be a non-zero ideal, and let G be a Gröbner basis

for I. Let f ∈ k[x1, . . . , xn]. Then f ∈ I if and only if the remainder on division of f by

G is zero.

Proof. If the remainder is zero then we have that f ∈ I (recall that we used this fact in

Example 6.25). Conversely given f ∈ I then f = f + 0 satisfies the two conditions of

Proposition 8.3. By uniqueness it follows that 0 is the remainder upon division by G. �

Remark 8.5. This is rather remarkable. Gröbner bases address the main disappointment

we had with the division algorithm (Remark 6.27). It should be emphasised that the

quotients ai produced by the division algorithm are not unique, even when dividing by a

Gröbner basis. But this really doesn’t matter much.

Thus, given a non-zero ideal I and a Gröbner basis G for I, we can now determine

whether an arbitrary polynomial f is a member of I or not. What we need to know now

is how to find a Gröbner basis. In otherwords, given that (f1, . . . , fs) = I, how do we

decide whether {f1, . . . , fs} is a Gröbner basis for I? If it isn’t a Gröbner basis, is there

anything we can do to transform it into one?

Definition 8.6. Let xα, xβ ∈ k[x1, . . . , xn] be two monomials. If α = (a1, . . . , an) ∈ Zn
≥0

and β = (b1, . . . , bn) ∈ Zn
≥0, then let γ = (c1, . . . , cn) ∈ Zn

≥0 be such that ci = max{ai, bi}
for i = 1, . . . , n. We call xγ the least common multiple of xα and xβ, and write xγ =

lcm
{
xα, xβ

}
.

Definition 8.7. Let f, g ∈ k[x1, . . . , xn] be non-zero polynomials and fix a monomial

order. The S-polynomial of f and g is:

S(f, g) :=
xγ

LT(f)
· f − xγ

LT(G)
· g,

where xγ = lcm{LM(f),LM(g)}.

Example 8.8. The purpose of the S-polynomial is to cancel out the leading terms of the two

polynomials f and g. For example, if f = z−x2z and g = xy−1, then using lexicographic

order we have LT(f) = −x2z and LT(g) = xy. We obtain lcm{LM(f),LM(g)} = x2yz,
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and so:

S(f, g) =
x2yz

−x2z
· f − x2yz

xy
· g

= (−y)(z − x2z)− (xz)(xy − 1)

= −yz + x2yz − x2yz + xz

= xz − yz.

Maple can calculate the S-polynomial for you. Make sure that the Gröbner basis

package is loaded, then type:

spoly(z-x^2*z,x*y-1,plex(x,y,z));

This instructs it to calculate the S-polynomial, using lexicographic order with x > y > z.

Theorem 8.9 (Buchberger’s Criterion). Let I ⊂ k[x1, . . . , xn] be a non-zero ideal, and

fix a monomial order. A basis G = {g1, . . . , gs} for I is a Gröbner basis if and only if for

all pairs i 6= j the remainder on division of S(gi, gj) by G (listed in some order) is zero.

Proof. See [CLO07, pp. 85–87]. �

Example 8.10. We return to Example 6.25. Recall that in order to deduce that y2− xz ∈
(y− x2, z− x3) was true, we had to use the lexicographic order with y > x > z. We shall

use Theorem 8.9 so show that, under this order, {y − x2, z − x3} is a Gröbner basis.

First we need to calculate S(y−x2, z−x3). We obtain (remember our slightly unusual

order):

S(y − x2, z − x3) =
yx3

y
· (y − x2)− yx3

−x3
· (z − x3)

= (x3)(y − x2)− (−y)(z − x3)

= yz − x5.

Now we need to calculate the remainder of yz − x5 when divided by y − x2 and z − x3

(the order we list them in doesn’t make any difference). We have:

a1 : z

a2 : x2 r

y − x2

−x3 + z
yz − x5

yz − x2z

− x5 + x2z

− x5 + x2z

0
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Since the remainder is zero, we see that {y − x2, z − x3} is a Gröbner basis for (y−x2, z−
x3) (under lexicographic order with y > x > z).

Knowing this completely answers the ideal membership problem for (y − x2, z − x3).

Given any polynomial f ∈ k[x, y, z] we can determine whether f ∈ (y−x2, z−x3) simply

by determining whether the remainder is zero upon division by {y − x2, z − x3} using

lexicographic order with y > x > z.

Remark 8.11. In Maple, combining the spoly() and normalf() commands will allow you

to verify the calculation in the previous example. Simply enter:

normalf(spoly(y-x^2,z-x^3,plex(y,x,z)),[y-x^2,z-x^3],plex(y,x,z));

You get remainder zero, as expected. If you get nonsensical output, remember that you

must load the Gröbner basis package first: with(Groebner);

Buchberger’s algorithm.

Definition 8.12. Let F = {f1, . . . , fs} ⊂ k[x1, . . . , xn], where the order of the fi is fixed

(i.e. F is an s-tuple). Fix a monomial order, and let f ∈ k[x1, . . . , xn]. We write f
F

for

the remainder on division by F of f . (Note that if F is a Gröbner basis then the order of

the fi doesn’t matter, by Proposition 8.3.)

Example 8.13. Let us return to Example 6.24. Recall that f = x2z + z + y3x− y2 − x4y,

f1 = z − x2y, and f2 = xy − 1. Using lexicographic order, we have that:

f
f1,f2

= z, f
f2,f1

= −x3 + x2z + z.

