MATH6991

SCHEMES AND GEOMETRY DECEMBER 2006

This exam consists of four questions, each worth 25 marks. Please attempt all the questions. This is an open-book exam. State clearly any results you use, and if relevant give a reference.

- **1.** Let $\mathbb{A}^n := \operatorname{Spec} k[x_1, \dots, x_n]$, where k is an algebraically closed field.
 - (i) State a relevant form of the Nullstellensatz. What are the closed points of \mathbb{A}^n ? Sketch a diagram representing the points of \mathbb{A}^1 , making sure to include any generic points.
 - (ii) Prove that any irreducible polynomial $f(x,y) \in k[x,y]$ is associated with a prime ideal $(f) \subset k[x,y]$ whose closure consists of the point itself and all the closed points (λ,μ) with $f(\lambda,\mu) = 0$. Sketch a diagram representing the points of \mathbb{A}^2 , making sure to include any generic points.
 - (iii) Let $U = \mathbb{A}^n \setminus \{0\}$, where $n \geq 2$. By expressing $U = \bigcup_{i=1}^n X_{x_i}$ as the union of distinguished open subsets, show that $\mathcal{O}_{\mathbb{A}^n}(U) = k[x_1, \dots, x_n]$. (Hint: We can express $f \in \mathcal{O}_{\mathbb{A}^n}(U)$ as $f = f_i/x_i^{m_i}$ on X_{x_i} , where $f_i \in k[x_1, \dots, x_n]$.) Hence or otherwise explain why U is not an affine open set.
- **2.** Let \mathfrak{p} be a prime ideal of the ring $\mathbb{Z}[x]$. Suppose that $\mathfrak{p} \cap \mathbb{Z} \neq \{0\}$. Show that $\mathfrak{p} \cap \mathbb{Z} = (p)$ for some prime p. By considering the homomorphism

$$\phi: \mathbb{Z}[x] \to \mathbb{F}_p[x]$$
$$f(x) \mapsto f(x) \pmod{p},$$

prove that the ideal $\overline{\mathfrak{p}}$ in $\mathbb{F}_p[x]$ generated by $\phi(\mathfrak{p})$ is a prime ideal, and hence can be written in the form $\overline{\mathfrak{p}} = (\overline{h(x)})$ for some irreducible polynomial $\overline{h(x)}$ in $\mathbb{F}_p[x]$. Show that $\mathfrak{p} = (p, f(x))$ for any $f(x) \in \mathbb{Z}[x]$ such that $\phi(f(x)) = \overline{h(x)}$. Hence, or otherwise, find an expression for V((p)) (considered as a set).

- 3. Let $X = \operatorname{Spec} R$ be an affine scheme, with structure sheaf \mathcal{O}_X .
 - (i) State an important result which relates an appropriate localisation of R with sections of \mathcal{O}_X over distinguished open subsets X_f . Hence for any open set U in Spec \mathbb{Z} find an **explicit** description of $\mathcal{O}_{\text{Spec }\mathbb{Z}}(U)$.

- (ii) Find an explicit description of $\mathcal{O}_{\mathbb{A}^1}(U')$ for any open set U' in \mathbb{A}^1 . Let $g(x) \in k[x]$ be an irreducible polynomial. Let (g(x)) be the point in \mathbb{A}^1 corresponding to g(x). Find an explicit description of $\mathcal{O}_{\mathbb{A}^1,(g(x))}$.
- (iii) Let $\tilde{g}(x)$ be the image of g(x) in $\mathcal{O}_{\mathbb{A}^1,(g(x))}$. Show that $\mathcal{O}_{\mathbb{A}^1,(g(x))}/(\tilde{g}(x))$ is isomorphic to k[x]/(g(x)). What does $\mathcal{O}_{\mathbb{A}^1,(0)}$ equal?
- **4.** (i) What does it mean to say that a scheme X is *irreducible*? What does it mean to say that X is *reduced*? Prove that if X is reduced then the stalk $\mathcal{O}_{X,x}$ at x is nilpotent free.
 - (ii) State, with justification, whether Spec k[x,y]/(xy) is a reduced scheme. Is Spec $k[x]/(x^2)$ reduced? Is it irreducible? Give justifications for your answers.
 - (iii) Let $\phi : \operatorname{Spec} k[x,y]/(xy) \to \mathbb{A}^1$ be the map of affine schemes induced by the ring map:

$$k[t] \rightarrow k[x,y]/(xy)$$

 $t \mapsto x + y.$

Show that the fibre over the point (t) is isomorphic to Spec $k[x]/(x^2)$.