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Abstract

Mirror symmetry evokes a correspondence between deformation equivalence

classes of toric varieties and mutation equivalence classes of the corresponding

Fano varieries. This thesis discusses many computations and examples of this

ilk, in the case when the varieties are 2-dimensional and permitted to possess

cyclic quotient singularities.

The mutation graph of weighted projective planes has been well studied by

Akhtar–Kasprzyk. We similarly analyse the mutation graph of P1 ×P1 which

involves looking at quivers and Plücker coordinates.

An algorithm is presented to classify mutation equivalence classes of Fano poly-

gons where the corresponding surfaces have fixed singularities. These surfaces

are subsequently studied using Laurent inversion and found to lie in a cascade

structure introduced by Reid–Suzuki.

By studying the combinatorics of Fano polygons, which involves matrix cal-

culations, continued fractions and r-modular sequences, we provide results

regarding combinations of cyclic quotient singularities that do not occur for a

del Pezzo surface admitting a toric degeneration.
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1
T O R I C G E O M E T RY

1.1 fans and polytopes

Toric geometry, the study of particular algebraic varieties known as toric va-

rieties, can be studied from Cox–Little–Schenck [30], Ewald [33] and Fulton

[36].

Definition 1.1.1 ([30, Definition 3.1.1]). A toric variety of dimension n is a nor-

mal variety X that contains the torus T ∼= (C∗)n as a Zariski open subset, to-

gether with an algebraic action T × X → X of T on X that extends the natural

action of T on itself.

Here by algebraic action, we mean that T × X → X is a morphism.

Often toric geometry has a combinatorial flavour in exploiting the underlying

structure of these varieties.

Consider an n-dimensional lattice N ∼= Zn. The dual lattice is M := Hom(N, Z),

and is equip with the natural pairing 〈·, ·〉 : N ×M → Z. By tensoring the lat-

tice N with R, obtain the vector space NR = N ⊗ R. Similarly use MR to

denote M⊗R.
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1.1 fans and polytopes

Definition 1.1.2 ([30, Definition 1.2.1]). A rational polyhedral cone σ ∈ NR is a

set of the form:

σ :=
{

∑
u∈S

λuu : λu ≥ 0
}
⊆ NR,

where S is a finite set of rational points in NR. The rational polyhedral cone is

strongly convex if σ ∩ (−σ) = {0}.

By an abuse of notation we often say ‘cone’ to mean ‘strongly convex rational

polyhedral cone’.

Definition 1.1.3 ([30, Definition 1.2.5]). A face of a cone is given by:

τ :=
{

u ∈ NR : 〈u, m〉 = 0
}
∩ σ,

for some m ∈ σ∨ = {m ∈ MR : 〈u, m〉 ≥ 0, ∀u ∈ σ}. This is denoted τ � σ.

Definition 1.1.4 ([30, Definition 3.1.2]). A fan Σ ⊂ NR is a finite collection of

cones such that:

• If σ ∈ Σ and τ � σ, then τ ∈ Σ;

• If σ, σ′ ∈ Σ, then σ ∩ σ′ ∈ Σ.

From a fan Σ, we construct a unique toric variety XΣ as follows: Let σ ∈ Σ, and

σ∨ ⊂ MR be the dual cone, that is σ∨ := {m ∈ MR : 〈u, m〉 ≥ 0, ∀u ∈ σ}. Define

the semigroup Sσ := σ∨ ∩M.

Lemma 1.1.5 (Gordan’s Lemma, [30, Proposition 1.2.17]). If σ is a cone, then

the semigroup Sσ is finitely generated.

It follows that C[Sσ] is an affine ring, and so Uσ := Spec (C[Sσ]) is an affine

variety. For a fan Σ, the toric variety XΣ is constructed by glueing the disjoint

union of the affine toric varieties Uσ together along the common faces of any

two cones in the fan using the following lemma:

Lemma 1.1.6 ([30, Section 3.1]). If τ � σ, then there exists a map Uτ → Uσ

which embeds Uτ as a principal open subset of Uσ.
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1.1 fans and polytopes

For σ, σ′ ∈ Σ, let τ = σ ∩ σ′ ∈ Σ be the common face. Then there are em-

beddings Uτ → Uσ and Uτ → Uσ′ and so we can glue Uσ and Uσ′ along Uτ.

Glueing together all cones of Σ in this fashion gives the toric variety XΣ.

Example 1.1.7. Consider the fan Σ containing a single 2-dimensional cone σ

generated by the rays with primitive vertices (0, 1) and (2,−1) in N ∼= Z2

represented by e2 and e2
1e−1

2 repectively.

σ

The dual cone has rays generated by e∗1 and e∗1e∗22 .

σ∨

Therefore the semigroup Sσ is generated by the monomials X = e∗1 , XY = e∗1e∗2
and XY2 = e∗1e∗22 , and so it follows that:

XΣ = Uσ = Spec (C[Sσ]) = Spec
(

C[X, XY, XY2]
)
∼= Spec (C[U, V, W]/(V2 −UW)) ,

which is the quadric cone {V2 −UW} ⊂ C3
U,V,W .

Example 1.1.8. Consider the fan Σ with three full-dimensional cones:

σ0

σ1

σ2

3



1.1 fans and polytopes

Calculating the dual for each cone obtain:

σ∨0

σ∨1

σ∨2

As before, it follows that the toric variety is covered by the affine open patches:

Uσ0 = Spec (C[Sσ0 ]) = Spec (C[X, Y]) = C2
X,Y,

Uσ1 = Spec (C[Sσ1 ]) = Spec
(

C
[ 1

X
,

Y
X

])
= C2

1
X , Y

X
,

Uσ2 = Spec (C[Sσ2 ]) = Spec
(

C
[X

Y
,

1
Y

])
= C2

X
Y , 1

Y
,

where the subscripts on C2 denote the coordinates. It is routine to check that

these three patches glue together in an identical fashion to how the three stan-

dard affine patches of P2
T0:T1:T2

glue together, via the substitution X = T1
T0

and

Y = T2
T0

. Therefore XΣ = P2.

Although stated, it has not yet been formally verified that the variety XΣ ob-

tained from a fan Σ is indeed toric as per Definition 1.1.1.

Lemma 1.1.9 ([30, Theorem 3.1.5]). The variety XΣ obtained from a fan Σ ⊂ NR

via the above construction is indeed a toric variety.

Proof. Note that every cone σ ∈ Σ has by definition, a 0-dimensional cone {0}

as a face. By Lemma 1.1.6, U{0} lies inside Uσ ⊂ XΣ. In calculating U{0}, find

that S{0} = M which has 2n generators, namely X±1
i = ±e∗i for 1 ≤ i ≤ n.

Therefore:

U{0} = Spec
(

C[X1, X−1
1 , · · · , Xn, X−1

n ]
)
= (C∗)n ⊂ XΣ.
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1.1 fans and polytopes

Alternatively given a toric variety X, we would like to recover a fan Σ. Start by

considering a torus T ∼= (C∗)n.

Definition 1.1.10 ([30, Section 1.1]). A character of T is a group homomorphism

χ : T → C∗. The character group of T is the group M := Hom(T, C∗).

Let a = (a1, . . . , an) ∈ Zn. There is a corresponding character defined by:

χa(t1, . . . , tn) = ta1
1 ta2

2 . . . tan
n .

Indeed all the characters of T arise in this way, and so M ∼= Zn.

Definition 1.1.11 ([30, Section 1.1]). A one-parameter subgroup of T is a mor-

phism λ : C∗ → T that is also a group homomorphism. The lattice of one-

parameter subgroups of T is N := Hom(C∗, T).

Let b = (b1, . . . , bn) ∈ Zn. There is a one-parameter subgroup:

λb(t) = (tb1 , . . . , tbn).

Again all the one-parameter subgroups arise in this way, and so N ∼= Zn.

The choice of notation here for the character group and lattice of one-parameter

subgroups is not accidental.

For a ∈ Zn ∼= M and b ∈ Zn ∼= N, we obtain the composition χa ◦λb : C∗ → C∗.

Since this is also a homomorphism it is of the form t 7→ tl for some l ∈ Z.

Define a natural pairing 〈·, ·〉 : M×N → Z by 〈a, b〉 = l. This identifies N with

Hom(M, Z), and M with Hom(N, Z).

Let X be a toric variety with torus T ∼= (C∗)n. The fan for X can be recon-

structed in the lattice of one-parameter subgroups. Let λb ∈ N. Define the

map λ̃b : C∗ → X as given by the torus action of λ̃b(t) on X, namely:

λ̃b(t) := λb(t) · 1,

where 1 is the identity element of T. Since the closure of the torus T ⊂ X is

X itself, it follows that xb
0 := limt→0 λ̃b(t) ∈ X. This point is known as the

5



1.1 fans and polytopes

distinguished point. Define an equivalence relation on the set of points in N

by b ∼ b′ if and only if xb
0 = xb′

0 . This equivalence class can be extended to

NR. The set of points of NR belonging to an equivalence class is equal to the

interior of a cone σ. The collection of such cones give a fan Σ ⊆ NR as desired.

It follows that there is a one to one correspondence between toric varieties and

fans considered up to a change of basis on N.

Although thus far we have used the language of fans, in this thesis we are more

accustomed to working with polytopes. To get from a fan to the corresponding

polytope is routine: take the convex hull of the unique primitive (a lattice point

whose coordinates are coprime) generators of each ray in the fan.

σ0

σ1

σ2

←→

Definition 1.1.12. A Fano polytope P is a full dimensional convex polytope such

that:

• for all vertices v ∈ V(P) ⊂ N, then v is primitive;

• the origin lies in the strict interior of P.

These conditions on the polytope to be Fano are exactly the conditions required

for the corresponding toric variety to be Fano. This thesis focuses on the case

where N is a rank 2 lattice. In rank 2, Fano polytopes are referred to as Fano

polygons. A polytope being Fano is the combinatorial interpretation of a ge-

ometric property of XP, namely that the anticanonical divisor −KXP is am-

ple.
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1.2 toric morphisms

1.2 toric morphisms

Consider toric varieties X1 and X2, whose tori are given respectively by T1 and

T2.

Definition 1.2.1 ([30, Definition 3.3.3]). A morphism of varieties φ : X1 → X2

is a toric morphism if φ(T1) ⊆ T2, and φ |T1 is a group homomorphism.

As is typical in toric geometry, this definition of a toric morphism has a combi-

natorial interpretation in terms of the fans Σ1 ⊂ (N1)R and Σ2 ⊂ (N2)R of X1

and X2 respectively.

Definition 1.2.2 ([30, Definition 3.3.1]). Consider a lattice homomorphism ψ :

N1 → N2 which induces a linear map ψ : (N1)R → (N2)R. We say ψ is

compatible with (Σ1, Σ2) if for every cone σ1 ∈ Σ1, then there exists σ2 ∈ Σ2 such

that ψ(σ1) ⊆ σ2.

Theorem 1.2.3 ([30, Theorem 3.3.4]). A linear map ψ : (N1)R → (N2)R compati-

ble with (Σ1, Σ2), corresponds to a toric morphism φ : X1 → X2, and vice-versa.

It is worth noting that the proof of Theorem 1.2.3 is constructive. In particular

given a compatible map ψ : Σ1 → Σ2 it is easy to find the corresponding toric

morphism:

ψ(σ1) ⊆ σ2,

=⇒ ψ∨(σ∨2 ) ⊆ σ∨1 ,

=⇒ ψ∨(Sσ2) ⊆ Sσ1 ,

=⇒ ∃ φ such that φ(Spec(Sσ1)) ⊆ Spec(Sσ2),

=⇒ φ(Uσ1) ⊆ Uσ2 ,

and so this map is an affine toric morphism. Furthermore since ψ is the same

linear map on all of Σ1, the affine maps φ acting on Uσ for all σ ∈ Σ1, glue

together to give a toric morphism φ : X1 → X2.
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1.2 toric morphisms

Example 1.2.4. Consider the following fans both lying in the vector space NR

where N is a rank two lattice:

Σ1 =

Σ2 =

The fans correspond to the toric varieties XΣ1 = C2 and XΣ2 = P1 ×P1 respec-

tively. Consider the linear map ψ1 : N → N defined by

(a, b) 7→ (a, b).

The map ψ1 is compatible with (Σ1, Σ2), and corresponds to a toric morphism

φ1 which embeds C2 into P1 × P1. Indeed it is possible to find other com-

patible linear maps and therefore other toric morphisms which give different

embeddings of C2 into P1 ×P1.

Example 1.2.5. For a rank n lattice N, let Σ1 ⊂ NR be a fan with a single

maximal cone whose rays are generated by the standard basis e1, . . . , en of N.

Set e0 = e1 + . . . + en, and define Σ2 as the fan with cones defined by primitive

ray generators forming a set S satisfying {e1, . . . , en} * S ⊂ {e0, e1, . . . , en}.

Note that the identity map ψ : N → N is linear and compatible with (Σ2, Σ1),

and so there is a corresponding toric morphism φ : XΣ2 → XΣ1 = Cn.

The maximal cones of Σ2 are given by σi = spanR≥0
(e0, e1, . . . , ei−1, ei+1, . . . en),

for 1 ≤ i ≤ n. By calculating σ∨i , note that Sσi is generated by the monomials

e?i , e?1 − e?i , . . . , e?n − e?i , and so it follows that:

Uσi = Spec
(

C[Xi, X1X−1
i , . . . , XnX−1

i ]
)

.

8



1.3 orbit-cone correspondence

The glueing between the patches Uσi is identical to the glueing between the

patches of the blow up of Cn at the origin, that is the complete intersection of

the equations XiTj = XjTi in Cn
X1,...,Xn

×Pn−1
T1,...,Tn

. Therefore the toric variety XΣ2

is the blow up of XΣ1 = Cn at the origin.

This second example can be easily generalised to an arbitrary cone whose prim-

itive ray generators v1, . . . , vn form a basis of the lattice N. Adding the ray

generated by v0 = v1 + . . . + vn to a fan is equivalent to the blow-up of the

corresponding toric variety in a smooth point.

1.3 orbit-cone correspondence

The aim of this section is to study the orbits of the action of T on the toric

variety XΣ.

It is known that ring homomorphisms A → B are in correspondence with

morphisms of varieties Spec(B) → Spec(A). In particular setting B = C, it

follows that Spec(B) is a point and that the image of this point, that is a closed

point of Spec(A), corresponds to a ring homomorphism from A to C. Setting

A = C[Sσ], then points of Uσ = Spec(C[Sσ]) are in bijective correspondence to

semigroup homomorphisms φ : Sσ → C.

Definition 1.3.1 ([30, Section 3.2]). For a cone σ, there is a point of Uσ defined

by the homomorphism Sσ → C:

m 7→

1, if m ∈ σ⊥ ∩M ,

0, otherwise,

where σ⊥ = {m ∈ MR : 〈u, m〉 = 0, ∀u ∈ σ} . We denote this point γσ and call

it the distinguished point corresponding to σ.

9



1.3 orbit-cone correspondence

Note that the distinguished point is well-defined: σ∨ ∩ σ⊥ is a face of σ∨, so

if m, m′ ∈ Sσ such that m + m′ ∈ Sσ ∩ σ⊥ then m, m′ ∈ Sσ ∩ σ⊥ hence the

homomorphism of Definition 1.3.1 is well-defined.

Example 1.3.2. Consider the fan ΣP2 ⊂ NR:

σ

Let σ be the cone with rays generated by (1, 0) and (0, 1). Consider, as above,

the morphism φ : C[Sσ] ∼= C[X, Y]→ C described by:

XiY j 7→

1, if (i, j) = (0, 0)

0, otherwise.

Note Spec(C) = {(0)} = {point}. Then:

φ−1 ((0)) = C ·
{

XiY j : (i, j) 6= (0, 0))
}
= 〈X, Y〉

which is a prime ideal, and the distinguished point is γσ = (0 : 0 : 1) ∈ P2.

In general this calculation to find the distinguished point of a cone is cumber-

some. Fortunately there is an easier method.

Let a = (a1, · · · , an) ∈ N where rank(N) = n. Consider the one-parameter

subgroup λa : (C∗)→ (C∗)n defined by:

λa(t) := (ta1 , · · · , tan).

Indeed we have seen that all one-parameter subgroups arise in this way.

Proposition 1.3.3 ([30, Proposition 3.2.2]). Let u ∈ N, and σ ⊆ NR be a cone.

Then u ∈ σ if and only if limt→0 λu(t) exists in Uσ. Furthermore if u belongs to

the relative interior of σ, then limt→0 λu(t) = γσ.

10



1.3 orbit-cone correspondence

Each cone σ ∈ Σ has an associated distinguished point γσ and so an associated

torus orbit given by O(σ) := T · γσ ⊆ XΣ. Properties of these orbits are studied

by the Orbit-Cone Correspondence:

Theorem 1.3.4 (Orbit-Cone Correspondence, [30, Theorem 3.2.6]). Let XΣ be

the toric variety, with torus T, of the fan Σ ⊂ NR. Then:

(i) There is a bijective correspondence between cones σ ∈ Σ and T-orbits of

XΣ given by:

σ←→ O(σ);

(ii) Let n = dim NR. Then dim (O(σ)) = n− dim(σ), ∀ cones σ ∈ Σ;

(iii) For a cone σ ∈ Σ, the affine patch Uσ = ∪
τ�σ

O(τ);

(iv) Let σ, τ ∈ Σ be cones. Then τ � σ if and only if O(σ) ⊆ O(τ). Further-

more O(τ) = ∪
τ�σ

O(σ).

Example 1.3.5. Consider the fan ΣP1×P1 :

This fan has four two-dimensional cones, four one-dimensional cones and a

single zero-dimensional cone. Therefore the Orbit-Cone correspondence tells

us that P1 × P1 has nine T-orbits, of which four are fixed points, four are

one-dimensional and one is two dimensional. This is easily verified.
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1.4 divisors on toric varieties

1.4 divisors on toric varieties

For a fan Σ, we introduce the notation Σ(r) for the set of r-dimensional cones

in Σ. For a toric variety XΣ, the Orbit-Cone Correspondence, see Theorem 1.3.4,

tells us that a ray ρ ∈ Σ(1) corresponds to a codimension one orbit O(ρ) under

the action of T. Hence Dρ = O(ρ) is a T-invariant prime divisor on XΣ. Indeed

the Weil divisors of XΣ that are invariant under the action of T, are exactly

those of the form ∑
ρ∈Σ(1)

aρDρ. Denote this set by divT(XΣ).