Observe that, since the remainder depends on the order of f1 and f2 when running the

division algorithm, {f1, f2} cannot be a Gröbner basis. The power of Theorem 8.9 is not

necessarily that it tells us when a basis is not a Gröbner basis, more that it tells is when

it is.

Remark 8.14. Looking at Theorem 8.9 suggests a strategy for converting an arbitrary

basis G into a Gröbner basis. Calculate S(f, g)
G

for every pair f, g ∈ G. Whenever you

have a non-zero remainder, add that remainder to your basis. Keep repeating until all

the remainders are zero. The resulting basis must be a Gröbner basis by Theorem 8.9.

Theorem 8.15 (Buchberger’s algorithm). Let I = (f1, . . . , fs) ⊂ k[x1, . . . , xn] be a non-

zero ideal. The basis G0 = {f1, . . . , fs} for I can be transformed into a Gröbner basis in

finitely many steps. At each step the old basis Gm is transformed into a new basis Gm+1

by adding in new elements given by all non-zero S(fi, fj)
Gm

, where fi, fj ∈ Gm. When

Gm = Gm+1 we have that Gm is a Gröbner basis for I.
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Proof. Clearly at each step Gm+1 is still a basis for I, since G0 ⊂ Gm+1 and S(fi, fj)
Gm ∈ I

(since S(fi, fj) ∈ I, and the remainder upon division by elements in I of an element in I

lies in I). Assuming that the process described in the statement terminates, the resulting

basis must be a Gröbner basis by Theorem 8.9.

We now prove that the process terminates. First note that at each step, if Gm 6= Gm+1

then the inclusion (LT(Gm)) ⊂ (LT(Gm+1)) is strict; i.e. we have that (LT(Gm)) 6=
(LT(Gm+1)). This is because some non-zero remainder r = S(fi, fj)

Gm
has been added

to Gm+1. By the Division Algorithm (Proposition 6.22) no leading term of Gm divides r,

and hence (by Exercise 7.3) LT(r) /∈ (LT(Gm)). But LT(r) ∈ (LT(Gm+1)) by definition

of Gm+1, hence we have that (LT(Gm)) 6= (LT(Gm+1)).

Assume for a contradiction that the process does not terminate. Then we have an

infinite strictly increasing chain of ideals:

(LT(G0)) $ (LT(G1)) $ . . . $ (LT(Gm)) $ (LT(Gm+1)) $ . . . .

Let G =
⋃∞
m=0(LT(Gm)) be the set given by taking the union of all the ideals. Then

(LT(Gm)) ⊂ G for all m. It can be seen that G is an ideal in k[x1, . . . , xn] (you should

prove this). By Theorem 7.9 there exists a finite basis G = (g1, . . . , gl). Each of the

generators must come from some Gm; say gi ∈ (LT(Gmi
)) for some mi. Take the maximum

M := max{mi | i = 1, . . . , l}. Then gi ∈ (LT(GM)) for i = 0, . . . , l. Hence:

G ⊂ (LT(GM)) $ (LT(GM+1)) $ (LT(GM+2)) $ . . . .

But this contradicts the fact that (LT(Gm)) ⊂ G for all m. Hence the process must

terminate. �

Remark 8.16. The technique used in the proof of Theorem 8.15 – that no infinite strictly

increasing chain of ideals exists – is referred to as the ascending chain condition. You

should look it up in a commutative algebra book.

Example 8.17. Let us find a Gröbner basis for the ideal (z−x2z, xy− 1) ⊂ k[x, y, z] using

lexicographic order. We start by setting

G0 :=
{
z − x2z, xy − 1

}
.

We saw in Example 8.8 that S(z−x2z, xy−1) = xz−yz. Running the division algorithm

we see that S(z − x2z, xy − 1)
G0

= xz − yz. Hence

G1 :=
{
z − x2z, xy − 1, xz − yz

}
.

We now need to calculate

S(z − x2z, xy − 1)
G1
, S(z − x2z, xz − yz)

G1
, and S(xz − yz, xy − 1)

G1
.
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Of course, we don’t actually need to compute the first of those three calculations, since

by construction of G1 the remainder will be zero. For the other two, we find that

S(z − x2z, xz − yz)
G1

= 0, and S(xz − yz, xy − 1)
G1

= z − y2z.

Hence we consider:

G2 :=
{
z − x2z, xy − 1, xz − yz, z − y2z

}
.

This time there are six remainders to calculate, however we know by construction of G2

that three of them are zero. We only need to compute:

S(z − x2z, z − y2z)
G2
, S(xy − 1, z − y2z)

G2
, and S(xz − yz, z − y2z)

G2
.

We find that the remainder in each case is zero. Hence G2 is a Gröbner basis for I.

Recall the definition of a Gröbner basis G = (g1, . . . , gs) is that (LT(g1), . . . ,LT(gs)) =

(LT(I)). Looking at G2 we see that the element z − x2z can be safely discarded, since

LT(z − x2z) = −x2z = −x · LT(xz − yz). In other words

G′2 :=
{
xy − 1, xz − yz, z − y2z

}
is still be a Gröbner basis for I.

In Maple make sure that Gröbner basis package is loaded, and type:

gbasis([z-x^2*z,x*y-1],plex(x,y,z));

This instructs Maple to calculate a Gröbner basis for the given basis, using lexicographic

order with x > y > z. Observe that the answer Maple gives is (up to trivial changes of

sign) equal to the basis G′2 found above.

Remark 8.18. Example 8.17 tells us a couple of important thing. First, given an ideal I

and fixed monomial order, there may be more that one Gröbner basis. Second, a Gröbner

basis may be made smaller by discarding those elements whose leading term contributes

nothing.

Exercise 8.19. Let G = {g1, . . . , gs} be a Gröbner basis for the ideal I ⊂ k[x1, . . . , xn].

Suppose that g1 is such that LT(g1) ∈ (LT(g2), . . . ,LT(gs)). Show that G \ {g1} =

{g2, . . . , gs} is also a Gröbner basis for I.

Definition 8.20. A Gröbner basis G for a polynomial I is said to be minimal if for all

g ∈ G:

(1) LC(g) = 1;

(2) LT(g) /∈ (LT(G \ {g})).
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Remark 8.21. This first condition of Definition 8.20 is simply that we multiply the ele-

ments of our Gröbner basis so that the leading coefficient is always one. This is a perfectly

sensible thing to do. The second condition is precisely what we discussed in the previous

remark. From Example 8.17 we see that the set {xy − 1, xz − yz, y2z − z} is a minimal

Gröbner basis for (z − x2z, xy − 1).

Exercise 8.22. Let I ⊂ k[x1, . . . , xn] be an ideal, and fix a monomial order. Show that if

G and G′ are two minimal Gröbner bases for I then LT(G) = LT(G′). Hence G and G′

contain the same number of elements.

Remark 8.23. Unfortunately there is not a unique minimal Gröbner basis. Looking once

again at Example 8.17 we see that any{
xy + c(xz − yz)− 1, xz − yz, y2 − z

}
, c ∈ Z

gives us a minimal Gröbner basis for (z−x2z, xy−1). But this construction is something

of a cheat – all we’re doing is adding in monomials which already lie in (LT(G)) in such

a way that the leading terms remain unchanged. To prohibit this trick, we make the

following definition.

Definition 8.24. A Gröbner basis G for a polynomial I is said to be reduced if for all

g ∈ G:

(1) LC(g) = 1;

(2) No monomial of g lies in (LT(G \ {g})).

Theorem 8.25. Let I ⊂ k[x1, . . . , xn] be a non-zero ideal. For a given monomial order,

a reduced Gröbner basis of I exists and is unique.

Proof. Let G be a minimal Gröbner basis for I. We shall call g ∈ G reduced if no monomial

of g lies in (LT(G) \ {g}). Clearly if g is reduced in G then g is reduced in any other

minimal Gröbner basis also containing g (by Exercise 8.22). Furthermore, if all g ∈ G are

reduced, then G is reduced.

Given g ∈ G, let g′ = gG\{g} and let G′ = (G \ g) ∪ {g′}. We claim that G′ is also a

minimal Gröbner basis for I. To see this note that LT(g) = LT(g′), since by Definition 8.20

the leading term of g is not divisible by any element in G\{g}. Hence (LT(G′)) = (LT(G))

and so G′ is a Gröbner basis for I. Since G was minimal we see that G′ is also minimal.

Take the elements in G and repeatedly apply the above process until they are all re-

duced. Notice that since the leading terms remain unchanged, this procedure is guaranteed

to terminate. We end up with a reduced Gröbner basis for I. This proves existence.
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Finally, we shall show uniqueness. Suppose that G and G′ are two reduced Gröbner

bases for I. Given any g ∈ G, by Exercise 8.22 there exists some g′ ∈ G′ such that

LT(g) = LT(g′). To prove uniqueness it is sufficient to show that g = g′.

Consider the difference g− g′. Since LT(g) = LT(g′) the leading terms cancel in g− g′,
and the remaining terms are not divisible by any of the LT(G) = LT(G′) since G and G′

are reduced. Hence g − g′G = g−g′. But g−g′ ∈ I and so (by Corollary 8.4) g − g′G = 0.

Hence g = g′. �

Remark 8.26. The Gröbner basis returned by Maple’s gbasis() command is the reduced

Gröbner basis.

Exercise 8.27. Prove that two non-zero ideals (f1, . . . , fs) and (g1, . . . , gm) in k[x1, . . . , xn]

are equal if and only if they have the same reduced Gröbner basis (for some fixed monomial

order).

Exercise 8.28. The proof of Theorem 8.25 is essentially an algorithm for converting a

minimal Gröbner basis into the reduced Gröbner basis. Translate this algorithm into a

Maple program.

9. Elimination theory

After all this hard work, we find that Gröbner bases more than repay the effort. Gröbner

bases provide us with a systematic way of eliminating variables from a system of equations.

We’ll prove that this is the case, but you can start experimenting with examples straight

away9.

Examples.

Example 9.1. Consider the three polynomials in R[x, y, z]:

(9.1)

x2 + y2 = 1

x2 + y2 + z2 = 2

x+ y + z = 1

We’re interested in finding the values of x, y, and z which satisfy all three equations. In

other words, we wish to understand the affine variety V(x2 + y2 − 1, x2 + y2 + z2 − 2, x+

y + z − 1) (see Figure 4).

9All the examples in this section can be solved using elementary manipulation of the equations; the
advantage of using Gröbner bases is that the method is the same no matter how difficult the example.
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Let I = (x2 + y2− 1, x2 + y2 + z2− 2, x+ y+ z− 1) be the ideal generated by the three

equations, and let G = {g1, . . . , gs} be a Gröbner basis for I. Then I = (g1, . . . , gs). By

Exercise 4.14 we know that:

V(x2 + y2 − 1, x2 + y2 + z2 − 2, x+ y + z − 1) = V(g1, . . . , gs).