Recall that for each m ∈ M, there is a corresponding character χm : T → C∗.

Since T is a dense subvariety of XΣ, it follows that χm can be extended to

a rational function on XΣ. The divisor of this rational function is given by

div(χm) := ∑
ρ∈Σ(1)

〈m, uρ〉Dρ, where uρ is the primitive generator of ρ.

Theorem 1.4.1 ([30, Theorem 4.1.3]). There is an exact sequence:

M
f−→ divT(XΣ)

g−→ Cl(XΣ) −→ 0,

where f (m) = div(χm) and g(D) = [D]. Furthermore the sequence is short

exact if and only if {uρ : ρ ∈ Σ(1)} span NR.

Corollary 1.4.2. Cl(XΣ) is a finitely generated group.

Indeed we can calculate Cl(XΣ) by finding all the relations among [Dρ].

Example 1.4.3. Consider the fan ΣC2 from Example 1.2.4. The fan has two rays

which we call ρ1 and ρ2 with primitive generators (1, 0) and (0, 1) respectively.

Hence Cl(C2) is generated by the classes [Dρ1 ] and [Dρ2 ]. However:

div
(

χ(1,0)
)
= 〈(1, 0), (1, 0)〉Dρ1 + 〈(1, 0), (0, 1)〉Dρ2 = Dρ1 ,

div
(

χ(0,1)
)
= 〈(0, 1), (1, 0)〉Dρ1 + 〈(0, 1), (0, 1)〉Dρ2 = Dρ2 .

Since [div(χm)] ∼ 0, ∀m ∈ M, it follows that Cl(C2) = 0.

Example 1.4.4. Consider the fan ΣBl0(C2) described in Example 1.2.5, of the blow

up of C2 at the origin. The three rays ρ0, ρ1 and ρ2 have primitive generators

12



1.4 divisors on toric varieties

(1, 1), (1, 0) and (0, 1) respectively. As before we look for relations between the

classes [Dρi ]:

div
(

χ(1,0)
)
= Dρ1 + Dρ2 ∼ 0,

div
(

χ(0,1)
)
= Dρ1 + Dρ3 ∼ 0.

Therefore Cl
(
Bl0(C2)

)
= Z, and is generated by any of the classes [Dρi ].

Having looked at Weil divisors, what about Cartier divisors? Since all Cartier

divisors are Weil, they will also be of the form D = ∑
ρ∈Σ(1)

aρDρ. Denote the set

of the T-invariant Cartier divisors by CdivT (XΣ).

Let m ∈ M. Since χm is a rational function on XΣ, the divisor div(χm) is Cartier.

We obtain a short exact sequence similar to that for Weil divisors.

Theorem 1.4.5 ([30, Theorem 4.2.1]). There is an exact sequence:

M −→ CdivT(XΣ) −→ Pic(XΣ) −→ 0.

The sequence is short exact if and only if {uρ : ρ ∈ Σ(1)} span NR. Furthermore

the exact sequence for Weil divisors maps into this sequence by inclusion.

Theorem 1.4.5 shows that Pic(XΣ) = 0 if and only if every T-invariant Cartier

divisor on XΣ is the divisor of a character χm.

Proposition 1.4.6. A toric variety XΣ is smooth if and only if Cl(XΣ) = Pic(XΣ).

This combined with Examples 1.4.3 and 1.4.4 together show that the blow-up

of a smooth toric variety at the origin increases the Picard rank by one. Indeed

the blow-up of any toric variety in a smooth point has this effect.

Usually a Cartier divisor D on a variety X is described by local data, that is a

set of pairs (Ui, fi)i∈I , where {Ui}i∈I is an open cover of X and D
∣∣
Ui

= div( fi)

for all i ∈ I. The local data has a combinatorial description:
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1.4 divisors on toric varieties

Theorem 1.4.7 ([30, Theorem 4.2.8]). Let D = ∑
ρ∈Σ(1)

aρDρ be a divisor on a toric

variety XΣ. Then D is Cartier if and only if ∀σ ∈ Σmax, there exists mσ such

that

〈mσ, uρ〉 = −aρ, ∀ρ ∈ σ(1).

Namely D is principal on every affine patch Uσ ⊂ XΣ and given by

D
∣∣
Uσ

= div(χ−mσ)
∣∣
Uσ

.

The content of Theorem 1.4.7 is that the set {mσ}σ∈Σ describes local data of the

Cartier divisor D.

The discussion of Cartier divisors on toric varieties has an interpretation in

terms of support functions. The support of Σ is |Σ| :=
⋃

σ∈Σ
σ ⊆ NR.

Definition 1.4.8 ([30, Definition 4.2.8]). A support function on Σ is a function

φ : |Σ| → R which is linear of every cone σ ∈ Σ. The support function φ is

integral on N if φ(|Σ| ∩ N) ⊆ Z.

Denote the set of integral support functions by SF(Σ, N).

Proposition 1.4.9 ([30, Theorem 4.2.12]). Consider the map CDivT(XΣ) →

SF(Σ, N) which sends the Cartier divisor D given by local data {mσ}σ∈Σ to

the function φD : |Σ| → R where:

φD(u) = 〈mσ, u〉, for u ∈ σ.

This map is an isomorphism between the set of Cartier divisors on XΣ and

integral support functions on Σ.

The final thing we associate to a T-invariant divisor is the polyhedron of sec-

tions:

Definition 1.4.10 ([30, Section 4.3]). The polyhedron of sections of a divisor D =

∑
ρ∈Σ(1)

aρDρ is given by:

PD :=
{

m ∈ MR : 〈m, uρ〉 ≥ −aρ, ∀ρ ∈ Σ(1)
}

.
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1.5 classification of fano polygons bounded by index

Consider the sheaf OXΣ(D) on XΣ defined by:

OXΣ(D)(U) := { f ∈ C(XΣ)
∗ : (div( f ) + D) |U ≥ 0} ∪ {0} .

The significance of the polyhedron of sections is that it governs the global

sections of the sheaf OXΣ(D), namely:

Γ (XΣ,OXΣ(D)) = ⊕
m∈PD∩M

C · χm.

Definition 1.4.11 ([30, Definition 6.3.2]). Consider a divisor D = ∑
i

ai pi on an

irreducible smooth complete curve C. The degree of D is:

deg(D) := ∑
i

ai ∈ Z.

The degree definition can be used to define an intersection degree between a

Cartier divisor D and an irreducible curve C on a normal variety X. The sheaf

OX(D) can restricted to C as OC(D) := ι∗ (OX(D)) where ι : C ↪→ X is the

inclusion map.

Definition 1.4.12 ([30, Definition 6.3.6]). The intersection number of D and C is

given by:

D · C := deg (φ∗OC(D)) .

Definition 1.4.13 ([30, Definition 6.3.10]). Let X be a normal variety. Then a

Cartier divisor D on X is nef if D · C ≥ 0, for every irreducible complete curve

C ⊆ X.

On a toric variety XΣ such that |Σ| = NR, a Cartier divisor D is nef if and only

if OXΣ(D) is generated by global sections.

1.5 classification of fano polygons bounded by index

The toric variety of a Fano polygon is a toric log del Pezzo surface. These surfaces

have been studied extensively and many classification results exist. We recall
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1.5 classification of fano polygons bounded by index

an algorithm of Kasprzyk–Kreuzer–Nill [50] which exploits the combinatorics

of Fano polygons.

Definition 1.5.1 ([50]). Let P be a Fano polygon, and E be an edge of P. Denote

the inward pointing normal of E by nE. Define the order of P by:

oP := min
{

k ∈ Z>0 : (P/k)◦ ∩ N = {0}
}

,

where P/k = {p/k : p ∈ P} ⊂ NR. The local index of E is given by lE = |〈E, nE〉|

and the maximal local index of P is defined by:

mP := max {lE : E is an edge of P} .

Define the index of P by:

lP := lcm {lE : E is an edge of P} .

The choice of terminology here is not coincidental: the index of P is equal to

the index of XP, that is the smallest positive integer l such that −lKXP is very

ample

Proposition 1.5.2 ([50, Proposition 4.1]). Let P be a Fano polygon. Then for an

edge E of P, we have that:

|E ∩ N| ≤ 2oP(lE + 1) + 1.

Proof. By a change of basis assume without loss of general that E has vertices

(a, lE) and (b, lE). Set c = |E ∩ N| − 1. Note (±oP, 0) /∈ P◦, since otherwise

(±1, 0) ∈ (P/oP)
◦ which contradicts oP being the order of P. Therefore for

|E ∩ N| > 2oP, P is bounded by the lines L1, L2 and L3, where L1 is the line

through (a, lE) and (b, lE), L2 is the line through (a, lE) and (−oP, 0), and L3 is

the line through (b, lE) and (oP, 0).
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1.5 classification of fano polygons bounded by index

The lines L2 and L3 intersect at a point (x, y) where y = 2oPlE
2oP−c . Since 0 ∈ P◦,

necessarily:

y =
2oPlE

2oP − c
≤ −1,

2oP(lE + 1) ≥ c = |E ∩ N| − 1,

which is the desired identity.

Definition 1.5.3 ([57, Definition 3.1]). Let P ⊂ NR be a Fano polygon. An edge

E of P is a special facet if:

∑
v∈V(P)

v ∈ R≥0E.

Example 1.5.4. Consider P = conv
{
(0, 1), (1, 0), (−5,−1)

}
, and calculate that:

∑
v∈V(P)

v = (0, 1) + (1, 0) + (−5,−1) = (−4, 0).

So P has a unique special facet given by F = conv
{
(0, 1), (−5,−1)

}
.

By the definition of Fano polygon, 0 ∈ P◦. Therefore the union of all cones

obtained from a Fano polygon P is equal to NR, so P has at least one special

facet. We use a result from [50] which is derived from a proof in [32].

Lemma 1.5.5 ([50, Lemma 6.1]). Let P be a Fano polygon. Let F be a special

facet of P of local index lF and with inward pointing normal nF ∈ M. Then:

P ⊂
{
(a, b) ∈ NR : −lF(lF + 1) ≤ 〈(a, b), nF〉 ≤ lF

}
.

Proof. For each vertex v ∈ V(P), there exists k ∈ Z such that 〈v, nF〉 = k.

Clearly k ≤ lF. Indeed for a given k ∈ Z≤lF , there are at most two vertices
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1.5 classification of fano polygons bounded by index

satisfying 〈nF, v〉 = k. Therefore, using initially that F is a special facet, we

have:

0 ≤ 〈∑
v∈V

v, nF〉

= ∑
v:〈v,nF〉<0

〈v, nF〉+ ∑
v:〈v,nF〉≥0

〈v, nF〉

≤ ∑
v:〈v,nF〉<0

〈v, nF〉+ 2
lF

∑
i=0

i

= ∑
v:〈v,nF〉<0

〈v, nF〉+ lF(lF + 1)

which implies that:

∑
v:〈v,nF〉<0

〈v, nF〉 ≥ −lF(lF + 1).

So for any given vertex v ∈ V(P) necessarily 〈v, nF〉 ≥ −lF(lF + 1), and the

result follows.

Corollary 1.5.6. Let P be a Fano polygon with index lP, and E be an edge given

by conv {(a, lE), (b, lE)} where −lE < a ≤ 0 < b. Then:

P ⊂

(x, y) ∈ NR :
−lEx + (lP + a)y ≤ lElP

lEx + (lP − b)y ≤ lElP

 .

Proof. This follows from Proposition 1.5.2.

Lemma 1.5.5 and Corollary 1.5.6 are used to create the following algorithm

which, by running for all choices of special facet F = conv{(a, lF), (b, lF)}, clas-

sifies all Fano polygons with index given by a fixed number l ∈ Z>0. Note that

there is indeed a finite number of choices for F since lF ≤ l, and we can assume

−lF < a ≤ 0 < b where b− a ≤ 2l(lF − 1) by Proposition 1.5.2.

18



1.5 classification of fano polygons bounded by index

Algorithm 1 Classification of Fano Polygons with index l

1: Input: Special facet F = conv ((a, lF), (b, lF)), index l.

2: L1 := {(x, y) ∈ NR : −lFx + (lP + a)y ≤ lFlP}.

3: L2 := {(x, y) ∈ NR : lFx + (lP − b)y ≤ lFlP}.

4: L := {(x, y) ∈ NR : y = −lF(lF + 1)}.

5: T := region bounded by F, L, L1 and L2.

6: PossiblePoints := {primitive points v ∈ N contained in T}.

7: ActiveConstructions := {v0 = (a, lF), v1 = (b, lF)}, an ordered set.

8: CompleteConstructions := ∅ .

9: for P = {v0, . . . vi} ∈ ActiveConstructions, do

10: for v ∈ PossiblePoints that respect convexity, and the special facet F, do

11: if v 6= (a, lF) and the edge E from vi to v satisfies lE | l, then

12: ActiveConstructions← (ActiveConstructions\{P}) ∪ {P ∪ v}.

13: if v = (a, lF) and the edge E from adding vi to v0 satisfies lE | l, then

14: ActiveConstructions← ActiveConstructions\{P}.

15: if lP = l, then

16: CompleteConstructions← CompleteConstructions∪ {P}.

17: if ActiveConstructions 6= ∅, then

18: go to 9.

19: Output: CompleteConstructions.

The authors of [50] have implemented the algorithm through computer code to

classify all Fano polygons with index up to and including 16:
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1.5 classification of fano polygons bounded by index

l # Fano polygons with index l

1 16

2 30

3 99

4 91

5 250

6 379

7 429

8 307

9 690

10 916

11 939

12 1279

13 1142

14 1545

15 4312

16 1030

Note that the algorithm recovers the classification of the sixteen reflexive poly-

gons since reflexive polygons are exactly those with index l = 1.
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2
M I R R O R S Y M M E T RY

2.1 10 smooth del pezzo surfaces

One of the most famous examples in algebraic geometry is that of the famous

10 smooth del Pezzo surfaces. We follow a derivation of this classification by

Manin [54]. Recall the formal definition of a del Pezzo surface.

A line bundle L on a surface (a 2-dimensional variety) V is said to be ample

if there exists n ∈ Z≥1, and a closed embedding i : V 7→ PN defined by the

global sections of Ln = L⊗n, such that:

Ln ∼= i∗ (OPN(1)) .

In the case n = 1, we say L is very ample.

Definition 2.1.1 ([54, Definition 24.2]). A smooth birationally trivial surface V

on which the anticanonical sheaf, denoted Ω−1
V , is ample is called a del Pezzo

surface.

Consider a projective variety V ⊂ PN, and a general linear subspace L ⊂ PN

such that dim(L) = codim(V). Then recall that the projective degree of V is

given by:

deg(V) := #(V ∩ L).
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2.1 10 smooth del pezzo surfaces

If codim(V) = 1, that is V is a hypersurface, then the projective degree is

given by the degree of the homogeneous polynomial defining V. Now given a

del Pezzo surface V, the self-intersection number d = ΩV ·ΩV defined using

Definition 1.4.12, is called the degree of the del Pezzo surface and agrees with

the projective degree of the image i(V) ⊂ PN.

Lemma 2.1.2 ([54, Lemma 24.3.1]). Let V be a smooth projective surface which

is birationally trivial. Then the group Pic(V) is free with a finite number of

generators, and furthermore:

rank (Pic(V)) + ΩV ·ΩV = 10.

Proof. Consider the blow-up of a smooth point f : V′ → V. It is known:

• From Section 1.4 that, Pic(V′) = f ∗ (Pic(V))⊕ZD, where D is orthogo-

nal to f ∗ (Pic(V)).

• ΩV′ = f ∗(ΩV) + D.

So:

rank
(
Pic(V′)

)
+ ΩV′ ·ΩV′

=rank (Pic(V)) + 1 + f ∗(ΩV) · f ∗(ΩV) + 2 f ∗(ΩV) · D + D · D

=rank (Pic(V)) + 1 + ΩV ·ΩV + 2(0)− 1

=rank (Pic(V)) + ΩV ·ΩV .

Therefore the statement holds for V if and only if it holds for V′. Since ev-

ery birational morphism is a composition of blow-ups in a smooth point, it

is enough to show the statement holds for a single arbitrary surface. Con-

sider the surface P2. Then ΩP2 ∼= OP2(−3), which has self-intersection 9, and

rank
(
Pic(P2)

)
= rank(Z) = 1.

Theorem 2.1.3 ([54, Theorem 24.3]). Let V be a del Pezzo surface of degree d.

Then:
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2.1 10 smooth del pezzo surfaces

(i) 1 ≤ d ≤ 9;

(ii) Every irreducible curve with a negative self-intersection number on V is

exceptional;

(iii) If V has no exceptional curves, then either d = 9 and V is isomorphic to

P2, or d = 8 and V is isomorphic to P1 ×P1.

Proof. ‘(i)’ Since Ω−1
V is ample it follows by the Nakai-Moishezon criteria, see

for example [39], that ΩV ·ΩV ≥ 1. Also necessarily rank (Pic(V)) ≥ 1. There-

fore the bounds follow from Lemma 2.1.2.

‘(ii)’ Let D ⊂ V be a curve with negative self-intersection. By the Nakai-

Moishezon criteria D · Ω−1
V > 0, since Ω−1

V is ample. By the Riemann-Roch

theorem for surfaces:

2ρa(D)− 2 = D · D− D ·Ω−1
V . (1)

Since D is irreducible, ρa(D) ≥ 0. This implies that the only possible values

satisying equation (1) are:

D · D = −1, and ρa(D) = 0.

Now ρa(D) = 0 implies that D ∼= P1. Therefore D is exceptional.

‘(iii)’ Since there are no exceptional curves, V is minimal, and additionally by

part (ii) contains no curves of negative self intersection. The only surfaces with

these properties are known to be P2 and P1 × P1. It is routine to check that

both of these surfaces are del Pezzo.

A collection of at most 8 points are said to be in general position if:

• No 3 points lie on a line;

• No 6 points lie on a conic;
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2.1 10 smooth del pezzo surfaces

• Any cubic passes through at most 7 points with at most 1 double point;

• Any quartic passes through at most 8 points with at most 3 of them a

double point;

• Any quintic that passes through the 8 points has at most 6 of them double

points;

• Any sextic that passes through the 8 points has at most 1 triple point.

Theorem 2.1.4 ([54, Theorem 24.4]). Let V be a del Pezzo surface of degree d.

Then:

• If d = 9, then V is isomorphic to P2;

• If d = 8, then V is isomorphic either to P1 ×P1 or to the blow-up of P2

in a point;

• If 1 ≤ d ≤ 7, then V is isomorphic to the blow-up of P2 in 9− d points in

general position.

Proof. The minimal del Pezzo surfaces have been classified as P2 and P1 ×P1

in Theorem 2.1.3. Hence suppose V is a non-minimal del Pezzo surface. Then

there exists a birational morphism f : V → W, where W is a minimal rational

surface.

Suppose W is a non-trivial ruled surface. It is known then that there is an

irreducible curve D on W with self-intersection −2. It follows that:

f−1(D) · f−1(D) ≤ −2.

This is in contradiction with Theorem 2.1.3. So W is not a non-trivial ruled

surface, and is therefore either P2 or P1 ×P1.

Suppose W = P1 ×P1. Let x = (x0, x1) ∈ P1 ×P1 be a point at which f−1 is

not defined. The morphism f can be split up into separate morphisms:

V
g→W ′ h→ P1 ×P1,
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2.1 10 smooth del pezzo surfaces

where h : W ′ → P1 × P1 is the blow up at x. By contracting both the curves

h−1 (P1 × {x1}
)

and h−1 ({x0} ×P1), obtain a morphism h′ : W ′ → P2. So

there is also a composition of morphisms giving a birational morphism from

V to P2:

V
f→W ′ h′→ P2.

Hence we can assume W = P2 and there is a morphism f : V → P2. Recall

that a blow-up at a point causes the rank of the Picard group to increase by 1.

Therefore

rank (Pic(V)) = 10− d

where f splits into r = 9− d blow-ups.

Label the set of points where f−1 is not defined by x1, · · · , xs ∈ P2. By the

definition of a blow-up, necessarily s ≤ r. Suppose s < r. Then one of the

points that gets blown up would lie on the exceptional divisor D of the blow-

up of some point xi. It follows that

f−1(D) · f−1(D) ≤ −2

which contradicts Theorem 2.1.3. Hence s = r.

Suppose that 3 of the xi lie on a line D. Then after blowing up these 3 points,

the inverse image of D will have self-intersection number less than or equal −2

which again contradicts Theorem 2.1.3. Similar statements hold for each of the

other requirements to show x1, · · · , xr lie in general position.

The converse is also true: all surfaces described in Theorem 2.1.4 are del Pezzo

surfaces though the proof is omitted from this thesis. This completes the clas-

sification of the 10 smooth del Pezzo surfaces and their structure, that is, every

surface is obtained via a blow-up of P2 with the exception of P1 × P1 which

is obtained via blowing up P2 in two distinct points and contracting the strict
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2.2 cyclic quotient singularities

transform of the unique line through these two points. This structure is re-

ferred to as a cascade; a terminology coined by Reid–Suzuki [65].

P2 dP8 dP7 dP6 · · · dP1

P1 ×P1

This cascade structure appears again in Chapter 4 when we consider del Pezzo

surfaces with cyclic quotient singularities.

2.2 cyclic quotient singularities

A quotient singularity 1
R (a, b) is given by the action of the cyclic group of order

R, denoted µR, on C2
x,y by:

ε · (x, y) = (εax, εby),

where ε is an Rth root of unity, and considering Z = Spec(C[x, y]µR). The germ

of the origin is the singularity.

For example consider a 1
2(1, 1) singularity. Let G = Z/2Z and ε = −1. The

action of G on C2 is described by:

−1 · (x, y) = (−x,−y).

Then:

Z = Spec
(

C[x, y]Z/2Z
)

= Spec
(

C[x2, xy, y2]
)

∼= Spec (C[u, v, w]/(uw− v2))

= V(uw− v2) ⊂ C3.
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2.2 cyclic quotient singularities

A quotient singularity 1
R (a, b) is cyclic if:

gcd(R, a) = gcd(R, b) = 1.

In this case, set:

k = gcd(a + b, R).

So:

a + b = kc, and R = kr.

It follows that the cyclic quotient singularity can be written as 1
kr (1, kc − 1).

Three types of cyclic quotient singularities are defined by Kollar–Shepherd-

Barron [52]:

• A cyclic quotient singularity 1
kr (1, kc− 1) is a T-singularity if r | k;

– A T-singularity admits a qG-smoothing (which will be defined in

Section 2.4) ;

• A T-singularity 1
kr (1, kc− 1) is primitive if r = k;

• A cyclic quotient singularity 1
kr (1, kc− 1) is an R-singularity if k < r;

– An R-singularity is rigid under qG-deformation.

Consider an arbitrary cyclic quotient singularity σ = 1
kr (1, kc− 1) not necessar-

ily satisfying either r | k or k < r. There exists unique non-negative integers n

and k0 such that k0 < r and k = nr + k0. If k0 > 0, then σ is qG-deformation

equivalent to a 1
k0r (1, k0c− 1) cyclic quotient singularity. Informally the n copies

of r correspond to primitive T-parts of σ and can be smoothed away. The residue

of σ is given by

res(σ) :=

∅, if k0 = 0,

1
k0r (1, k0c− 1), otherwise.
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2.3 cyclic quotient singularities on a toric variety

Definition 2.2.1 ([5, Definition 2.4]). The singularity content of σ is given by the

pair:

SC(σ) := (n, res(σ)) .

2.3 cyclic quotient singularities on a toric variety

Many properties of XP, the Fano toric variety corresponding to a Fano polygon

P, have combinatorial analogues that can be observed in P: examples include

the singularities of XP and the anticanonical degree (−KXP)
2. In particular the

cyclic quotient singularities of Section 2.2 can be observed at the level of Fano

polygons.

Proposition 2.3.1 ([36]). An affine toric variety Uσ is nonsingular if and only if

σ is generated by part of a basis for the lattice N, in which case:

Uσ
∼= Ck × (C∗)n−k,

where k = dim(σ).

Consider a cone σ ⊂ NR whose rays are generated by (0, 1) and (k,−1) for

k ≥ 2 (the case k = 2 is seen in Example 1.1.7):

σ

(0, 1)

(k,−1)

Note these points do not form a basis of N, and so Uσ will be singular. The

dual cone is given by:
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2.3 cyclic quotient singularities on a toric variety

σ∨

(1, 0)

(1, k)

It follows that:

C[Sσ] = C[X, XY, XY2, · · · , XYk].

Substituting X = Uk, Y = V
U :

C[Sσ] = C[Uk, Uk−1V, Uk−2V2, · · · , Vk].

Note the inclusion C[Sσ] ⊂ C2
U,V . Consider the action of G = Z/kZ on C2

via:

ζ · (U, V) 7→ (ζU, ζV).

It is routine to check that Spec (C[Sσ]) = Uσ = C2/G = Spec (C[U, V])/G. That is,

following the definition from Section 2.2, Uσ contains a 1
k (1, 1) cyclic quotient

singularity.

We have not covered all possible cones up to GL(N)-equivalence: to do so one

would need to consider a cone σ ⊂ NR generated by e2 and ke1 − me2 where

0 < m < k, which leads to a 1
k (1, m) cyclic quotient singularity, via a similar

argument to the m = 1 case.

Consider a cone σ defined by an edge E of a Fano polygon P ⊂ NR. This

edge corresponds to a (possibly trivial) cyclic quotient singularity on XP. The

decomposition of an arbitrary cyclic quotient singularity into primitive T-parts

and a residual singularity seen in Section 2.2, has an analogous description in

the combinatorics of E:
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2.3 cyclic quotient singularities on a toric variety

h

l

The lattice length l of E ⊂ NR is given by the value |E∩N| − 1. The lattice height

h of E is given by the lattice distance from the origin: that is, given the unique

primitive inward pointing normal nE of E belonging to M, the height is given

by |〈v, nE〉|, for any v ∈ E.

There exists unique non-negative integers n, r such that r < h and l = hn + r.

Divide C into separate sub-cones C0, · · · , Cn where C1, · · · , Cn (known as T-

cones) have lattice length h, and C0 has lattice length r and is known as an

R-cone. The T-cones correspond to primitive T-singularities on XP and the R-

cone to an R-singularity. The choice of subdivision of C is not important. This

is known as a partial crepant resolution.

We are able to generalise the definition of singularity content to a Fano polygon

P.

Definition 2.3.2 ([5, Definition 3.1]). Let P ⊂ NR be a polygon. Label the edges

of P in clockwise order E1, · · · Ek. Each edge Ei corresponds to a cyclic quotient

singularity σi. Let:

SC(σi) = (ni, res(σi)) .

Define the singularity content of P to be:

SC(P) :=

(
k

∑
i=1

ni,B
)

,

where B := {res(σ1), · · · , res(σk)} is a cyclically ordered set.

The singularity content of P, a combinatorial property, describes the singulari-

ties on XP, a geometrical property.
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2.4 deformation theory

2.4 deformation theory

Deformation theory can be studied from many sources such as Hartshorne

[40], and has been specialised to the toric case by Mavlyutov [56] and Altmann

[9, 10, 11, 12, 13] amongst others.

Definition 2.4.1. A deformation of an affine algebraic variety X0 is a flat map

π : χ→ S over a ring S, such that:

• π−1(0) = X0;

• There is a commutative diagram:

X0 χ

0 S

π

Recall that informally flatness means that the fibres vary continuously. We have

the following terminology:

• χ is the total space;

• S is the base space of the deformation.

The simplest example of a deformation is the trivial deformation over a set S

which is given by χ = X0 × S and the usual projection X0 × S→ S.

Definition 2.4.2. Consider two deformations of X0 given by π : χ → S and

π′ : χ′ → S. The deformations are isomorphic if there exists a map φ : χ → χ′

over S inducing the identity on X0.

Definition 2.4.3. An Artin ring is a ring satisfying the descending chain condi-

tion.

Artin rings over C are exactly those that are finite-dimensional vector spaces.
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2.4 deformation theory

Definition 2.4.4. Let S be the spectrum of an Artin ring and X0 be an affine

algebraic variety. Define DefX0(S) to be the set of deformations of X0 over S

modulo isomorphism.

Recall that the dual numbers are given by C[x]/(x2). The variety Spec (C[x]/(x2))

is an infinitesimally short line segment, that is, a point together with a tangent

direction. Hence giving a map Spec (C[x]/(x2)) → X is the same as giving a

point x ∈ X together with a tangent vector in TxX.

Definition 2.4.5. A deformation π : χ → S is called a first order deformation of

X0 if S = Spec (C[x]/(x2)). Set T1
X0

= DefX0(Spec (C[x]/(x2))).

Definition 2.4.6. A variety X0 is called rigid if T1
X0

= 0, that is, every first order

deformation is isomorphic to the trivial deformation.

Example 2.4.7. Let X ↪→ An be a complete intersection given by:

( f1 = . . . = fr = 0) ⊂ An.

Specifically X is the variety Spec (C[x1, . . . , xn]/〈 f1, . . . , fr〉). Consider the ideal given

by I = 〈 f1 + g1x, . . . , fr + grx〉 ⊂ (C[x]/(x2)) [x1, . . . , xn], where gi ∈ C[x1, . . . , xn]

are arbitrary. We can check that χ = Spec ( (C[x]/(x2)) [x1, . . . , xn]/I) is flat over

Spec (C[x]/(x2)). Also the fiber over t = 0 recovers X. Therefore this is a first

order deformation.

For the purpose of this thesis, we are primarily concerned with Q-Gorenstein

(qG-)deformations. Recall that for a del Pezzo surface X, the Gorenstein index

is the smallest possible integer r ∈ Z>0 such that rKX is Cartier.

Definition 2.4.8 ([52, 53]). Let S be the spectrum of a local Artin ring, and

consider a deformation π : χ → S. Consider the relative canonical divisor

Kχ/S = Kχ − π∗(KS), where π∗ is the pullback map of divisors. Then π is

a qG-deformation if rKχ/S is a Cartier divisor for some r ∈ Z>0.

It follows that K2
X is constant on fibers over S.
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2.5 mirror symmetry

Example 2.4.9. Consider the primitive T-singularity 1
k2 (1, kc− 1) given by the

action of µk2 on C2
x,y. We have an identification:

1
k2 (1, kc− 1) ∼= (uv = wk) ⊂ 1

k
(1, k− 1, c) = C3

u,v,w/µk,

where u = xk, v = yk and w = xy. A smoothing via a qG-Gorenstein deforma-

tion is given by:

(uv = wk + t) ⊂ 1
k
(1, k− 1, c)×C1

t .

2.5 mirror symmetry

Mirror symmetry, introduced by Coates–Corti–Kasprzyk et al. [3, 22], has pro-

vided a new approach to classifying del Pezzo surfaces in recent years. Mirror

symmetry associates to a n-dimensional Fano variety X, a Laurent polynomial

f ∈ C[x±1
1 , · · · , x±1

n ], known as the mirror dual. The condition for this correspon-

dence is that the regularised quantum period ĜX of X, a property of X studied

in Gromov-Witten invariant theory and discussed below, should coincide with

the classical period π f of f given by:

π f (t) :=
(

1
2πi

)n ∫
|x1|=···=|xn|=1

1
1− t f (x1, · · · , xn)

dx1

x1
· · · dxn

xn

= ∑
k≥0

coeff1( f k)tk.

To a Laurent polynomial, we associate a Newton polytope:

Definition 2.5.1. Given a Laurent polynomial f = ∑
ω∈Zn

aωxω, define the New-

ton polytope by:

Newt( f ) = conv{ω ∈ Zn : aω 6= 0}.

Example 2.5.2. Consider the Laurent polynomial x + y + 1
xy ∈ C[x±1, y±1]. The

corresponding Newton polytope is:
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2.5 mirror symmetry

Newt
(

x + y + 1
xy

)
= conv {(1, 0), (0, 1), (−1,−1)} =

The Newton polytope P associated to a mirror dual f is itself Fano, and will cor-

respond to a toric Fano variety XP. To bring us round full circle, it is expected

that that XP admits a qG-deformation to the original variety X.

Smooth Fano variety Laurent polynomial

Toric Fano variety Fano polytope

Mirror Symmetry

Newt( f )

Toric Geometry

deformation

The cost here is that we have introduced singularities at the level of toric vari-

eties.

So what exactly is the regularised quantum period ĜX of a Fano variety X?

Informally the regularised quantum period counts curves of a certain degree

on X up to some equivalence. The formal definition is omitted from this thesis

but can be studied in [22]. Fortunately Givental [37] gives a simple method

to calculate the quantum period GX := ∑ antn in the case of X being a toric

Fano manifold. From here the regularised quantum period is given by ĜX :=

∑(n!)antn.

The method makes use of the GIT quotient construction for a toric variety XΣ

which presents the variety in the form X = Cn\Z(Σ) � (C∗)r where (C∗)r acts
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2.5 mirror symmetry

on Cn via an action described by a group homomorphism ρ : (C∗)n → (C∗)r

whose dual matrix is given by:

D = (D1, . . . , Dn) .

It can be deduced that −KX =
n
∑

i=1
Di. The model also specifies a set of points

Z(Σ) which are removed from Cn to guarantee the quotient (Cn\Z(Σ)) / (C∗)r

is well-behaved.

Theorem 2.5.3 ([37]). Let X be a toric Fano manifold. Then:

GX(t) = ∑
k∈Zr∩NE(X)

t−KX ·k 1
(D1 · k)! · · · (Dn · k)!

,

where NE(X) is the cone in the Picard lattice generated by classes of algebraic

curves on X.

Example 2.5.4. Consider the del Pezzo surface P2 whose GIT quotient construc-

tion is rather well-known, namely P2 =
(
C3\{0}

)
/ (C∗), where λ ∈ C∗ acts

linearly on each component of C3\{0}. In the above notation, the matrix D is

given by (1, 1, 1). Hence −KX = 3, as is already known, and we can calculate

that NE(X) is the cone R≥0. Therefore:

GX(t) = ∑
k∈N

1
(k!)3 t3k, and so ĜX(t) = ∑

k∈N

(3k)!
(k!)3 t3k.

Indeed this result has been generalised by Coates–Givental [22, 24] to smooth

Fano complete intersections on toric Fano manifolds.

Theorem 2.5.5 ([22]). Let Y be a Fano toric manifold defined by the weight

matrix D. Consider general sections f1, . . . , fc of the nef line bundles L1, . . . , Lc

such that X defined by ( f1 = . . . = fc = 0) ⊂ Y is smooth, Fano and of

codimension c. Noting that −KX = −KY −
c
∑

i=1
Li, consider the polynomial:

F(t) := ∑
k∈Zr∩NE(Y)

t−KX ·k (L1 · k)! · · · (Lc · k)!
(D1 · k)! · · · (Dn · k)!

.

Define a1 as the coefficient of t in F(t). Then:

GX(t) = e−a1tF(t).
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2.5 mirror symmetry

Example 2.5.6. Consider the zero locus X of a general section f ∈ O(2) on

Y = P(1, 1, 1, 1), that is the well-known Segre embedding of P1 × P1 into P3.

This is a toric Fano complete intersection. In the above notation:

D0 = D1 = D2 = D3 = 1, L = 2, −KY = 4, −KX = 2.

It follows that:

F(t) = ∑
k∈N

(2k)!
(k!)4 t2k.