In other words, replacing the equations in (9.1) with the equations for a Gröbner basis,

we’ll get the same set of solutions.

Why does this help? Using lexicographic order, we obtain the (reduced) Gröbner basis:

G =
{
z2 − 1, 2y2 + 2zy − 2y − 2z + 1, x+ y + z − 1

}
.

Notice that the first equation only involves z, and that the second equation only involves

y and z. This means that we can use the first equation to solve for z, then use those

results and the second equation to solve for y, and finally the third equation to solve for

x. We shall work over R, although the principal is the same over an arbitrary field k.

From z2 − 1 = 0 we have that z = ±1. Let’s take z = −1 first. Then 2y2 + 2zy −
2y − 2z + 1 = 0 reduces to 2y2 − 4y + 3 = 0, which can be seen to have no solutions in

R. Taking z = 1 we see that the second equation reduces to 2y2 − 1 = 0, with solutions

y = ±1/
√

2. Finally the third equation x+ y+ z = 1 immediately gives that x = ∓1/
√

2.

Thus, with very little effort, we have found that there are exactly two solutions to (9.1),

namely: (
1√
2
,− 1√

2
, 1

)
and

(
− 1√

2
,

1√
2
, 1

)
.

Example 9.2. Let’s do another example. This time we’ll consider the two polynomials:

(9.2)

y = −1

x

z = − 1

x2

Since we have two equations in R3, we expect their intersection to be a curve. The

polynomials are graphed in Figure 5. The common zeros are described by the variety

V(xy + 1, x2z + 1).

A (reduced) Gröbner basis for the ideal (xy + 1, x2z + 1) ⊂ R[x, y, z] is given by

G = {z + y2, xz − y, xy + 1}. By Exercise 4.14 we have that V(xy + 1, x2z + 1) = V(z +

y2, xz − y, xy + 1).

Once again the equations of the Gröbner basis are easy to solve. The first equation tells

us that z = −y2 and the second equation that x = −1/y. In this case the third equation

is redundant. We see that the intersection is a curve, paramaterised by (−1/t, t,−t2),
where t ∈ R \ {0}. This curve is plotted in Figure 6.
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Figure 4. What is the intersection of the cylinder x2 + y2 = 1, the sphere

x2 + y2 + z2 = 2, and the plane x+ y + z = 1?

Figure 5. Two surfaces given by y = −1/x and z = −1/x2.
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Figure 6. The intersection of the two surfaces is given by (−1/t, t,−t2).

Example 9.3. Consider the polynomial f(x, y) = ((x− 1)2 + y2)((x+ 1)2 + y2) ∈ R[x, y].

We’re interested in finding values for a constant c ∈ R for which the curve f(x, y) = c

is particularly interesting. By interesting, we mean that the curve has a singular point

defined by the vanishing of the partial derivatives10 ∂f/∂x and ∂f/∂y.

In other words, we want to find solutions to the polynomials:

(9.3)

((x− 1)2 + y2)((x+ 1)2 + y2) = c

2(x− 1)((1 + x)2 + y2) + 2(x+ 1)((x− 1)2 + y2) = 0

2y((1 + x)2 + y2) + 2y((x− 1)2 + y2) = 0

(Here the second and third equations are ∂f/∂x and ∂f/∂y respectively.)

We can regard these polynomials as equations in R[x, y, c]. A Gröbner basis (using

lexicographic order with x > y > c) for the resulting ideal is given by:

G =
{
c2 − c, cy, y3 + y, cx, xy, x2 − y2 + c− 1

}
.

In other words, we have that:

V
(
f(x, y)− c, ∂f

∂x
,
∂f

∂y

)
= V(c2 − c, cy, y3 + y, cx, xy, x2 − y2 + c− 1).

10To explain this definition, see [CLO07, pp. 138–141]. Consult [Kir92] for more information about
singularities on curves.
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The first equation of G tells us that c = 0 or c = 1. All we are interested in are possible

values for c; the two curves we obtain are given in FIgure 7. When c = 0 we have just the

two points (−1, 0) and (1, 0). The case when c = 1 is much more interesting; the singular

point is located at the origin. This curve is called a lemniscate.

-1 1-1 1

Figure 7. The curves when c = 0 and when c = 1.

Elimination and extension.

Definition 9.4. Let I = (f1, . . . , fs) ⊂ k[x1, . . . , xn] be an ideal. The lth elimination ideal

of I is given by Il := I ∩ k[xl+1, . . . , xn].

Remark 9.5. You should prove that Il really is an ideal in k[xl+1, . . . , xn].

Theorem 9.6 (The Elimination Theorem). Let I ⊂ k[x1, . . . , xn] be an ideal, and let G

be a Gröbner basis for I with respect to lexicographic order where x1 > . . . > xn. Then,

for each 0 ≤ l < n, Gl := G ∩ k[xl+1, . . . , xn] is a Gröbner basis for Il.

Proof. Fix l. By Definition 8.1 we need to show that (LT(Il)) = (LT(Gl)). Since Gl ⊂ Il

by construction, we have that (LT(Gl)) ⊂ (LT(Il)). To prove the other inclusion, we will

show that for an arbitrary f ∈ Il, LT(f) is divisible by LT(g) for some g ∈ Gl.

Since f ∈ I we have that LT(f) is divisible by LT(g) for some g ∈ G. But f ∈ Il,

and so LT(f) involves only the indeterminates xl+1, . . . , xn. Under our monomial order,

any monomial involving x1, . . . , xl is strictly greater than all monomials in k[xl+1, . . . , xn].