Since coefft(F(t)) = 0, it follows that GX(t) = F(t), and therefore the regu-

larised quantum period of X is given by:

ĜX(t) = ∑
k∈N

(2k)!2

(k!)4 t2k

= 1 + 4t2 + 36t4 + 400t6 + . . .

Alternatively how do we find a mirror dual Laurent polynomial who classical

period is equal to this regularised quantum period? Hori-Vafa [42] provide

a construction for the mirror dual in the case of a toric Fano complete inter-

section. Fix a Fano toric complete intersection X described by the notation

established in Theorem 2.5.3, with the additional information that the weight

matrix is given by D = (Di,j)i∈{0,...n},j∈{1,...,r}. The Hori-Vafa construction is as

follows:

Choose some Sk ⊆ {1, . . . , n}, ∀k ∈ {1, . . . , c} such that:

• Sk ∩ Sl = ∅,

• Lk = ∑
i∈Sk

Di.

Define the set:

W :=

(x0, . . . , xn) :

n
∏
i=0

x
Di,j
i = 1, for j ∈ {1, . . . , r}

∑
i∈Sk

xi = 1, for k ∈ {1, . . . , c}

 ⊆ (C∗)n .
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2.5 mirror symmetry

The Hori-Vafa mirror is given by the function :

ω := ∑
i/∈

c⋃
k=1

Sk

xi : W → C.

which has the property that ĜX(t) = πω(t), and so ω is indeed a mirror dual

to X.

Example 2.5.7. Consider the zero locus X of a general section f ∈ O(2) in

Y = P3. In the above notation, we have seen that:

D0 = D1 = D2 = D3 = 1, L = 2.

Choosing S = {2, 3}, then the Hori-Vafa construction defines:

W =

(x0, x1, x2, x3) :
x0x1x2x3 = 1

x2 + x3 = 1


∼= {(x1, x2, x3) : x2 + x3 = 1}
∼= (C∗)2

x,y ,

where:

x1 = x, x2 =
1

1 + y
, x3 =

y
1 + y

.

So:

x0 =
1

x1x2x3
=

1

x
(

1
1+y

) (
y

1+y

) =
(1 + y)2

xy
.

Therefore by the Hori-Vafa construction the mirror dual ω : (C∗)2 → C to the

Fano variety X is given by:

ω = x0 + x1 =
(1 + y)2

xy
+ x.

It is easy to check that the classical period of ω is:

πω(t) = ∑
k≥0

coeff1(ω
k)tk

= 1 + 4t2 + 36t4 + 400t6 + . . .
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2.5 mirror symmetry

which agrees with the regularised quantum period from Example 2.5.6. There-

fore ω is indeed a mirror dual of P1 ×P1.

There is the additional complication to this application of Mirror symmetry;

the choice of mirror dual of a Fano variety X is not unique. How does a

different choice of Laurent polynomial get pulled though the Mirror symmetry

diagram? This is explored by Akhtar–Coates–Galkin–Kasprzyk [4].

Definition 2.5.8 ([4, Definition 2]). A mutation of a Laurent polynomial in 3

variables is a birational transformation given as the composition of:

1. a GL3(Z) transformation, that is a transformation of the form:

(x, y, z) 7→ (xaybzc, xdyez f , xgyhzj),

where


a b c

d e f

g h i

 ∈ GL3(Z);

2. a birational transformation of the form:

(x, y, z) 7→ (x, y, A(x, y)z) ,

where the input Laurent polynomial is of the form f =
l

∑
i=k

Ci(x, y)zi with

k < 0 < l, and A−i divides Ci for i ∈ {k, k + 1, · · · ,−1};

3. A second GL3(Z) transformation.

This definition easily generalises to n variables.

Lemma 2.5.9 ([4, Lemma 1]). If the Laurent polynomials f and g are related by

a mutation, then the periods of f and g coincide. In particular f is mirror dual

to a Fano variety X if and only if g is mirror dual to X.
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2.5 mirror symmetry

Example 2.5.10. Consider the del Pezzo surface P2 and the Laurent polynomial

given by f = x + y + 1
xy ∈ C[x±1, y±1]. The classical period of f is given by:

π f (t) = ∑
k≥0

coeff1( f k)tk

= ∑
k≥0

(3k)!
(k!)3 t3k

=1 + 6t3 + 90t6 + . . .

Note the classical period agrees with the regularised quantum period in Exam-

ple 2.5.4 and so f is a mirror dual of P2. Consider a mutation of f described

by the composition of the following three maps as per Definition 2.5.8:

1. The GL2(Z) transformation:

(x, y) 7−→
(

1
y

, xy2
)

;

2. The birational transformation:

(x, y) 7−→ (x, (1 + x)y) ;

3. The GL2(Z) transformation:

(x, y) 7−→
(

x2y,
1
x

)
.

Under this mutation:

f 7−→ g =
1

xy
+ y + 2x2y + x4y3.

We can check that πg(t) = π f (t). The Newton polytopes of f and g are given

respectively by:

Newt( f ) =
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Newt(g) =

Motivated by Example 2.5.10, this notion of mutation of Laurent polynomials

can be pulled through taking Newton polytopes and is captured at the level

of Fano polytopes. This is outlined in [4, 48]. We define a mutation of a Fano

polygon:

Recall the definition of the Minkowski sum of lattice polygons.

Definition 2.5.11. Let P, Q ⊂ NR be two lattice polytopes. Define the Minkowski

sum of P and Q by:

P + Q := {p + q : p ∈ P, q ∈ Q}.

By convention P +∅ = ∅.

Let P ⊂ NR be a Fano polygon, and E be an edge of P. Consider the primitive

inward pointing normal nE ∈ M of this edge. This vector acts as a grading

function on the polygon P. For h ∈ Z, define:

ωh(P) := conv{v ∈ N ∩ P : 〈v, nE〉 = h}.

Note that ωh(P) may be empty (indeed it will be for infinitely many values of h)

and that ω−hE(P) = E, where hE is the height of E. Choose vE to be a primitive

vector of the lattice N such that 〈vE, nE〉 = 0. Note in two dimensions, vE is

uniquely determined up to sign. Set F = conv{0, vE}; a line of lattice length 1

and height 0, that is parallel to E. The following definition of a mutation uses

the convention that kF = {kp : p ∈ F}, where k ∈ Z>0.

Definition 2.5.12 ([48, Definition 2.1]). For all h < 0, suppose that there exists

Gh ⊂ NR such that:

{
v ∈ V(P) : nE(v) = h

}
⊆ Gh + |h|F ⊆ ωh(P).
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In the case ωh(P) = ∅ the inclusion trivially holds by taking Gh = ∅. Define

the mutation of P with respect to nE, F and Gh to be:

mut(nE,F)(P) := conv

(⋃
h<0

Gh ∪
⋃
h≥0

(ωh(P) + hF)

)
⊂ NR.

Example 2.5.13. Consider the polygon P = conv
{
(1, 0), (0, 1), (−5,−1)

}
corre-

sponding to the weighted projective space P(1, 1, 5). Mutate P with respect to

the edge E = conv
{
(1, 0), (0, 1)

}
. The primitive inner pointing normal of E is

given by nE = (−1,−1) ∈ M. This describes a grading on the points of N.

E

-1

0123456

Choose vE = (1,−1), and so F = conv
{

0, (1,−1)
}

which is a primitive slice at

height 0. Choose G−1 =
{
(0, 1)

}
which satisfies the required inclusion:

{
(0, 1), (1, 0)

}
⊆ G−1 + F ⊆ conv

{
(0, 1), (1, 0)

}
.

For h < −1, ωh(P) = ∅, so trivially choose Gh = ∅. Calculating the mutation

of P with respect to the primitive inner point normal nE, the factor F and the

polygon G−1 obtain:

Q = mut(nE,F)(P)

= conv
{
(G−1) ∪ (ω0(P)) ∪ (ω1(P) + F) ∪ · · · ∪ (ω6(P) + 6F)

}
= conv

{
(0, 1), (−5,−1), (1,−7)

}
.
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Q corresponds to the toric variety P(1, 5, 36). Informally this mutation sub-

tracts one copy of F from P along the edge E, and adds six copies of F at the

opposite vertex (−5,−1) of P (which is of height 6 with respect to the grading

defined by nE). This can be seen in the above pictures.

Note mut(nE,F)(P) is independent of the choice for Gh. Alternatively if there

is no possible choice of Gh, then the mutation with respect to nE does not

exist.

Lemma 2.5.14 ([48, Lemma 2.3]). Let E be an edge of a Fano polygon P with

primitive inner normal vector nE ∈ M. Then P admits a mutation with respect

to nE if and only if:

|E ∩ N| − 1 ≥ hE.

Considering the polygon P from Example 2.5.13, then Lemma 2.5.14 tells us

the edge conv
{
(0, 1), (−5,−1)

}
does not admit a mutation since the edge has

lattice length 1 and lattice height 5.

There are a number of additional properties of mutations:

• The choice of vE is unimportant: By a GL(N)-equivalence mut(nE,F)(P) is

isomorphic to mut(nE,−F)(P);

• Mutation is invertible: If Q = mut(nE,F)(P), then P = mut(−nE,F)(Q);

• [4, Proposition 2] P is a Fano polytope if and only if mut(nE,F)(P) is a

Fano polytope.
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Most important is the following theorem regarding mutations:

Theorem 2.5.15 ([44, Theorem 1.3]). Let P and Q be Fano polygons related by

a mutation. Then there exists a flat family π : χ → P1 such that π−1(0) ∼= XP

and π−1(∞) ∼= XQ.

Theorem 2.5.15 is saying that this application of mirror symmetry and the study

of mutations is really a study of toric degenerations.

Mirror Symmetry has been used in [23] to recover the classification of Mori–

Mukai of the smooth Fano threefolds. The quantum period, and hence the

regularised quantum period, for each of the 105 Fano threefolds in the Mori–

Mukai classification is calculated. In [47], mutations are implemented to help

construct toric degenerations for each of the smooth Fano threefolds to Goren-

stein toric Fano varieties.

Definition 2.5.16 ([48, Section 2]). Let P, Q ⊂ NR be two Fano polygons. Then

P and Q are mutation-equivalent if there exists a finite sequence of polygons

P0, P1, · · · , Pn such that P0
∼= P, Pn ∼= Q and, Pi+1 = mut(ni,Fi)

(Pi) for some

appropriate choice of ni and Fi, for all i ∈ {0, · · · , n− 1}.

Mutation-equivalence defines an equivalence relation.

Importantly singularity content defined in Section 2.3 is an invariant under

mutation. This invariance is particularly useful in Chapter 3 when considered

in conjuction with the famous Conjecture A, stated in [3].

Conjecture A: There exists a bijective correspondence between the set of mutation-

equivalence classes of Fano polygons and the set of qG-deformation equiva-

lence classes of class TG del Pezzo surfaces with cyclic quotient singularities

that are strictly R-singularities.

Since the singularity content of a Fano polygon describes the cyclic quotient

singularities on the corresponding del Pezzo surface, Conjecture A could be

strengthened to comment on the connection between the two properties: the
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singularity content of the mutation equivalence classes of Fano polygons and

the singular locus of the corresponding del Pezzo surfaces. Recent results

from Corti–Heuberger [27] and Kasprzyk–Nill–Prince [48] certainly support

this.

Theorem 2.5.17 ([48, Theorem 1.2]). There are precisely ten mutation-equivalence

classes of Fano polygons such that the toric del Pezzo surface XP has only T-

singularities. They are in bijective correspondence with the ten families of

smooth del Pezzo surfaces.

Theorem 2.5.18 ([27, 48]). There are precisely 29 qG-deformation families of

del Pezzo surfaces with m ≥ 1 singular points of type 1
3(1, 1) and precisely 26

of these admit a toric degeneration. These 26 del Pezzo surfaces are in bijective

correspondence with 26 mutation-equivalence classes of Fano polygons with

singularity content
(

n, {m× 1
3(1, 1)}

)
, where m ≥ 1.
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3
C L A S S I F I C AT I O N O F P O LY G O N S B Y S I N G U L A R I T Y

C O N T E N T

The aim of this chapter is to describe an efficient algorithm to classify mutation

equivalence classes of Fano polygons with a given singularity content. This

would allow us to build on the classifications of Theorem 2.5.17 and 2.5.18. In

the event of Conjecture A being proven, this algorithm is equivalent to provid-

ing a classification of del Pezzo surfaces that admit a toric degeneration and

have the cyclic quotient singularities described by the prescribed singularity

content. As a corollary to the algorithm the following classifications (derived

in Section 3.3) have been completed:

Theorem 3.0.1. There are precisely 14 mutation-equivalence classes of Fano

polygons with singularity content
(

n, {m1 × 1
3(1, 1), m2 × 1

6(1, 1)}
)

where m1 ≥ 0,

m2 > 0.

Theorem 3.0.2. There are precisely 12 mutation-equivalence classes of Fano

polygons with singularity content
(

n, {m× 1
5(1, 1)}

)
where m > 0.

The material of this chapter is joint work with Edwin Kutas [20].

49



3.1 preliminaries

3.1 preliminaries

Before stating the algorithm we require some preliminaries on Hirzeburch–

Jung continued fractions, and our choice of representative of a mutation equiv-

alence class of Fano polygons.

There is information about the del Pezzo surface XP corresponding to a poly-

gon P written into the singularity content SC(P) = (n,B) ; XP is qG-deformation

equivalent to a del Pezzo surface X such that the topological Euler number

χ (X\Sing(X)) = n and the set of singular points is given by Sing(X) = B.

Furthermore the anticanonical degree and Hilbert series of XP are totally de-

termined by the singularity content, see [3, 5].

Definition 3.1.1. Let p, q ∈ Z>0 be coprime. Then the Hirzebruch–Jung continued

fraction of p
q is the continued fraction of the form:

p
q
= a1 −

1
a2 − 1

a3− 1
...

:= [a1, · · · , ak].

Given a cyclic quotient singularity σ = 1
R (1, a), consider the associated variety

Z = Spec(C[x, y]µR). Information about a minimal resolution of Z can be

calculated from the Hirzebruch–Jung continued fraction of R
a . Consider the

minimal resolution π : Y → Z with:

KY = π∗ (KZ) +
kσ

∑
i=1

diEi. (2)

Let the Hirzebruch–Jung continued fraction of R
a be given by [a1, · · · , akσ

]. The

values −ai are the self-intersection numbers of the exceptional divisors Ei ap-

pearing in equation (2). Furthermore set:

α1 = βkσ
= 1,
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αi

αi−1
= [ai−1, · · · , a1], for i ∈ {2, · · · , kσ},

βi

βi+1
= [ai+1, · · · , akσ

], for i ∈ {1, · · · , kσ − 1}.

The discrepancy of Ei is given by di = −1 + αi+βi
R . For further reading on

minimal resolutions, see Reid [63].

Proposition 3.1.2 ([5, Proposition 3.3, Corollary 3.5]). Let P be a Fano poly-

gon, and let XP be the corresponding toric surface. Suppose P has singularity

content (n,B). Then:

(−KXP)
2 = 12− n− ∑

σ∈B
Aσ,

where Aσ = kσ + 1−
kσ

∑
i=1

d2
i ai + 2

kσ−1
∑

i=1
didi+1. Furthermore the Hilbert series of

XP admits a decomposition:

Hilb(XP,−KXP) =
1 +

(
(−KXP)

2 − 2
)

t + t2

(1− t)3 + ∑
σ∈B

Qσ(t),

where Q 1
R (1,a)(t) =

1
1−tR

R−1
∑

i=1
(δ(a+1)i − δ0)ti−1 is the Riemann-Roch contribution

coming from the singularity 1
R (1, a), where δj =

1
R ∑

ε∈µR,ε 6=1

εj

(1−ε)(1−εa)
are the

Dedekind sums.

Example 3.1.3. The Fano polygon P = conv {(0, 1), (1, 0), (−5,−1)} of Example

2.5.13 has singularity content
(

2, {1
5(1, 1)}

)
. The Hirzebruch–Jung continued

fraction of the cyclic quotient singularity 1
5(1, 1) is simply [5], so it follows that

d1 = −3
5 and A 1

5 (1,1) = 1
5 . Furthermore Q 1

5 (1,1) = t−2t2+t3

5(1−t5)
. Therefore the

anticanonical degree and Hilbert series of P(1, 1, 5) are given by:

(−KP(1,1,5))
2 = 12− 2− 1

5
=

49
5

,

Hilb
(

P(1, 1, 5),−KP(1,1,5)

)
=

1 + 39
5 t + t2

(1− t)3 +
t− 2t2 + t3

5(1− t5)

=
1 + 8t + 2t3 − 2t4 − 8t6 − t7

(1− t5)(1− t)3 .
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More generally for a polygon P with n primitive T-singularities and basket of

singularities B = {m× 1
5(1, 1)}, we have:

(−KXP)
2 = 12− n− 1

5
m,

and:

Hilb(XP,−KXP)

=
−t7 + (n− 10)t6 + (m− 1)t5 − 2mt4 + 2mt3 + (1−m)t2 + (10− n)t + 1

(1− t)3(1− t5)
.

Hirzebruch–Jung fractions can be further studied in [36, 62].

Studying mutation-equivalence classes raises a question about the choice of rep-

resentative when considering a mutation-equivalence class of Fano polygons.

This leads to the definition of a minimal polygon from [48]. For a polygon P,

the notation ∂P denotes the boundary of P.

Definition 3.1.4 ([48, Definition 4.1]). Let P ⊂ NR be a Fano polygon. The

polygon P is minimal if:

|∂P ∩ N| ≤ |∂Q ∩ N|, ∀Q = mut(n,F)(P).

For an edge E of P, let nE ∈ M be the primitive inward pointing normal of E.

Define hE
min = min{〈v, nE〉 : v ∈ P} and hE

max = max{〈v, nE〉 : v ∈ P}. Then [48,

Corollary 4.5] states that P is minimal if and only if for every edge E satisfying

|E ∩ N| − 1 ≥ |hE
min|, then |hE

min| ≤ hE
max.

Given a Fano polygon P, we can find a minimal representative of the mutation-

equivalence class by calculating all possible mutations of P. If none of the

Fano polygons obtained via these mutations have fewer boundary points, then

P is minimal. Otherwise choose one of the mutations of P that have fewer

boundary points as our new representative. Repeat this inductively, until we

obtain a minimal representative. The process must terminate since the number

of boundary points of a Fano polygon is finite and non-negative.
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A minimal representative of a mutation-equivalence class is not necessarily

unique. We will always choose the representative of any equivalence class of

Fano polygons to be minimal.

Example 3.1.5. In Example 2.5.13, |∂P ∩ N| = 3 and |∂Q ∩ N| = 8 and we

have also seen by Lemma 2.5.14 that the edge conv {(0, 1), (−5,−1)} does not

admit a mutation. We know there is only one other existing mutation of P. It

is routine to check that this remaining mutation does not have fewer boundary

points that P. Therefore P is minimal.

3.2 algorithm

Recall from Definition 1.5.1 that the maximal local index of a Fano polygon P

is:

mP =max {lE : E is a face of P}

=max {height(E) : E is a face of P} .

Similarly define mB to be the maximum height among the cones representing

the R-singularities of P.

The classification of Fano polygons with a given basket of singularities B up to

mutation-equivalence is split into two cases:

• Case (i): mP = mB;

• Case (ii): mP > mB.

A proof in [48] efficiently tackles case (ii), although the polygons this proof

outputs are not necessarily minimal. It remains for us to deal with case (i). An

algorithm to compute this classification has been completed in [50]. However it

is inefficient when tackling classifications beyond the simple cases of polygons

with only T-singularities and 1
3(1, 1) R-singularities.
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The main result of this chapter is an efficient algorithm to calculate the poly-

gons arising through case (i). The basic idea is to start with only a single edge

F described by endpoints (a, lF) and (b, lF), where 0 < lF < mB and a < b,

and inductively add appropriate edges. The edge F will eventually be a special

facet (recall Definition 1.5.3) of a Fano polygon P. By convexity we require that

P lies below the line {(x, y) ∈ NR : y = lF} formed by extending F. Consider

the line L1 through (a, lF) and (−mB, 0). This line provides a bound on the

gradient for the second edge of P with endpoint (a, lF); any edge with gradient

less than that of L1 will be of height greater than mB contradicting the assump-

tion mP = mB. Similarly the line L2 through the points (b, lF) and (mB, 0)

bounds P. Finally by Lemma 1.5.5, all vertices of P must lie above the line

L = {(x, y) ∈ NR : y = −lF(lF + 1)}. These bounds define a region T ⊂ NR,

shown in Figure 1, such that P ⊆ T. We inductively construct all possible min-

imal polygons by adding in edges contained within T in a clockwise fashion

so that the edges contribute T-singularities or appropriate R-singularities to P.

The full algorithm is described formally below. The notation Ev1,v2 is used to

denote the line segment between the lattice points v1 and v2.

L1 L2

F

L

(a, lF) (b, lF)

(mB, 0)(−mB, 0)

T

Figure 1: Region of Possible Points.
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Algorithm 2 Classification of Minimal Fano Polygons with given basket of

singularities with mP = mB
1: Input: F = {v1, v2} = {(a, lF), (b, lF)}, Basket of singularities B.

2: L1 := line through (a, lF) and (−mB, 0).

3: L2 := line through (b, lF) and (mB, 0).

4: L := {(x, y) ∈ N : y = lF(lF + 1)}.

5: T := region bounded by F, L, L1 and L2.

6: PossiblePoints := {primitive points v ∈ N contained in T}.

7: ActiveConstructions := {F}, and CompleteConstructions := ∅ .

8: for {v1, . . . , vk} ∈ ActiveConstructions do,

9: Sh := {vk+1 : vk+1 − vk primitive, height(Evk,vk+1) = h}, for h > 0.

10: L(h) := line through the points of Sh, for h > 0.

11: L(v,h) := line through vk and v for some v ∈ L(h).

12: for v ∈ L(v,h) ∩ T, where 0 ≤ h ≤ mB do,

13: if v 6= (a, lF) and adding v to {v1, . . . , vk} satisfies convexity, and

conv{vk, v} describes a T-singularity or a singularity in B then,

14: ActiveConstructions ← (ActiveConstructions\{v1, . . . vk}) ∪

{v1, . . . , vk, v}.

15: if v = (a, lF) and adding v to {v1, . . . , vk} satisfies convexity then,

16: ActiveConstructions← ActiveConstructions\{v1, . . . vk}.

17: CompleteConstructions← CompleteConstructions∪ {v1, . . . , vk, v}.

18: if ActiveConstructions 6= ∅ then,

19: go to 8.

20: for {v1, . . . , vk} ∈ CompleteConstructions do,

21: if P := conv {v1, . . . , vk} not minimal or F not a special facet of P or

{R-singularities of P} 6= B then,

22: CompleteConstructions← CompleteConstructions \{v1 . . . , vk}.

23: Check CompleteConstructions for mutation equivalence.

24: Output: CompleteConstructions.
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Theorem 3.2.1. The algorithm gives a complete classification for Fano polygons

with a specific basket of singularities B.

Proof. Firstly we prove that there are only finitely many choices for the input

special facet F, since the algorithm will be run for all possible choices. Since

mP = mB, and the height of F is lF, it follows that lF ∈ {1, · · · , mB}. Translate

the edge F horizontally using a GL(N)-transformation of the form

1 klF

0 1


for some k ∈ Z, to assume that −lF < a ≤ 0. It remains to show that for a

fixed value of lF and a that there are only finitely many choices for b. Suppose

b ≥ a + lF. By minimality the region T contains a point (x, y) with y ≤ −lF.

It is easy to see that if b gets too big then the point of intersection of L1 and

L2 will bound T so as not to include such a point. Therefore there are only

finitely many choices of special facet. Note it is only necessary to consider a

and b such that (a, lF) and (b, lF) are primitive and the singularity contributed

by F is either a T-singularity and/or an R-singularity contained in B.

Secondly note that the set of points belonging to S(h) in step 10, do indeed

belong to a line. Namely suppose if vk = (x, y), and (a, b) ∈ S(h), then

necessarily gcd (a− x, b− y) = 1 and so the height condition on the edge

E(x,y),(a,b) = conv {(x, y), (a, b)} becomes:

−h =
〈
(x, y), nE(x,y),(a,b)

〉
−h = 〈(x, y), (a− x, b− y)〉

b =

(
−x

y

)
a +

(
−h + x2 + y2

y

)
(3)

where equation (3) gives the equation of the straight line L(h).

Finally it is easy to see that at step 13 of the algorithm, there are only finitely

many choices for v since T is a bounded region.
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By Proposition 3.1.2:

(−KXP)
2 = 12− n− ∑

σ∈B
Aσ.

Since P is Fano, (−KXP)
2 > 0. Additionally our chosen basket B consists of

finitely many R-singularities, so ∑
σ∈B

Aσ is finite and therefore there exists a

bound on n, the number of T-cones contained in P.

When checking for mutation-equivalence in the algorithm, two polygons can

be shown to be mutation-equivalent by explicitly calculating a sequence of

mutations between them. Conversely a polygon P has corresponding to it a

mirror dual Laurent polynomial f ∈ C[x±1
1 , · · · , x±1

n ], as discussed in Section

2.5. The classical period of f , given by:

π f (t) =
(

1
2πi

)n ∫
|x1|=···=|xn|=1

1
1− t f (x1, · · · , xn)

dx1

x1
· · · dxn

xn

= ∑
k≥0

coeff1( f k)tk,

is an invariant under mutation. Hence two polygons with different periods

cannot be mutation-equivalent.

We have successfully written computer code in Sage that efficiently implements

the algorithm.

It is important to compare the LDP-algorithm [50], described in Section 1.5,

used to calculate the 1
3(1, 1) classification of Fano polygons in Theorem 2.5.18

with this new algorithm. The LDP-algorithm takes as input a desired value

for the index lP = lcm {height(E) : E is an edge of P}, and returns all Fano

polygons P with this index. Hence when used to calculate the case mP = mB

in the 1
3(1, 1) classification, edges of height 1, 2 and 3 are permitted, and so the

LDP-algorithm needs to be run for lP ∈ {3, 6}. In the 1
5(1, 1) classification of

Theorem 3.0.2 the value of lP can be up to 60. All polygons P satisfying lP ≤ 16

have been classified using the LDP-algorithm but this took approximately three

days to obtain and the run time will increase at least quadratically with lP.
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3.3 classifications

A classification of Fano polygons with singularity content
(

n, {m× 1
r (1, 1)}

)
,

where r ≥ 7 would be extremely costly to calculate using the LDP-algorithm

(lP would be bounded above by 420 in the r = 7 case).

In comparison we had the following run times to calculate the classifications

of Theorems 3.0.1 and 3.0.2 using our algorithm:

Basket in classification Run Time(
n, {m1 × 1

3(1, 1), m2 × 1
6(1, 1)}

)
40 seconds(

n, {m× 1
5(1, 1)}

)
8 minutes

Furthermore a classification of Fano polygons whose basket of singularities

only contains 1
7(1, 1) R-singularities has been informally completed. The main

reasons for the difference in speed between the algorithms are:

• We only look for minimal representatives for each mutation equivalence

class. This is not the case in the LDP algorithm;

• The LDP-algorithm is not designed to look for polygons based on the

singularity content. For example, in the 1
3(1, 1) classification running the

LDP-algorithm for lP ∈ {3, 6} will output many polygons that do not

have singularity content
(

n, {m× 1
3(1, 1)}

)
.

3.3 classifications

We first apply Algorithm 2 to classify all Fano polygons whose basket of resid-

ual singularities contains only 1
3(1, 1) and 1

6(1, 1) cyclic quotient singularities.

Set B =
{

m1 × 1
3(1, 1), m2 × 1

6(1, 1)
}

, where m1 ∈ Z≥0 and m2 ∈ Z>0. Here

m2 is non-zero since a classification for Fano polygons with only 1
3(1, 1) R-

singularities has been completed in Theorem 2.5.18. Upper bounds on m1 and
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m2 are required, to prove that the algorithm only needs to be run a finite num-

ber of times in order to get a complete classification.

In the 1
3(1, 1) classifiation of Theorem 2.5.18 a bound on the number of R-

singularities is found by substituting the degree contribution A 1
3 (1,1) > 0 into

the expression for the anticanonical degree of the corresponding toric Fano vari-

ety from Proposition 3.1.2. However the degree contribution A 1
6 (1,1) is negative

and a similar argument does not yield a bound. We appeal to a combinatorial

argument instead.

Lemma 3.3.1. There exist no minimal Fano polygons P ⊂ NR, with mP = 3 and

residual basket given by B =
{

m× 1
6(1, 1)

}
, where m ≥ 3.

Proof. The result for m > 3 follows from the argument for the base case m = 3.

Let P be a polygon with B = {3× 1
6(1, 1)}. By a GL(N)-transformation, as-

sume that one of the R-singularities is given by E1 = conv{(−1, 3), (1, 3)}. By

mutating with respect to any T-singularity lying between E1 and a second R-

singularity, assume this second R-singulary is adjacent to E1, given by an edge

E2 with endpoints (1, 3) and (a, b). The primitive inner pointing normal of E2

is given by:

nE2 =

(
b− 3

g
,

1− a
g

)
∈ M

where g = gcd(b− 3, 1− a). The height of E2 is:

h = − 〈(1, 3), nE2〉 =
3a− b

g
.

Since E2 represents a 1
6(1, 1) singularity, set h = 3:

3a− b
g

= 3,

b = 3a− 3 gcd(b− 3, 1− a).

By convexity b < 3. The only remaining integer solution with a ≥ 0, is given by

(0,−3). However this point is not primitive so it can not be chosen as a vertex

of a Fano polygon. Hence a < 0.
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Suppose the second edge from (−1, 3), denoted E3, is vertical. By convexity

a = −1 and (a, b) is a vertex of E3. But then E3 is of height 1 so cannot

represent the final 1
6(1, 1) singularity and m < 3. Suppose E3 is not vertical.

Again convexity demands that the second endpoint of E3 has first coordinate

less than −1. Then height(E3) > 3 which contradicts mP = 3.

Therefore there can be no minimal Fano polygon with residual basket given by

B = {3× 1
6(1, 1)} with mP = 3.

A similar argument to the proof of Lemma 3.3.1 shows the more general state-

ment that for a basket of residual singularities B =
{

m1 × 1
3(1, 1), m2 × 1

6(1, 1)
}

of a Fano polygon, then m1 + m2 < 3. Therefore the algorithm can be run a

finite number of times to get the desired classification.

Examples in this particular classification demonstrate a notion known as shat-

tering introduced by Wormleighton [67]. Consider two cones in NR given by

C1 = spanR≥0
(u, v) and C2 = spanR≥0

(v, w) such that the vectors v − u and

w− v have the same unit direction vector. Then define the hyperplane sum of

C1 and C2 to be given by C1 ∗ C2 = spanR≥0
(u, w).

Corollary 3.3.2 ([67] Corollary 2.2). Let σ1 ∗ σ2 ∗ · · · ∗ σn = τ be a T-singularity.

Then the Riemann-Roch contributions Qσi and the degree contributions Aσi

satisfy:

Qσ1 + · · ·+ Qσn = 0,

Aσ1 + · · ·+ Aσn = Aτ =
lattice length(τ)
lattice height(τ)

.

Consider a T-cone at lattice height 3 which without loss of generality is given by

C = cone {(−2, 3), (1, 3)}. By adding an additional ray generated by the primi-

tive lattice point (−1, 3), decompose C into two sub-cones C1 and C2 represent-

ing a 1
3(1, 1) and a 1

6 (1,1) R-singularity respectively. By Corollary 3.3.2:

Q 1
3 (1,1) + Q 1

6 (1,1) = 0,
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A 1
3 (1,1) + A 1

6 (1,1) = 1.

Knowing A 1
3 (1,1) =

5
3 and Q 1

3 (1,1) = −
t

3(1−t3)
, derive:

A 1
6 (1,1) = −

2
3

,

Q 1
6 (1,1) =

t
3(1− t3)

.

By Proposition 3.1.2, calculate (−KXP)
2 = 12− n − 5

3 m1 +
2
3 m2. Since we are

interested in Fano polygons, (−KXP)
2 > 0, and so n ≤ 13.

The table of results for the classification of Fano polygons with singularity con-

tent of the form
(

n, {m1 × 1
3(1, 1), m2 × 1

6(1, 1)}
)

with m2 6= 0, up to mutation-

equivalence is given. All the polygons listed arose in the case mB = mP with

the exception of polygon 1.12 for which mP > mB.
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# Vertices of Polygon P n m1 m2 (−KX)
2

1.1 (-1,3), (1,3), (0,-1) 2 0 1
32
3

1.2 (-1,3), (1,3), (1,2), (0,-1) 3 0 1
29
3

1.3 (-1,3), (1,3), (1,1), (0,-1) 4 0 1
26
3

1.4 (-1,3), (1,3), (1,0), (0,-1) 5 0 1
23
3

1.5 (-1,3), (1,3), (1,2), (0,-1), (-1,0) 6 0 1
20
3

1.6 (-1,3), (1,3), (1,2), (0,-1), (-1,-1) 7 0 1
17
3

1.7 (-1,3), (1,3), (1,0), (0,-1), (-1,0) 8 0 1
14
3

1.8 (-1,3), (1,3), (1,0), (-1,-1) 8 0 1
14
3

1.9 (-1,3), (1,3), (1,0), (0,-1), (-1,-1) 9 0 1
11
3

1.10 (-1,3), (1,3), (1,2), (-1,-4) 10 0 1
8
3

1.11 (-1,3), (1,3), (1,-1), (-1,-3) 11 0 1
5
3

1.12 (-1,3), (1,3), (5,-1), (-5,-1) 12 0 1
2
3

1.13 (-1,1), (1,1), (5,-1), (-5,-1) 12 0 2
4
3

1.14 (-1,3), (1,3), (1,-1), (-1,-2) 9 1 1 2

These polygons are illustrated in Figure 2.

Recall from Section 2.5 that associated to a toric variety XP is the mirror dual

Laurent polynomial. This is a Laurent polynomial f such that Newt( f ) =

P, and whose classical period is a mutation invariant. The mirror duals of

polygons 1.7 and 1.8 are given respectively by a polynomial of the form:
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f = xy3 + 3xy2 + ay3 + 3xy + by2 + x−1y3

+ x + cy + 3x−1y2 + 3x−1y + y−1 + x−1,

g = xy3 + 3xy2 + dy3 + 3xy + ey2 + x−1y3

+ x + f y + 4x−1y2 + 6x−1y + 4x−1 + x−1y−1.

Calculating the corresponding periods of f and g obtain:

π f = 1 + (2a + 2)x2 + (3b + 36)x3 + (6a2 + 24a + 4c + 186)x4

+(20ab + 360a + 60b + 760)x5 + · · · ,

πg = 1 + 14x2 + 6ax3 + 546x4 + (420a + 30b)x5 + · · · .

It is easy to see that these periods are not equal and hence the polygons cannot

be mutation-equivalent. All other Fano polygons in this classification have

pairwise distinct singularity contents, hence are not mutation equivalent.

1.1 1.2 1.3 1.4 1.5 1.6

1.7 1.8 1.9
1.10

1.11

1.12

1.13

1.14

Figure 2: Minimal Representatives of Mutation-Equivalence Classes of Fano

Polygons with Singularity Content
(

n, {m1 × 1
3(1, 1), m2 × 1

6(1, 1)}
)

where m1 ≥ 0, m2 > 0.
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Similarly we find all Fano polygons with singularity content
(

n, {m× 1
5(1, 1)}

)
with m > 0. As before a bound on m is required to ensure a complete classifi-

cation.

Lemma 3.3.3. There exist no minimal Fano polygons P ⊂ NR, with mP = 5 and

residual basket given by B =
{

m× 1
5(1, 1)

}
, where m ≥ 3.