Hence g must lie in k[xl+1, . . . , xn] and so g ∈ Gl. �
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Remark 9.7. Theorem 9.6 tells us that the nice properties of Gröbner bases that we ex-

ploited in the previous examples is not a coincidence. A Gröbner basis for lexicographic

order eliminates the first indeterminate, the first two indeterminates, the first three inde-

terminates, etc.

Definition 9.8. Let I ⊂ k[x1, . . . , xn] be an ideal. A point (al+1, . . . , an) ∈ V(Il) ⊂ Rn−l

is called a partial solution of V(I).

Remark 9.9. Consider the examples above. We can describe the method used in terms

of partial solutions. Start by finding all partial solutions (an) ∈ V(In−1). Then extend

this partial solution to a partial solution in V(In−2) as follows. Suppose that Gn−2 =

{g1, . . . , gs} ⊂ k[xn−1, xn] is a Gröbner basis for In−2. Substitute xn = an into the

equations of Gn−2 and solve:

g1(xn−1, an) = 0,
...

gs(xn−1, an) = 0.

This gives us V(In−2). Take each partial solution (an−1, an) ∈ V(In−2), substitute xn−1 =

an−1, xn = an into Gn−3, and solve for xn−2 to get V(In−3). Etc.

We saw in the first example that a partial solution in V(Ii+1) need not extend to a

partial solution in V(Ii). Namely, we found from the equation z2 − 1 = 0 that V(I2) =

{−1, 1} ⊂ R, but that only z = 1 gave a solution to the equation 2y2 + 2zy− 2y− 2z+ 0.

In other words, V(I1) =
{

(−1/
√

2, 1), (1/
√

2, 1)
}
⊂ R2 does not use the partial solution

z = −1.

It would be nice to know when a partial solution in V(Ii+1) can be extended to a partial

solution in V(Ii). Theorem 9.10 answers this when the field is C (in fact any algebraically

closed field will do) for V(I1) and V(I0) = V(I).

Theorem 9.10 (The Extension Theorem). Let I = (f1, . . . , fs) ⊂ C[x1, . . . , xn]. For each

1 ≤ i ≤ s write fi in the form:

fi = hi(x2, . . . , xn)xmi
1 + (terms in which x1 has degree < mi),

where mi > 0 and hi ∈ C[x2, . . . , xn] is nonzero. Let (a2, . . . , an) ∈ V(I1).

If (a2, . . . , an) /∈ V(h1, . . . , hn) then there exists a1 ∈ C such that (a1, a2, . . . , an) ∈ V(I).

Proof. See [CLO07, Chapter 3, §6]. �
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Remark 9.11. Theorem 9.10 is more useful that it might appear. First, eliminating just

one indeterminate is actually quite a common task – it corresponds to projecting the

variety V(I) ⊂ Cn onto Cn−1. Second, there’s nothing preventing you using the Extension

Theorem when moving from partial solutions in V(Ii+1) to partial solutions in V(Ii).

Example 9.12. Consider the equations:

y = 1 +
1

x3

z = 1 +
1

x

We want to know all the solutions over C. In other words, we want to understand:

V(x3y − x3 − 1, xz − x− 1) ⊂ C3.

Using lexicographic order, the (reduced) Gröbner basis for I = (x3y− x3 − 1, xz − x− 1)

is G = {y − z3 + 3z2 − 3z, xz − x− 1}. We have:

G2 = ∅ ⊂ C[z],

G1 =
{
y − z3 + 3z2 − 3z

}
⊂ C[y, z],

G = G0 =
{
y − z3 + 3z2 − 3z, xz − x− 1

}
⊂ C[x, y, z].

From G1 we have:

V(I1) =
{

(t3 − 3t2 + 3t, t) | t ∈ C
}
⊂ C2.

We use the Extension Theorem to see which values of t extend the partial solutions in

V(I1) to solutions of V(I). Rewriting the original basis of I gives:

x3y − x3 − 1 = x3(y − 1)− 1

xz − x− 1 = x(z − 1)− 1

Consider V(y − 1, z − 1) = {(1, 1)} ⊂ C2. Since (t3 − 3t2 + 3t, t) /∈ V(y − 1, z − 1) for all

t 6= 1, the Elimination Theorem guarantees that they extend to a solution of V(I). What

about t = 1? From xz−x−1 = 0 we obtain x ·1−x−1 = 0; this clearly has no solutions.

Hence:

V(I) =

{(
1

t− 1
, t3 − 3t2 + 3t, t

) ∣∣∣ t ∈ C \ {1}
}
.

The real part of this solution is given in Figure 8. The curve is shown projected onto the

(y, z)-plane. The image of the projection is the curve y = z3 − 3z2 + 3z (i.e. V(G1)), but

with the point (1, 1) missing. This point corresponds to the value t = 1.
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t =1
x

y

y

z

z

Figure 8. The variety V(x3y − x3 − 1, xz − x − 1) in R3 projected onto

the (y, z)-plane.

Projecting affine varieties.

Remark 9.13. We saw in Example 9.12 that elimination corresponds to projection onto

a lower dimensional subspace. We shall explore this idea further. For simplicity we shall

work over C (however any algebraically closed field will do).

Definition 9.14. Fix 0 ≤ l < n. The projection map πl is given by:

πl : Cn→ Cn−l

(a1, . . . , an) 7→ (al+1, . . . , an).