Proof. Similar to the proof of Lemma 3.3.1.

By Example 3.1.2 and Proposition 3.1.3 the anticanonical degree of the toric

variety corresponding to a Fano polygon whose only R-singularities are of type
1
5(1, 1) is given by:

(−KXP)
2 = 12− n− 1

5
m > 0.

Therefore n < 12. We apply the algorithm finitely many times to complete the

classification.

The table of results for the classification of Fano polygons with singuarity con-

tent of the form
(

n, {m× 1
5(1, 1)}

)
with m > 0 is given. All the polygons

satisfy mB = mP.
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# Vertices of Polygon P n m (−KX)
2

2.1 (-3,5), (-2,5), (1,-2) 2 1
49
5

2.2 (-3,5), (-2,5), (-1,3), (1,-2) 3 1
44
5

2.3 (-3,5), (-2,5), (-1,3), (1,-2), (-2,3) 4 1
39
5

2.4 (-3,5), (-2,5), (-1,3), (1,-2), (-1,1) 5 1
34
5

2.5 (-3,5), (-2,5), (0,1), (1,-2), (-1,1) 6 1
29
5

2.6 (-3,5), (-2,5), (0,1), (1,-2), (0,-1) 7 1
24
5

2.7 (-3,5), (-2,5), (1,-1), (0,-1) 7 1
24
5

2.8 (-3,5), (-2,5), (1,-1), (1,-2), (0,-1) 8 1
19
5

2.9 (-3,5), (-2,5), (1,-1), (1,-3) 9 1
14
5

2.10 (-3,5), (-2,5), (2,-3), (2,-5) 10 1
9
5

2.11 (-3,5), (-2,5), (4,-1), (-3,-1) 11 1
4
5

2.12 (-3,5), (-2,5), (3,-5), (2,-5) 10 2
8
5

These polygons are illustrated in Figure 3.

Similarly to the previous classification note that polygons 2.6 and 2.7 are not

mutation equivalent by looking at the periods π f , πg of their respective mirror

duals f and g:

π f = 1 + 12x2 + 6ax3 + 396x4 + (360a + 30b)x5 + · · · ,

πg = 1 + (2c + 12)x2 + (6c + 3d + 90)x3 + (6c2 + 24d + 144c + 636)x4

+(20cd + 60c2 + 390d + 1260c + 6900)x5 + · · · .

All other Fano polygons in the classification have pairwise distinct singularity

content and therefore belong to different mutation equivalence classes.
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2.1 2.2 2.3 2.4 2.5

2.6 2.7
2.8

2.9
2.10

2.11

2.12

Figure 3: Minimal Representatives of Mutation-Equivalence Classes of Fano

Polygons with Singularity Content
(

n, {m× 1
5(1, 1)}

)
where m > 0.
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4
D E L P E Z Z O S U R FA C E S W I T H A S I N G L E 1

k ( 1 , 1 )

S I N G U L A R I T Y

Given the classifications of Theorem 3.0.1 and Theorem 3.0.2, the next problem

is to study and understand them. This involves calculating the corresponding

del Pezzo surfaces, and the distinct qG-deformation families that they belong

to. The material of this chapter was completed as joint work with Thomas

Prince [21].

The crucial observation follows from recalling the construction of the blow-up

of a toric fan from Chapter 1, that is, given a cone σ ∈ Σ ⊂ NR with primitive

ray generators u1, u2, set u0 = u1 + u2 and replace σ by σ1 = spanR≥0
(e1, e0),

σ2 = spanR≥0
(e0, e2) and σ1 ∩ σ2 to define a fan Σ′. Then XΣ′ is the blow of XΣ

in a smooth point of Uσ.

Focussing on the classification of Theorem 3.0.1, observe that polygon 1.2 arises

from polygon 1.1 by a toric blow-up in the cone spanR≥0
((1, 3), (0,−1)). Hence

the toric variety of polygon 1.2 arises from the toric variety of polygon 1.1 via a

blow-up. Similarly polygon 1.3 arises from polygon 1.2 by a toric blow-up, and

indeed this continues through the classification with a few exceptions:

• Polygons 1.13 and 1.14 do not fit into the sequence of toric blow-ups. Both

of these surfaces have two R-singularities.
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• Polygon 1.8 does not arise from a toric blow-up of polygon 1.7, however

both 1.7 and 1.8 can be blown up to give polygon 1.9.

Considering only the Fano polygons with a single 1
6(1, 1) R-singularity, note

that these surfaces fall into a similar cascade structure to that of the ten smooth

del Pezzo surfaces. The classification of the polygons with a single 1
5(1, 1) R-

singularity of Theorem 3.0.2, has this same cascade structure.

We generalise this to constructing an analogous cascade of qG-deformation

families of del Pezzo surfaces with a single 1
k (1, 1) R-singularity. For each entry

of the cascade, we construct models and toric degenerations of the deformation

family which is embedded in a toric variety in codimension ≤ 2 using Laurent

inversion. The cascades are shown to be a classification of the qG-deformation

families of del Pezzo surfaces with a single 1
k (1, 1) singularity by the minimal

model program.

4.1 laurent inversion

In this section we recall the method of Laurent inversion [25], which is used to

construct models for the surfaces in these cascades.

Broadly speaking Laurent inversion takes a polytope P ⊂ NR together with

a certain decoration of P (called a scaffolding) as input and returns a torus

invariant embedding of the toric variety associated to P into a second toric

variety.

A scaffolding of a Fano polytope P ⊂ NR is a presentation of P as the convex

hull of a collection of polyhedra of sections (see Definition 1.4.10) of nef divi-

sors on a (fixed) toric variety. As usual, we restrict our interest to the case of N

being a rank two lattice.
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4.1 laurent inversion

Definition 4.1.1 ([25, Definition 13]). Fix the following data:

(i) a lattice N ∼= Z2 with a decomposition N = N̄ ⊕ NU. Denote the dual

lattice by M and the dual decomposition M = M̄⊕MU;

(ii) a Fano polygon P ⊂ NR;

(iii) a projective toric variety Z, known as the shape, given by a fan in M̄R

whose primitive ray generators span M̄.

A scaffolding of P is a set S of pairs (D, χ), known as struts, where D is a nef

divisor on Z and χ is an element of NU such that:

P = conv {PD + χ : (D, χ) ∈ S} ,

where PD is the polyhedron of sections of the torus invariant divisor D.

Although not required by the definition, impose two additional assumptions

to simplify the Laurent inversion algorithm:

(i) every vertex of P is met by precisely one strut;

(ii) there is a basis {ei : 1 ≤ i ≤ dim NU} of NU such that the pair (O, ei) ∈ S

for all values of i. We say, following [25], that these struts correspond to

uneliminated variables.

Example 4.1.2. First fix the data (i)–(iii) appearing in Definition 4.1.1. Let N be

a rank two lattice with NU = {0}. Thus M ∼= Z2 and MU = {0}. Consider the

Fano polygon P with vertices (0, 1), (1, 0), (1,−1), (0,−1), (−1, 0), (−1, 1), and

choose Z = P2. The fan ΣZ corresponding to Z is:
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4.1 laurent inversion

Let ΣZ(1) = {ρ1, ρ2, ρ3} and denote the generator of the ray ρi by ui. Define a

piecewise-linear function φi, ∀i ∈ |ΣZ(1)| by:

φi(uj) :=

1, if i = j,

0, otherwise.

By Theorem 1.4.9, these piecewise linear functions correspond to divisors, de-

noted Di, on Z. Consider the scaffold given by the three struts (D1, 0), (D2, 0)

and (D3, 0). Computing the polyhedra PDi obtain:

PD1 =

(x, y) ∈ NR :

〈
(x, y), (1, 0)

〉
≥ −1〈

(x, y), (0, 1)
〉
≥ 0〈

(x, y), (−1,−1)
〉
≥ 0

 =

(x, y) ∈ NR :

x ≥ −1

y ≥ 0

x + y ≤ 0

 ,

PD2 =

(x, y) ∈ NR :

x ≥ 0

y ≥ −1

x + y ≤ 0

 ,

PD3 =

(x, y) ∈ NR :

x ≥ 0

y ≥ 0

x + y ≤ 1

 ,

which then satisfy the condition P = conv
{

PD1 , PD2 , PD3

}
as illustrated:

With the exception of the scaffolding appearing in Figure 7 we will only use

three types of scaffolding:

(i) N = Z2, NU = Z, Z = P1;

(ii) N = Z2, NU = {0}, Z = P1 ×P1;
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4.1 laurent inversion

(iii) N = Z2, NU = {0}, Z = P2.

Examples for each of these types of scaffolding can be found in Section 4.2.

Laurent inversion is an algorithm to pass from a scaffolding S of a Fano poly-

tope P to an embedding of the corresponding Fano toric variety XP in an ambi-

ent toric variety YS. The form of the algorithm presented applies to a scaffold-

ing with shape Z isomorphic to a product of projective spaces; this is true of

all three cases enumerated above.

The algorithm of [25] for Laurent inversion is as follows: Let S be a scaffolding

of a Fano polytope P with shape Z. Let u = dim (NU) and let r = |S| − u, so

that S contains u struts that correspond to uneliminated variables and r struts

that do not correspond to uneliminated variables. Let R be the sum of |S|

and the number of rays of Z. We determine an r × R matrix M, which will

act as the weight matrix for a toric variety YS, as follows. Let mi,j denote the

(i, j)th entry of M. Fix an identification of the rows of M with the r elements

(Di, χi) of S which do not correspond to uneliminated variables, and an order-

ing ∆ρ1 , . . . , ∆ρR−|S| of the toric divisors corresponding to the rays of the fan of

Z. Let e1, . . . , eu be the basis of NU given by the uneliminated variables.

(i) For 1 ≤ j ≤ r and any i, let mi,j = δi,j;

(ii) For 1 ≤ j ≤ u and any i, let mi,r+j be determined by the expansion:

χi =
u

∑
j=1

mi,r+jej;

(iii) For 1 ≤ j ≤ z, let mi,|S|+j be determined by the expansion:

Di =
R−|S|

∑
j=1

mi,|S|+j∆j.

The weight matrix M alone does not determine a unique toric variety – a sta-

bility condition ω also needs to be specified. Unless otherwise stated, assume
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4.1 laurent inversion

ω to be the sum of the first |S| columns in M. Let YS denote the toric variety

determined by the GIT data (M, ω).

After choosing bases of NU and DivTM̄
(Z) the fan of the toric variety YS is

contained in (NU ⊕DivTM̄
(Z))⊗R.

Theorem 4.1.3 ([25, Theorem 20]). Given a scaffolding S of a Fano polytope P,

the GIT data (M, ω) defines a toric variety YS with Cl(YS) ∼= Zr. Furthermore,

there is a canonical embedding XP ↪→ YS. If Z is isomorphic to a product of k

projective spaces, XP is the intersection of k divisors, each of which is defined

by a single equation in Cox co-ordinates, on YS, and:

ω = −KX −∑
i

Li,

where the linear systems Li define XP.

Of course, if YS is smooth, this defines a complete intersection. In general

smoothness needs to verified on a case-by-case basis. There are many ways of

embedding a toric variety into another toric variety, but Theorem 4.1.3 allows

us to unify a large number of classical constructions of Fano varieties into a

simple format.

Definition 4.1.4 ([25, Proposition 27]). Fix a Fano polygon P and let Z be the

minimal resolution of the toric variety determined by the normal fan of P. The

anti-canonical scaffolding of P is the scaffolding S with shape Z consisting of the

single nef divisor D on Z such that the polyhedron of sections of D is equal to

P.

The Laurent inversion algorithm applied to the anti-canonical scaffold deter-

mines an embedding of XP into a weighted projective space P(1, a1, . . . , aN).

By construction this is the map into weighted projective space defined by the

elements of −KXP ; that is, the usual anti-canonical embedding. Combining this

with Theorem 4.1.3 gives the following proposition:
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4.1 laurent inversion

Proposition 4.1.5. Given a Fano polygon P isomorphic to the polyhedron of

sections of a nef divisor on P2 or P1 × P1, or isomorphic to the cone over

the polyhedron of sections of a nef divisor on P1, then XP is anti-canonically

embedded as complete intersection in a weighted projective space.

Any low codimension model obtained via the anti-canonical scaffolding of a

polygon can also be obtained by studying the Hilbert series of the correspond-

ing toric variety; by using the anti-canonical scaffolding we only obtain models

already accessible by well known methods. Several examples of such models

appear in 4.2, and so we recall the work of Reid–Suzuki [65].

We want to study the Hilbert series of the blow-up of P(1, 1, k) in l ∈ {k + 2, k +

3, k + 4} general smooth points. Namely following [65], consider the Hilbert

series of P(1, 1, k) polarised by the anti-canonical divisor −KP(1,1,k) = O(k + 2).

This can be calculated by taking the Hilbert series of P(1, 1, k) polarised by

O(1), which is:
1

(1− s)2(1− sk)
,

multiplying through by (1− sk+2)2(1− sk(k+2)), truncating to the polynomial

consisting only of terms divisible by tk+2, and making the substitution sk+2 = t.

The calculation splits into two cases:

(i) Suppose k is even. Setting k = 2m, obtain:

HP(1,1,k) =
PP(1,1,k)(t)

(1− t)2(1− tk)
,

where:

PP(1,1,k)(t) = 1 +
m−1

∑
i=1

(k + 4)ti + (k + 5)tm

+ (k + 5)tm+1 +
k

∑
i=m+2

(k + 4)ti + tk+1.
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4.1 laurent inversion

(ii) k is odd. In this case, letting k = 2m− 1, obtain:

HP(1,1,k) =
PP(1,1,k)(t)

(1− t)2(1− tk)
,

where:

PP(1,1,k)(t) = 1 +
m−1

∑
i=1

(k + 4)ti + (k + 6)tm +
k

∑
i=m+1

(k + 4)ti + tk+1.

A smooth blow-up has a Hilbert contribution:

Q = − t
(1− t)3 = − t(1− tk)

(1− t)3(1− tk)
= − t + t2 + t3 + t4 + . . . + tk

(1− t)2(1− tk)
,

and hence the Hilbert series of the blow up of P(1, 1, k) in l general points

is HP(1,1,k) + l × Q. Calculating the Hilbert series for l ∈ {k + 2, k + 3, k + 4}

suggests a low codimension model for the surface in each case. When these

models occur in codimension ≤ 2 they coincide with models for these varieties

obtained by Laurent inversion in Section 4.2. When the Hilbert series models

occur in codimension three or four we present a different model in Section 4.2.

First consider the case k = 2m for some m ∈ Z≥1:

l Hilbert Series Suggested Model

k + 4 1−tk+2

(1−t)2(1−tm)(1−tm+1)
Xk+2 ⊂ P(1, 1, m, m + 1)

k + 3 1−tm+2

(1−t)3(1−tm)
Xm+2 ⊂ P(1, 1, 1, m)

k + 2 (1−t2)(1−tm+1)
(1−t)4(1−tm)

X2,m+1 ⊂ P(1, 1, 1, 1, m)

Consider the case k = 2m− 1 for some m ∈ Z≥1:
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4.2 low codimension models

l Hilbert Series Suggested Model

k + 4 (1−tk+1)2

(1−t)2(1−tm)2(1−tk)
Xk+1,k+1 ⊂ P(1, 1, m, m, k)

k + 3 1−2tm+1−3tk+1+3tk+2+2t3m−t2k+3

(1−t)3(1−tm)2(1−tk)
Pf5,5 ⊂ P(1, 1, 1, m, m, k)

k + 2 1−t2−4tm+1+4tm+2−4tk+1+8tk+2−4tk+3+4t3m−4tm+2−t2k+2+t2k+4

(1−t)4(1−tm)2(1−tk)
codim 4

Note that the Hilbert series models obtained when k is odd generally appear

in higher codimension. For odd values of k the codimension appearing in the

cascade directly generalises the case k = 1 (that is, the original ten del Pezzo

surfaces). The proto-typical case for even values of k is the case k = 2, for

which each of the surfaces given as the blow-up of P(1, 1, 2) in l points admits

a smoothing to the blow-up of P2 in l + 1 general points. For example the blow

of P(1, 1, 2) admits a smoothing to the del Pezzo surfaces dP4, which is known

to have models of codimension ≤ 2 in weighted projective spaces.

In the cases k = 2 and k = 4 observe that all the constructions tabulated

above are well known models of del Pezzo surfaces. This is expected, since

the singularity 1
k (1, 1) is a non-trivial T-singularity precisely when k = 2 or

k = 4.

4.2 low codimension models

Following Iano-Fletcher [43], let us recall the notion of a quasismooth complete

intersection in weighted projective space wP = P(a0, . . . , an). Let X ⊂ wP be a

closed subvariety, and consider the canonical projection of the weighted projec-
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4.2 low codimension models

tive space ρ : An+1\{0} → wP. The punctured affine cone is C◦X = ρ−1(X), and

the affine cone CX over X is the closure of C◦X in An+1. Note that the action of the

group C∗ on wP can be restricted to C◦X, and X = C◦X/C∗. The variety X ⊂ wP

is quasismooth of dimension n if its affine cone CX is smooth of dimension n + 1

outside its vertex 0. When X ⊂ wP is quasismooth the singularities of X are

due to the C∗-action and hence are cyclic quotient singularities. Knowing that

our models are quasismooth will be vital to checking that they have the correct

singularities.

Theorem 4.2.1 ([43, Theorem 8.1]). The general hypersurface Xd ⊂ P(a0, . . . , an),

where n ≥ 1, is quasismooth if and only if one of the following holds:

(i) there exists a coordinate xi of P(a0, . . . , an) for some i of weight d; or

(ii) for every non-empty subset I = {i0, . . . , ik−1} ⊂ {0, . . . , n} either:

(a) there exists a monomial xm0
i0
· · · xmk−1

ik−1
of degree d; or

(b) for µ = 1, . . . , k there exist monomials x
m0,µ
i0
· · · xmk−1,µ

ik−1
xeµ of degree d,

where each of the eµ are distinct.