Exercise 9.15. Let V ⊂ Cn be an affine variety. Show that πl(V ) ⊂ V(Il), where Il is the

lth elimination ideal of I = I(V ).

Remark 9.16. In Example 9.12 the image of the projection π1 : C3 → C2 is contained in

V(I1). More precisely:

π1(V(x3y − x3 − 1, xz − x− 1)) = V(y − z3 + 3z2 − 3z) \ {(1, 1)} .

Notice that V(y− z3 + 3z2− 3z) \ {(1, 1)} is not an affine variety (you should prove this).

Theorem 9.17 (The Closure Theorem). Let V ⊂ Cn be an affine variety, and let Il be

the lth elimination ideal of I = I(V ). Then:

(1) V(Il) is the smallest affine variety containing πl(V );
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(2) When V 6= ∅, there exists an affine variety W $ V(Il) such that V(Il)\W ⊂ πl(V ).

Proof. See [CLO07, pp. 125–126]. �

Remark 9.18. What we mean by “smallest” in Theorem 9.17 is hopefully intuitively clear,

even if we haven’t defined this concept mathematically. You should go away and read

about the Zariski topology in one of [Rei88, Sha94, SKKT00]. The point is that V(Il) is

the closure of πl(V ) in the Zariski topology.

Theorem 9.17 (2) means that we can always subtract off an affine variety from V(Il)

to recover πl(V ). You can see this happening in Example 9.12, where π1(V ) = V(y −
z3 + 3z2 − 3z) \ V(y − 1, z − 1). Obviously in the case when πl(V ) = V(Il) we have

W = ∅(= V(1)). The difference U \ W of two affine varieties U and W is called a

quasi-affine variety.

10. The Nullstellensatz

Recall Example 4.16 and Proposiion 4.21. For an arbitrary ideal I ⊂ k[x1, . . . , xn]

we have an inclusion I ⊂ I(V(I)), but not necessarily equality (as illustrated by taking

I = (x2)). In this section we shall see when I = I(V(I)); we shall introduce the notion

of a radical ideal from Commutative Algebra and understand the connection with Al-

gebraic Geometry. Before we can proceed, we need another result due to Hilbert: the

Nullstellensatz.

Three Nullstellensatzs.

Theorem 10.1 (The Weak Nullstellensatz). Let I ⊂ C[x1, . . . , xn] be an ideal such that

V(I) = ∅. Then I = C[x1, . . . , xn].

Proof. See [CLO07, pp. 170–172]. �

Remark 10.2. In the statement of Theorem 10.1, and for the remainder of Section 10, you

may replace C with any algebraically closed field.

Note that the converse statement is obviously true: Since 1 ∈ C[x1, . . . , xn], we have

that V(C[x1, . . . , xn]) = ∅. In fact, since (1) = C[x1, . . . , xn], a useful rephrasing is that

V(I) = ∅ if and only if 1 ∈ I.

Corollary 10.3. A system of equations

f1 = 0,
...

fm = 0,
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has a common solution in Cn if and only if the reduced Gröbner basis of (f1, . . . , fm) does

not equal {1}.

Proof. The system of equations has a common solution if and only if V(f1, . . . , fm) 6= ∅.
By Theorem 10.1 this is the case if and only if 1 /∈ (f1, . . . , fm). We shall show that, for

any monomial order, {1} is the reduced Gröbner basis for (1).

LetG = {g1, . . . , gs} be a Gröbner basis for I = (1). 1 ∈ (LT(I)) = (LT(g1), . . . ,LT(gs)),

and Exercise 7.3 tells us that 1 must be divisible by LT(gi) for some 1 ≤ i ≤ s. Without

loss of generality, suppose that LT(g1) divides 1. Then LT(g1) is a constant. But since

every LT(gi), 2 ≤ i ≤ s, is divisible by that constant, each gi can be removed from the

Gröbner basis (by Exercise 8.19). Finally, since LT(g1) is constant, so g1 is constant and

we are free to multiply through so that g1 = 1, giving the (unique) reduced Gröbner basis

{1}. �

Example 10.4. Consider the system of equations:

x2 + y2 = −1,

x3 + y3 = −1,

x5 + y5 = −1.

The reduced Gröbner basis for (x2 + y2 + 1, x3 + y3 + 1, x5 + y5 + 1) using lexicographic

order is {1}. Hence by Corollary 10.3 there is no solution in C2.

Theorem 10.5 (The Nullstellensatz). Let I ⊂ C[x1, . . . , xn] be an ideal. A polynomial

f ∈ I(V(I)) if and only if there exists an integer m ≥ 1 such that fm ∈ I.

Proof. We may assume that I = (f1, . . . , fs) (by the Hilbert Basis Theorem), and let

f ∈ I(V(I)) be a non-zero polynomial. Consider the ideal I ′ = (f1, . . . , fs, 1 − yf) ⊂
k[x1, . . . , xn, y], and suppose for a contradiction that V(I ′) 6= ∅. If (a1, . . . , an, an+1) ∈
V(I ′) then (a1, . . . , an) ∈ V(I). But since f ∈ V(I), so f(a1, . . . , an) = 0. Hence 1− yf =

1 6= 0 at (a1, . . . , an, an+1). Hence V(I ′) = ∅.
By Theorem 10.1 we have that 1 ∈ V(I ′). Thus there exist hi, q ∈ C[x1, . . . , xn, y] such

that:

1 = h1f1 + . . .+ hsfs + q(1− yf).