Theorem 4.2.2 ([43, Theorem 8.7]). Consider a codimension two weighted com-

plete intersection Xd1,d2 ⊂ P(a0, . . . , an), where n ≥ 2, which is not the inter-

section of a linear cone with another hypersurface. The variety Xd1,d2 is quasis-

mooth if and only if for each non-empty subset I = {i0, . . . , ik−1} ⊂ {0, . . . , n}

one of the following holds:

(i) there exist monomials xm1,0
i0
· · · xm1,k−1

ik−1
and xm2,0

i0
· · · xm2,k−1

ik−1
of degree d1 and

d2, respectively;

(ii) there exists a monomial xm1,0
i0
· · · xm1,k−1

ik−1
of degree d1, and for 1 ≤ µ ≤ k− 1

there exist monomials xm2,0
i0
· · · xm2,k−1

ik−1
xeµ of degree d2 where the {eµ} are

all distinct;
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4.2 low codimension models

(iii) there exists a monomial xm2,0
i0
· · · xm2,k−1

ik−1
of degree d2, and for 1 ≤ µ ≤ k− 1

there exist monomials xm1,0
i0
· · · xm1,k−1

ik−1
xeµ of degree d1 where the {eµ} are

all distinct;

(iv) for 1 ≤ µ ≤ k − 1, there exists a degree d1 monomial xm1,0
i0
· · · xm1,k−1

ik−1
xe1

µ

and a degree d2 monomial xm2,0
i0
· · · xm2,k−1

ik−1
xe2

µ
such that {e1

µ} are all distinct,

{e2
µ} are all distinct and {e1

µ, e2
µ} contains at least k + 1 distinct elements.

For each integer k = 3 or k > 4 we will study a cascade of surfaces obtained

from the weighted projective space P(1, 1, k) by blowing up points in general

position and contracting exceptional curves. Note that here and previously

in this chapter, we take general position to be stronger than the notion used

in Chapter 2. Informally we take it to mean that the points do not fall on a

subvarieties of lower degree more than necessary. As mentioned in the intro-

duction, the cascades are particularly simple: all but one surface in each cas-

cade is obtained from P(1, 1, k) via a blow-up in at most k + 4 general smooth

points.

Definition 4.2.3. For a given k ∈ Z>0, let Xk := P(1, 1, k) and let X(l)
k denote

the blow-up of P(1, 1, k) in l general points. Assume that:

l <
(k + 2)2

k
.

The degree of P(1, 1, k) is (k + 2)2/k and thus the bound on l in Definition 4.2.3

ensures that X(l)
k is a del Pezzo surface since as a corollary to Lemma 2.1.2, a

blow-up in a smooth point reduces the degree by one. The cascade consists of

the surfaces X(l)
k for a fixed value of k and all possible values of l, along with

an additional surface obtained by contracting a curve on X(k+1)
k .

Definition 4.2.4. Fix a positive integer k and k+ 1 points {pi : 1 ≤ i ≤ k+ 1} on

P(1, 1, k). There is a unique curve C in the linear system O(k) passing through

these k + 1 points. Blow-up all the points pi and let C′ be the strict transform

of the curve C. Let B(k)
k denote the surface obtained by contacting C′.
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4.2 low codimension models

This is the obvious generalisation of the construction of P1×P1 ∼= B(1)
1 from the

P2 cascade. In our constructions of low codimension models for the surfaces

X(l)
k , B(k)

k we make use of alternate descriptions of X(k+2)
k , X(k+3)

k , and X(k+4)
k

which depend on the parity of k.

Example 4.2.5. The cascade of del Pezzo surfaces with a single 1
5(1, 1) singular-

ity is:

P(1, 1, 5) X(1)
5 X(2)

5 X(3)
5 X(4)

5 X(5)
5 X(6)

5 X(7)
5 X(8)

5 X(9)
5

B(5)
5

Properties of these surfaces are given in the following table:

Surface Fano Index Is toric?

P(1, 1, 5) 7 Yes

X(i)
5 , for i ∈ {1, 2} 1 Yes

X(i)
5 , for i ∈ {3, 4, . . . , 9} 1 No

B(5)
5 2 No

These properties generalise to any of the cascades constructed in the obvious

way. The above table also illustrates how these cascades overlap with the clas-

sifications of del Pezzo surfaces with Fano index > 1 by Alexeev–Nikulin [7]

and Fujita–Yasutake [35], and the classification of toric del Pezzo surfaces with

exactly one singular point by Dais [31].

Definition 4.2.6. Fix a positive integer k and k + 2 points {pi : 1 ≤ i ≤ k + 2}

on the diagonal ∆ ⊂ P1 ×P1. Let Sk denote the surface obtained by blowing

up the points pi. Letting ∆ also denote the strict transform of the diagonal, it

follows immediately that ∆2 = −k.

Lemma 4.2.7. The surface Sk is a minimal resolution of X(k+2)
k . The resolution

contracts the strict transform of the diagonal in P1 ×P1.
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4.2 low codimension models

Proof. For j = 1, 2, let πj denote the jth projection πj : P1 ×P1 → P1, and let

Ei denote the strict transform of the fibre π−1
1 (π1(pi)) in Sk → P1 ×P1. Each

morphism πj induces a morphism Sk → P1 with k + 2 reducible fibres. Each

of these fibres contains precisely one of the curves Ei. Thus, by contracting all

the curves Ei, obtain a surface S̃k together with a morphism S̃k → P1 such that

all its fibres are isomorphic to P1. That is, S̃k is isomorphic to the Hirzebruch

surface Fk. Consider the following commuting diagram:

Sk X(k+2)
k

S̃k P(1, 1, k)

Thus Sk → X(k+2)
k is a minimal resolution.

Definition 4.2.8. Fix a positive integer k and k + 4 points {pi : 1 ≤ i ≤ k + 4}

which lie on a conic in P2. Let S′k denote the surface obtained by blowing up the

points pi. If C denotes the strict transform of the conic, it follows immediately

that C2 = −k.

Lemma 4.2.9. The surface S′k is a minimal resolution of X(k+3)
k . The resolution

contracts the strict transform of the conic in P2 used to define S′k.

Proof. Let C be a conic in P2 and fix k + 4 points {pi : 1 ≤ i ≤ k + 4} on C.

Consider the surface obtained by blowing up only the point pk+4 and the strict

transform of C. The blow-up is isomorphic to the first Hirzebruch surface F1.

Let π : F1 → P1 be its projection to P1. Blow-up the points pi for 1 ≤ i ≤ k + 3,

and contract the strict transforms of the fibres π−1(π(pi)) of π. In this way

obtain a ruled surface with a unique −k curve, i.e. the surface Fk, the minimal

resolution of P(1, 1, k). By a similar argument to Lemma 4.2.7, S′k → X(k+3)
k is

a minimal resolution.
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4.2 low codimension models

Consider the anti-canonical degree:(
−K

X(l)
k

)2

= k− l + 4 +
4
k

.

When k > 4 the value of l is bounded above by k + 4. Therefore the cascades

grow in length with k: however for large values of k there are no surfaces with

geometry as rich as the cubic surface or the lower degree del Pezzo surfaces

that occur at the end of the cascade for k < 4, when l > k + 4. The cases

k = 2, 4 are closely related to the smooth del Pezzo surfaces (via Q-Gorenstein

smoothings) and the case k = 3 is considered in detail in [27].

Case l < k + 2 :

Every surface X(l)
k in this case may be exhibited as a hypersurface in a toric

variety. Let Pl
k denote the Fano polygon obtained as the convex hull of the

points:

{(1, 0), (0,−1), (−1, k− l), (−1, k)} .

Consider a scaffolding of the polygon Pl
k with shape P1 consisting of three

struts:

(i) the single point {(1, 0)};

(ii) the segment conv {(0,−1), (0, 0)}; and

(iii) the segment conv {(−1, k− l), (−1, k)}.

The polygon P2
4 , together with its prescribed scaffolding, is shown in Fig-

ure 4.
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Figure 4: The scaffolding of P2
4 .

The weight matrix obtained via the Laurent inversion algorithm from Section

4.1 for this scaffolding is:

y1 y2 x1 x2 x3

1 0 0 1 0

0 1 1 l − k k

By Theorem 4.1.3 there is a codimension one embedding of the toric variety

XPl
k

into a toric variety Y(l)
k .

Lemma 4.2.10. The toric variety defined by this weight matrix and the sta-

bility condition ω =

1

2

, denoted Y(l)
k , is isomorphic to the rational scroll

PP(1,1,k)(O ⊕O(k− l)).

The toric variety XPl
k

is a hypersurface given by the vanishing of a section of

O(1, l), namely y1yl
2 = x2x3, on Y(l)

k . We show that the vanishing locus of a

general section of O(1, l) is the blow-up of P(1, 1, k) in l points.

Proposition 4.2.11. Let X be the vanishing locus of a general section of O(1, l)

on Yl
k. The projection π : Y(l)

k → P(y2:x1:x3)(1, 1, k) maps X onto P(1, 1, k) and

contracts l disjoint rational curves.
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Proof. The equation defining X has the general form:

y1 fl(y2, x1, x3) + x2gk(y2, x1, x3) = 0,

where fl, gk are homogeneous polynomials of bi-degree (0, l) and (0, k) respec-

tively. Therefore X is a section of the projection π except where fl = gk = 0 in

P(y2:x1:x3)(1, 1, k). The fibre of π|X over a point where these two polynomials

vanish, is a P1 contracted to a point by π. Therefore we only need to count the

number of intersection points of the zero locus of fl and gk.

First assume that l < k. Then no term of fl contains the variable x3 and the set

π ({ fl = 0}) is a collection of l fibres of the projection P(1, 1, k) → P1 present-

ing P(1, 1, k) as the cone over a rational curve of degree k. The vanishing locus

of gk is a section of the standard projection P(1, 1, k) 99K P1 and thus the two

curves meet in precisely l points.

Next consider the case l = k. The toric ambient space is Yl
k
∼= P(1, 1, k)× P1.

The number of points in the intersection fl = gk is the self-intersection number

of the toric divisor (x3 = 0) ⊂ P(1, 1, k), that is, l.

Finally consider the case l = k + 1. As before the curve {gk = 0} is a section

of the projection of P(1, 1, k) to P1. The polynomial fk+1 = 0 can be written

as f1(x1, y2)x3 + hk+1(x1, y2), and writing gk = x3− hk(x1, y2), eliminate x3 and

solve f1hk + hk+1 = 0. Any solution gives a point of intersection, and thus there

are k + 1 = l such points of intersection.

We also need to consider the exceptional case B(k)
k . Consider the polygon Pk

defined by taking the convex hull of of the points:

{(1, 0), (−1,−1), (−1, k)} .

Consider a scaffolding of the polygon Pk with shape P1 consisting of two

struts:
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(i) the single point {(1, 0)}; and

(ii) the segment conv {(−1,−1), (−1, k)}.

Applying Laurent inversion to this scaffolding of Pk obtain the toric surface XPk

embedded in P(1, 1, 1, k) with co-ordinates x1, x2, x3, y via the homogeneous

equation

xk+1
1 − x3y = 0,

that is, it is embedded as a section of O(k + 1) in P(1, 1, 1, k). Note that in the

case k = 1 this reproduces the Segre embedding P1 ×P1 ↪→ P3 cut out via a

section of the line bundle O(2).

Proposition 4.2.12. A general section of O(k + 1) on P(1, 1, 1, k) is the surface

B(k)
k .

Proof. The GIT presentation of Y(k+1)
k (the ambient toric variety in which X(k+1)

k

is embedded) immediately shows Y(k+1)
k is a weighted blow-up of P(1, 1, 1, k)

with centre {y2 = x1 = x3 = 0}, where the co-ordinates are inherited from

those on Y(k+1)
k . Thus there are a pair of projections:

Y(k+1)
k

π1
��

π2 // P(1, 1, 1, k)

P(1, 1, k)

Recall that the hypersurface X(k+1)
k ⊂ Y(k+1)

k is given by the vanishing of a

general section:

y1 fk+1(y2, x1, x3)− x2gk(y2, x1, x3) = 0.

The vanishing of this general section intersects the exceptional divisor {y1 = 0}

in the curve C = {gk(y2, x1, x3) = 0} (since x2 is nowhere vanishing on the

exceptional divisor). The image of X(k+1)
k under π2 is the contraction of C.

However the image of C under π1 is a curve in the linear system O(k) which
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meets the k + 1 points blown up by the map π1 : X(k+1)
k → P(1, 1, k). Finally,

observe that the push-forward of the cycle X(k+1)
k is a divisor in the linear

system O(k + 1).

Consider next those cases for which k + 2 ≤ l < (k + 2)2/k. Manipulating the

expression (k + 2)2/k = k + 4 + 4/k, we see there are precisely three possibil-

ities for l if k > 3. Consider each of these three cases in turn, noting that the

behaviour of our constructions varies with the parity of k. Our constructions

apply for all positive integers k, but note in the cases k = 2, and k = 4 the

general sections of the complete intersections also smooth the 1
k (1, 1) singular-

ity.

Case l = k + 2 :

First consider the case k = 2m for some m ∈ Z>2. Consider the polygon Pk+2
k

given by the convex hull of the points:

{(−1,−1), (1,−1), (−1, m), (1, m)} .

The case m = 3 is shown in Figure 4 equip with its anti-canonical scaffold-

ing.

Figure 5: The scaffolding of P(8)
6 .
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4.2 low codimension models

Following the Laurent inversion construction (or otherwise) the anti-canonical

embedding maps:

XPk+2
2

↪→ P(1, 1, 1, 1, m).

This coincides with the model suggested by the Hilbert series appearing in

Section 4.1. In particular the image of this embedding is a codimension two

complete intersection given by the vanishing of a section of the split bundle

E := O(2)⊕O(m + 1). In fact, one can show explicitly that the vanishing of a

section of E is precisely a surface X(k+2)
k .

Proposition 4.2.13. The minimal resolution of the vanishing of any section of

E on Y(k+2)
k := P(1, 1, 1, 1, m) is the blow-up of P1 ×P1 in k + 2 points.

Proof. Let xi for 1 ≤ i ≤ 4 and y be the co-ordinates on Y(k+2)
k and consider

the vanishing locus V := {s2 = 0} of a section of O(2) on Y(k+2)
k . The section

s2 is represented by a homogeneous polynomial with no term containing the

variable y. Therefore V is isomorphic to a cone over the Segre embedding of

P1 × P1. The complement of the point {x1 = x2 = x3 = x4 = 0} in V is the

total space of O(m, m) on P1 ×P1.

Let W be the vanishing locus of {sm+1 = 0}, a homogeneous polynomial of

degree m + 1. This has the general form:

sm+1 = y f1(x1, . . . x4) + fm+1(x1, . . . x4).

Consider the projection X := V ∩W 99K P1 × P1 which contracts precisely

those curves fibering over the points f1 = fm+1 = 0. Sections of O(a) on P3

for any a ∈ N, pull back to sections of O(a, a) on P1 × P1 under the Segre

embedding and thus the locus f1 = fm+1 = 0 consists of 2(m + 1) = k + 2

points on a curve in the linear system of O(1, 1), and so up to a linear co-

ordinate change, consists of k + 2 points on the diagonal ∆ of P1 ×P1.

In fact this projection factors through the blow-up of Y(k+2)
k at the point given

by {x1 = . . . = x4 = 0}, resolving the indeterminacy of the projection and
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resolving the 1
k (1, 1) singularity of the surface X. This hence exhibits k + 2

disjoint lines on the minimal resolution of X and contracting these yields the

surface P1 ×P1. By Lemma 4.2.7, X is the blow-up of P(1, 1, k) in k + 2 points.

Assume instead that k = 2m− 1 for some m ∈ Z≥1. This case closely gener-

alises the surface dP6 in the case k = 1. The case k = 3 appears in Reid–Suzuki

[65] and has degree 10/3. There it is observed that the surface X(5)
3 naturally

embeds in codimension four. However we construct a codimension two em-

bedding into a toric variety via Laurent inversion analogous to the embedding

of dP6 into the fourfold P2 ×P2. Similarly though there is a codimension four

Segre type embedding of Y(k+2)
k into P(14, m4, k) (where superscripts indicate

repeated weights).

The case k = 1 is nothing other than the usual construction of dP6 as a codi-

mension two complete intersection in P2×P2, the ancestral Tom of Brown–Reid–

Stevens [17]. In the case k = 1 there is also an embedding into the ancestral Jerry

(P1×P1×P1). This construction does not appear to generalise to other values

of k.

Consider the polygon Pk+2
k given as the convex hull of the points:

{(0,−1), (m,−1), (m, m− 1), (m− 1, m), (−1, m), (−1, 0)} ,

together with the scaffolding shown in Figure 5 with shape P1 ×P1.

This scaffolding induces a toric embedding of XPk+2
k

into a toric variety Y(k+2)
k

defined by the weight matrix:

x1 x2 y1 y2 z1 z2

1 1 0 0 m− 1 m

0 0 1 1 m m− 1
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4.2 low codimension models

Figure 6: The scaffolding used to construct X(k+2)
k in the case k = 3.

together with stability condition ω = (1, 1). The fourfold Y(k+2)
k determined by

this data is a Q-factorial Fano variety. The surface XPk+2
k

is a codimension two

complete intersection defined by the vanishing of the polynomials:

xm
1 ym

1 − x2z1, and xm
1 ym

1 − y2z2.

In particular XPk+2
k

admits a flat deformation to the vanishing locus X of a

general section of the split bundle E := O(m, m)⊕2.

Proposition 4.2.14. The minimal resolution of the vanishing of any section of

E on Y(k+2)
k is the blow-up of P1 ×P1 in k + 2 points on the diagonal ∆ (that

is, the surface Sk of Lemma 4.2.7). Moreover this resolution contracts the strict

transform of the diagonal of P1 ×P1.