Setting y = 1/f(x1, . . . , xn) we obtain:

(10.1) 1 = h1(x1, . . . , xn, 1/f)f1 + . . .+ hs(x1, . . . , xn, 1/f)fs.
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Now, each hi is a polynomial, hence there exists some suitably large power m such that

multiplying (10.1) through by fm will clear the denominators. I.e.

(10.2) fm = h′1f1 + . . .+ h′sfs

where the h′i ∈ C[x1, . . . , xn] (remember that f is a polynomial in C[x1, . . . , xn]). But

(10.2) means that fm ∈ (f1, . . . , fs).

The converse is easy: Let fm ∈ I and (a0, . . . , an) ∈ V(I). Then (f(a1, . . . , an))m = 0,

hence f(a1, . . . , an) = 0, and so f ∈ V(I). �

Example 10.6. Let I = (x2 + y2− 1, x− 1) ⊂ C[x, y]. A Gröbner basis for I is {y2, x− 1},
hence V(x2 + y2− 1, x− 1) = V(y2, x− 1). By Theorem 10.5 we see that y ∈ I(V(I)) even

though y /∈ I. In fact it is easy to see that I(V(I)) = (y, x− 1).

Definition 10.7. Let I ⊂ k[x1, . . . , xn] be an ideal. We call I radical if fm ∈ I for some

integer m ≥ 1 implies that f ∈ I.

Definition 10.8. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I is given by:
√
I := {f ∈ k[x1, . . . , xn] | fm ∈ I for some integer m ≥ 1} .

Example 10.9. The ideal (x2 − y2, x) is not radical, since it contains y2 but not y. We

have that
√

(x2 − y2, x) = (x, y).

Example 10.10. Principal ideals in C[x] provide plenty of nice examples. The ideal (x2 +

2x + 1) is clearly not radical, since x + 1 /∈ (x2 + 2x + 1). Its radical is given by (x + 1)

(you should check this). Similarly the ideal (x3 − 6x2 + 12x− 8) has radical (x− 2).

Exercise 10.11. Show that
√
I is an ideal in k[x1, . . . , xn] containing I, and that

√
I is

radical. Deduce that
√
I = I if and only if I is radical. Prove also that the intersection

of two radical ideals is also radical.

Theorem 10.12 (The Strong Nullstellensatz). Let I ⊂ C[x1, . . . , xn] be an ideal. Then

I(V(I)) =
√
I.

Proof. Let f ∈
√
I. Then there exists some integer m ≥ 1 such that fm ∈ I, and so fm

vanishes on V(I). Hence f vanishes on V(I) and so f ∈ I(V(I)). I.e.
√
I ⊂ I(V(I)).

For the opposite inclusion, suppose that f ∈ I(V(I)). By Theorem 10.5 there exists

some integer m ≥ 1 such that fm ∈ I, and so f ∈
√
I. Hence I(V(I)) ⊂

√
I. �
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Remark 10.13. Theorem 10.12 tells us that affine varieties and radical ideals are in one-

to-one correspondence. We can think of V(I) as a map from the set of radical ideals to

the set of affine varieties, and I(V ) as a map in the opposite direction. In other words,

V : {radical ideals in C[x1, . . . , xn]} → {affine varieties in Cn} ,

I : {affine varieties in Cn} → {radical ideals in C[x1, . . . , xn]} .

If I is a radical ideal, then I(V(I)) =
√
I = I (by Theorem 10.12). If V is an affine variety

then V(I(V )) = V (check this). Hence I and V are inverses of each other.

Stop, make a cup of tea, and think seriously about what we’ve just discovered here. This

is all really rather remarkable.

Example 10.14. Let I = (xy − 1, x4 − 1) ⊂ C[x, y] be an ideal. Notice that the variety

V(I) = {(1, 1), (−1,−1), (i,−i), (−i, i)} ⊂ C2. Hence any f ∈ I vanishes at those four

points. Now consider the intersection of four ideals:

I ′ = (x− 1, y − 1) ∩ (x+ 1, y + 1) ∩ (x− i, y + i) ∩ (x+ i, y − i) ⊂ C[x, y].

Clearly any f ∈ I ′ also vanishes at the four points in V(I). Each of the four ideals defining

I ′ is radical, so by Exercise 10.11 we see that I ′ is radical. Hence by Theorem 10.12

I ′ =
√
I.

Radical algorithms.

Remark 10.15. Armed with an arbitrary ideal I ⊂ C[x1, . . . , xn], three questions present

themselves. Is there a method for determining whether a given polynomial f lies in
√
I?

How can we decide whether I is radical or not? Can we write down a basis for
√
I?

Unfortunately we we’ll only be able to answer the last two questions in the case of a

principal ideal (although general algorithms are known).

The proof of Theorem 10.5 immediately gives us the following answer to the first ques-

tion:

Proposition 10.16. Let I = (f1, . . . , fs) ⊂ C[x1, . . . , xn] be an ideal, and let f ∈
C[x1, . . . , xn] be an arbitrary polynomial. Then f ∈

√
I if and only if 1 ∈ (f1, . . . , fs, 1−

yf) ⊂ C[x1, . . . , xn, y].

Example 10.17. Consider the ideal I = (yx3, (y − 2)3) ⊂ C[x, y] We shall show that

f = x − 3y + 6 ∈
√
I. By Proposition 10.16 it is sufficient to show that 1 ∈ (yx3, (y −

2)3, 1 − z(x − 3y + 6)) ⊂ C[x, y, z]. The reduced Gröbner basis of this ideal is {1}, so

we’re done.
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We can calculate what power of f lies in I by repeated use of the division algorithm.

The reduced Gröbner basis for I, using lexicographic order, is G = {(y − 2)3, x3}. (Note

that I didn’t need to perform any Gröbner basis calculations to find this – I could see it

straight from the generators of I. You should pause to see how.) Observe that:

x− 3y + 6
G

= x− 3y + 6 6= 0

(x− 3y + 6)2
G

= (x− 3y + 6)2 6= 0

(x− 3y + 6)3
G

= −9x(y − 2)(x− 3y + 6) 6= 0

(x− 3y + 6)4
G

= −54x2(y − 2)2 6= 0

(x− 3y + 6)5
G

= 0

Hence f 5 is the smallest power of f to lie in I.

Proposition 10.18. Let f ∈ C[x1, . . . , xn], and suppose that f = cfa1
1 . . . far

r is the

factorisation of f into a product of distinct irreducible polynomials, where c ∈ C. Then:√
(f) = (f1f2 . . . fr).

Proof. First we show that (f1f2 . . . fr) ⊂
√

(f). Let N := max a1, . . . , ar + 1, then:

(f1f2 . . . fr)
N = fN−a1

1 fN−a2
2 . . . fN−ar

r f,

so (f1f2 . . . fr)
N ∈ (f). Hence f1f2 . . . fr ∈

√
(f) and we have inclusion.

Now we show that
√

(f) ⊂ (f1f2 . . . fr). Let g ∈
√

(f). Then there exists some power

such that gM ∈ (f). Hence gM = hf for some h ∈ C[x1, . . . , xn]. Let g = gb11 . . . gbss be the

factorisation of g into a product of distinct irreducible polynomials. Then:

gMb1
1 . . . gMbs

s = chfa1
1 . . . far

r .

By unique factorisation, the irreducible polynomials on both sides must be the same

(up to multiplication by some constants). In particular, each fi must be equal to (some

multiple of) one of the gj. This tells us that g is a polynomial multiple of f1f2 . . . fr, and

so g ∈ (f1f2 . . . fr). �

Example 10.19. Consider the polynomial f = (x2 + 1)2(xy − 1)3 ∈ C[x, y]. This factors

as f = (x− i)2(x+ i)2(xy − 1)3. Hence by Proposition 10.18 we have that:√
(f) = ((x− i)(x+ i)(xy − 1)) = (yx3 − x2 + xy − 1).
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Proposition 10.20. Let f ∈ C[x1, . . . , xn], and let:

fred :=
f

gcd
{
f, ∂f

∂x1
, . . . , ∂f

∂xn

} .
Then

√
(f) = (fred).

Proof. In order to prove the claim it is sufficient to show that:

gcd

{
f,
∂f

∂x1

, . . . ,
∂f

∂xn

}
= fa1−1

1 fa2−1
2 . . . far−1

r .

The rest follows from Proposition 10.18.

First we show that fa1−1
1 fa2−1

2 . . . far−1
r divides the gcd. This is easy, since by the

product rule:

∂f

∂xj
= fa1−1

1 fa2−1
2 . . . far−1

r

(
a1
∂f1

∂xj
f2 . . . fr + a2f1

∂f2

∂xj
. . . fr + . . .+ arf1f2 . . .

∂fr
∂xj

)
.

Conversely, if we can show that, for each i, there exists some ∂f/∂xj not divisible by

fai
i , then we will be done.

Suppose for a contradiction that fai
i divides ∂f/∂xl for all l. Since fi is non-constant, it

must contain a term involving xj for some j. Writing f = fai
i hi (where hi is the product

fa1
1 . . . f̂ai

i . . . far
r ) we see, once again by the product rule, that:

∂f

∂xj
= fai−1

i

(
ai
∂fi
∂xj

hi + fi
∂hi
∂xj

)
.

By assumption, fai
i divides the left hand side, and so must divide the right hand side. In

particular, fi must divide (∂fi/∂xj)hi. But fi does not divide hi (since the fl are distinct

and irreducible), so it must divide ∂fi/∂xj. This is nonsense, since the degree of xj in

∂fi/∂xj is strictly less than in fi. We have obtained our desired contradiction. �

Remark 10.21. Recall Remark 5.17 for how to use Maple’s gcd function. To obtain a

partial derivative, use the diff function. For example, to calculate ∂f/∂x you would

type diff(f,x);. Typing divide(f,g,'q'); performs the division algorithm, dividing

f by g. If the remainder is zero then the function outputs true and the quotient is stored

in q. Otherwise it outputs false.

Example 10.22. Let f = y3−2xy2 +yx2−y2 +2xy−x2 ∈ C[x, y]. By Proposition 10.20 we

know that
√

(f) = (fred). In order to calculate fred we might enter the following sequence
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of commands in Maple:

f:=y^3-2*x*y^2+y*x^2-y^2+2*x*y-x^2;

g:=gcd(f,gcd(diff(f,x),diff(f,y)));

divide(f,g,'q');

q;

We see that fred = (x− y)(y − 1). Hence:

I(V(f)) =
√

(f) = ((x− y)(y − 1)) ⊂ C[x, y].

The affine variety V(f) is given by the union two lines y = x and y = 1.

Corollary 10.23. A principal ideal (f) ⊂ C[x1, . . . , xn] is radical if and only if

gcd

{
f,
∂f

∂x1

, . . . ,
∂f

∂xn

}
is a constant.
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