Proof. Any section of the split bundle E is defined by the pair of equations:

z1 f1,0(x1, x2) + z2g0,1(y1, y2) + fm,m(x1, x2, y1, y2) = 0,

z1h1,0(x1, x2) + z2k0,1(y1, y2) + gm,m(x1, x2, y1, y2) = 0,

where subscripts of polynomials indicate degree in the homogeneous co-ordinate

ring of Y(k+2)
k . There is an obvious projection:

πk : Y(k+2)
k 99K P1 ×P1

obtained by projecting out z1 and z2. This projection is defined away from

the loci {x1 = x2 = 0} and {y1 = y2 = 0}. These loci meet the vanishing
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locus of every section of E at the point x1 = x2 = y1 = y2 = 0 (since the loci

{x1 = x2 = z2 = 0} and {y1 = y2 = z1 = 0} are unstable). As in the case

of k ∈ 2Z the projection πk contracts a number of curves. These curves are

defined by two conditions; first we need the matrix:

 f1,0 g0,1

h1,0 k0,1


to drop rank. This condition defines an equation in O(1, 1) on P1 × P1. Sec-

ond we need this locus to intersect the surface X(k+2)
k . This occurs when the

following matrix also drops rank:

 fm,m f1,0

gm,m h1,0

 .

The first equation determines a section of O(1, 1) which is assumed to be the

diagonal ∆ in P1×P1. The second equation defines an equation in O(m+ 1, m)

on P1 × P1. Taking the intersection, note there are 2m + 1 = k + 2 points of

∆ whose fibre over πk contains an exceptional curve. Over every point away

from ∆, the fibre of πk consists of a single point.

Corollary 4.2.15. General sections of E are surfaces in the family X(k+2)
k .

Proof. Contracting the strict transform of the diagonal in Sk we obtain a surface

in the family X(k+2)
k via Lemma 4.2.7.

As an interesting aside, we calculate the classical period of the the variety X(8)
6 .

Using binomial coefficients, see [3], a mirror dual of X(8)
6 is given by:

f =
1

xy
+

4
x
+

6y
x

+
4y2

x
+

y3

x
+

2
y
+ 2y3 +

x
y

+ 4x + 6xy + 4xy2 + xy3 + ay + by2,
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where a, b ∈ Z≥0. Therefore calculate:

π f (a, b; t) = 1 + (4a + 56)t2 + (48a + 18b + 672)t3

+ (36a2 + 1344a + 384b + 14440)t4 + . . .

Case l = k + 3 :

Again start by considering the (easier) case of k = 2m for some m ∈ Z≥1. In

the case l = k + 2 and k ∈ 2Z≥1 the anti-canonical embedding of X(k+2)
k is

codimension two and there are explicit lines making divisorial contractions to

P1×P1. It is therefore expected that the l = k + 3 case will be anti-canonically

embedded as a hypersurface in a weighted projective space obtained by a linear

projection from X(k+2)
k ⊂ P(1, 1, 1, 1, m). We demonstrate this using Laurent

inversion.

Consider the polygon Pk+3
k with vertices:

{(−1,−1), (−1, m + 1), (m + 1,−1)} .

Applying Laurent inversion to Pk+3
k with the anti-canonical scaffolding with

shape P2, we obtain the ambient variety Y(k+3)
k := P(1, 1, 1, m) with homoge-

neous co-ordinates xi, 1 ≤ i ≤ 3 and y. The toric surface XPk+3
k

is given by the

vanishing of the section xm+2
1 − x2x3y of O(m + 2).

The surfaces X(k+2)
k are obtained from these hypersurfaces by the simplest kind

of unprojection (unprojections can be studied in [8, 28, 60, 64] among others),

from codimension one to codimension two. Explicitly, assume the equation

defining a general section of O(m + 2) in P(1, 1, 1, m) has the form:

Ay− Bx3 = 0,

where A has degree 2 and B has degree m + 1. Introduce an unprojection

variable s and consider the equations:

sx3 = A, and sy = B,
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in P(1, 1, 1, 1, m) of degrees 2 and m + 1 respectively. In particular note that the

projection from X(k+2)
k to X(k+3)

k is a blow-up of a single smooth point.

Now suppose k = 2m− 1 for an integer m ∈ Z≥1. Here the surfaces come anti-

canonically embedded in codimension three, as the cases k = 1 (dP5), k = 3

(see [65]) and as the Hilbert series calculations suggest. It is therefore reason-

able to consider the Pfaffians of a 5 × 5 matrix. However, following a path

suggested by Laurent inversion, we can obtain a hypersurface embedding of

X(k+3)
k into a toric variety.

The embedding Xk+3
k ↪→ Y(k+3)

k is the most interesting application of Laurent

inversion in this thesis. Let Pk+3
k be the convex hull of vertices:

{(−1,−1), (−1, m), (m− 1, m), (m, m− 1), (m,−1)} ,

and cover Pk+3
k by a pair of struts with shape P1×P1 as shown in Figure 7.

Figure 7: The scaffolding used to construct X(k+3)
k in the case m = 2.

This scaffolding determines a toric variety Y(k+3)
k with matrix of weight data:

x1 x2 y1 y2 z1 z2

1 1 0 1 m− 1 m

0 0 1 1 m m− 1

and stability condition ω = (1, 1). The surface XPk+3
k

is a codimension two

complete intersection defined by the vanishing of the polynomials:

xm
1 ym

1 − x2z1, and xm+1
1 ym

1 − y2z2.
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Thus XPk+3
k

admits a flat deformation to a general section of the vector bundle

E := O(m, m)⊕O(m + 1, m). Note that the fourfold Y(k+3)
k is not Q-factorial,

since Y(k+3)
k contains the point {x1 = x2 = y1 = z1 = z2 = 0}. Also note that

the toric subvariety X
P(k+3)

k
meets this point, although the general section of the

split bundle E does not.

Proposition 4.2.16. The minimal resolution of the vanishing of any section of

E on Y(k+3)
k is the blow-up of P2 in k + 4 points lying on a conic. Moreover the

resolution contracts the strict transform of the conic.

Proof. Similarly to the case l = k + 2 there is an obvious projection:

πk : Y(k+3)
k 99K F1

onto the Hirzebruch surface F1 with homogeneous co-ordinates x1, x2, y1, and

y2. Following the method used in the proof of Proposition 4.2.13 form an

expression for a general section of E:

z1 f1,0 + z2 f0,1 + fm,m = 0,

z1 f2,0 + z2 f1,1 + fm+1,m = 0,

where fi,j is a polynomial of bidegree (i, j) in the homogeneous co-ordinate ring

of F1. The map πk is undefined along the loci {x1 = x2 = 0} and {y1 = y2 = 0}.

These loci meet in Y(k+3)
k at {x1 = x2 = y1 = y2 = 0}. Restricting the defining

equations of XPk+3
k

to {x1 = x2 = 0} obtain:

z2y1 + ym
2 = 0, and y2z2 = 0.

Noting that the locus {x1 = x2 = z2 = y2 = 0} is empty in Y(k+3)
k (seen by

studying the irrelevant ideal of Y(k+3)
k ), the equations are only satisfied when

y1 = y2 = 0. A similar calculation shows Y(k+3)
k meets the locus {y1 = y2 = 0}

at this point. Next consider the conditions required for a given fibre of πk to
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contain a line. There is an equation with bidegree O(2, 1) on F1 given by the

vanishing of the determinant of the matrix: f1,0 f0,1

f2,0 f1,1

 .

There is also an equation of bidegree O(m + 1, m + 1) given by the vanishing

of the determinant of the matrix: fm,m f0,1

fm+1,m f1,1

 .

The intersection form on F1 in the basis of Pic(F1) determined by the weight

matrix defining Y(k+3)
k has matrix:0 1

1 −1

 .

Thus the intersection product 〈(m + 1, m + 1), (2, 1)〉 is equal to 2m + 2 = k + 3

and the projection πk contracts precisely k + 3 curves on fibering over a section

of O(2, 1).

Corollary 4.2.17. General sections of E are surfaces in the family X(k+3)
k .

Proof. By Lemma 4.2.9, by contracting the strict transform of the conic obtain a

surface in the family X(k+3)
k .

In the case m = 1, this reduces to the case of dP5 ⊂ P2×P1 cut out by a section

of O(2, 1). Note however that we had to add an additional column (1, 1) to the

weight matrix, and a line bundle O(1, 1) before this construction generalises to

arbitrary values of m.

In [65], Reid–Suzuki observe that (similarly to dP5) the surface X(6)
3 embeds

in codimension three via a system of Pfaffians of a 5× 5 matrix. In fact such
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a construction works in general, and corresponds to the anti-canonical scaf-

folding of Pk+3
k shown in Figure 8. Indeed, in the case l = k + 4 there is a

codimension two model of the surface X(k+4)
k and, making a suitable unpro-

jection from this surface, it is possible to recover a codimension three surface

X(k+3)
k ⊂ P(1, 1, 1, m, m, k).

Figure 8: The anti-canonical scaffolding of Pk+3
k in the case k = 3.

Following the argument used in [65] this model works, taking a matrix:
x1 x2 b14 b15

x3 b24 b25

b34 b35

z

 of degrees


1 1 m m

1 m m

m m

k


where xi, 1 ≤ i ≤ 3 and z are the co-ordinates on P(1, 1, 1, m, m, k) of degrees 1

and k respectively.

Case l = k + 4 :

The Hilbert series calculations would suggest a model for X(k+4)
k in weighted

projective space of codimension ≤ 2 for all k ∈ Z≥1. These models should

coincide with the model suggested by Laurent inversion applied to the anti-

canonical scaffolding of a polygon associated to a toric degeneration of X(k+4)
k .

Figure 8 gives an example of polygons Pk+4
k for each parity of k.
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Figure 9: The anti-canonical scaffolding for X(k+4)
k in the case k = 4 and k = 5.

It is routine to verify that the singularities of a general section of each of these

complete intersections is as expected. For k = 2m− 1 where m ∈ Z≥1, obtain

the model:

Xk+1,k+1 ⊂ P(1, 1, m, m, k),

which, applying Theorem 4.2.2, is a quasismooth codimension two complete in-

tersection. From this it is easy to verify that it has the correct singularities.

Contrary to previous, the case k = 2m for some m ∈ Z≥1 is more complicated.

The model

Xk+2 ⊂ P(1, 1, m, m + 1),

with co-ordinates x1, x2, y and z, is not quasismooth. Indeed, choosing a gen-

eral section f of O(k + 2), the affine variety { f = 0} ⊂ A4 is singular along

the line L = {x1 = x2 = z = 0}. Setting y = y0 the lowest order terms of f

have degree two and the singularity in the affine slice y = y0 is an ordinary

double point. Taking the quotient by Gm, the cyclic group of order m, maps

L ⊂ A4 to a 1
m (1, 1, 1) singularity. Considering how this group action acts on

{ f = 0}, note the hypersurface in P(1, 1, m, m + 1) defined by f has a single

singular point of type 1
2m (1, 1), as expected.
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4.3 application of the minimal model program

We aim to prove that the surfaces that arise in Section 4.2 provide a complete

classification of qG-deformation families of del Pezzo surfaces with a single
1
k (1, 1) singularity. The proof is based on the directed Minimal Model Program

(MMP) and has an identical structure to the classification of del Pezzo surfaces

with 1
3(1, 1) singularities derived in [27], although our current task is made con-

siderably simpler by the assumption there is a single 1
k (1, 1) singularity.

Definition 4.3.1. Given a del Pezzo surface X and rational curve C ⊂ X, then C

is a floating (−1)-curve if C is contained in the smooth locus of X and C2 = −1.

We rely heavily on the classification of extremal contractions for surfaces con-

taining one singular point of the form 1
k (1, 1). This classification is made in the

following proposition and is directly analogous to [27, Theorem 31].

Proposition 4.3.2. Given a del Pezzo surface X with one singular point of the

form 1
k (1, 1), denote the exceptional curve of the minimal resolution X̂ → X by

E and let f : X → X1 be an extremal contraction. Exactly one of the following

holds:

(i) the morphism f is the contraction of a floating (−1)-curve;

(ii) the morphism f is the contraction of a (−1)-curve in the minimal resolu-

tion of X meeting the curve E once. The surface X1 has one singular point

of the form 1
k−1(1, 1) if k > 2 and is smooth if k = 2;

(iii) the morphism f is a Mori fibre space contraction. In this case X1 is a

single point and X ∼= P(1, 1, k).

Proof. Fix an integer k > 1, let X be a del Pezzo surface with one 1
k (1, 1) sin-

gularity and let X̂ → X be its minimal resolution with exceptional curve E.

The surface X̂ is, by construction, a smooth projective surface with big anti-
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canonical class. Since X̂ has Kodaira dimension −∞, X̂ is a ruled surface, that

is, X̂ is birational to P1 × C for some curve C. However the only such surface

with big anti-canonical class is P1 ×P1 and hence X̂ is rational.

By the classification of rational surfaces, see for example Beauville [14], if X̂

contains no (−1)-curves it is isomorphic to the Hirzebruch surface Fk (since X̂

contains a negative curve of self-intersection −k). Suppose now that X̂ contains

a (−1)-curve C; after contracting all floating (−1)-curves and all curves C such

that C.C = −1, and C.E = 1 we have a surface X̂1. So if C is a rational curve in

X̂1 and C.C = −1, then E.C ≥ 2. Contracting all such curves obtain a surface

X̂2 isomorphic to Fl for some l ∈ Z≥0, or P2. However the last contraction

was the blow-up of a point on X̂2 and this will not meet E in more than one

point.

The list of extremal contractions appearing in the previous proposition is much

shorter than that appearing in [27, Theorem 31] and consequently the analysis

of the directed MMP is much more straightforward. This is due to the pres-

ence of exactly one singular point and the simple form of its minimal resolu-

tion.

It is also important to ensure that type (ii) divisorial contractions do not intro-

duce more floating (−1)-curves. This is analogous to [27, Lemma 33] in our

(simpler) context.

Lemma 4.3.3. Let X be a del Pezzo surface with a single 1
k (1, 1) singularity

which contains no floating (−1)-curves. Let f : X → X1 be an extremal contac-

tion of type (ii). The surface X1 contains no floating (−1)-curves.

Proof. Assume there is a floating (−1)-curve C ⊂ X1. Since C is contained in

the smooth locus of X1 it does not meet the exceptional locus of f . Therefore

f−1 is an isomorphism in a neighbourhood of C and f−1(C) · f−1(C) = −1, a

contradiction.
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Theorem 4.3.4. Given an integer k > 3 there are precisely k + 6 deformation

classes of del Pezzo surfaces with a single 1
k (1, 1) singularity. Of these, k + 5

families are obtained by blowing up P(1, 1, k) in general smooth points. The

remaining surface is obtained by contracting an exceptional curve on P(1, 1, k)

blown up in k + 1 smooth points. Moreover there is an embedding (not al-

ways quasismooth) of these surfaces, and a toric degeneration of each of these

surfaces, into a toric variety with codimension ≤ 2.

Proof. Fix an integer k > 1, let X be a del Pezzo surface with a single 1
k (1, 1)

singularity, and let X̂ → X be its minimal resolution with exceptional curve E.

Assume that there are no floating (−1)-curves on X. Either there is a divisorial

contraction (ii) of X, or X is the weighted projective space P(1, 1, k). If X is

equal to P(1, 1, k) we are done. Assuming that X is not isomorphic to P(1, 1, k)

there is a sequence of divisorial contractions and taking the longest possible

composition of these π : X̂ → X̂1, π(E) · π(E) = l for some 0 ≤ l < k . If l > 0,

X̂1 must be isomorphic to Fl. However blowing up a point in the negative

curve of Fl introduces a floating (−1)-curve, so this cannot occur. If l = 0 then

X̂ ∼= P1 ×P1; it is easily seen that the surface B(k)
k admits such a sequence of

contractions.

4.4 additional surfaces constructed using laurent inversion

In this section we complete the proof of a classification of surfaces with 1
3(1, 1)

and 1
6(1, 1) singularities or 1

5(1, 1) singularities. In particular we classify fam-

ilies of locally Q-Gorenstein rigid del Pezzo surfaces with residual baskets of

the form: {
m1 ×

1
3
(1, 1), m2 ×

1
5
(1, 1), m3 ×

1
6
(1, 1)

}
,
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such that:

m1 = 0, m2 > 0, m3 = 0 or m1 ≥ 0, m2 = 0, m3 > 0,

which admit a Q-Gorenstein toric degeneration. The toric varieties to which

such a surface can degenerate are classified in [20]; applying Laurent inversion

to these cases gives models for these surfaces. The main results of [20] show

that either such a surface contains a single 1
k (1, 1) singularity, for k ∈ {3, 5, 6},

or is one of three additional exceptional cases. In this section we show that all

of these additional surfaces are hypersurfaces in weighted projective spaces. In

particular, consider polygons 1.13 and 1.14 from [20]. While we use Laurent

inversion here, we could also use the Ehrhart series of the dual polygons to

guess the hypersurface model.

Polygon 1.13 is given by conv{(−1, 1), (1, 1), (5,−1), (−5,−1)}. After mutat-

ing the T-singularities from the edge conv {(−1, 1), (1, 1)} obtain the poly-

gon:

P = conv{(−6,−1), (0, 1), (6,−1)}.

Consider the following scaffolding of P consisting of two struts:

(i) the single point {(0, 1)};

(ii) the segment conv {(−6,−1), (6,−1)}.

By Laurent inversion obtain the weight matrix:

M =
(

1 6 6 1
)

.

Therefore XP is given by the general section of O(12) in P(1, 1, 6, 6). By Theo-

rem 4.2.1 , XP is quasismooth and so XP inherits two 1
6(1, 1) from the ambient

weighted projective space.
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4.4 additional surfaces constructed using laurent inversion

Via a different scaffold it is possible to obtain a different model. Mutate our

original representativem P1.13 := conv{(−1, 1), (1, 1), (5,−1), (−5,−1)}, to the

representative conv{(−3, 1), (3, 1), (3,−1), (−3,−1)}. Scaffold this new repre-

sentative via a single strut as shown below:

Laurent inversion gives the weight matrix:

M =
(

1 1 1 3 3
)

,

and the corresponding toric variety is the complete intersection of the vanish-

ing of two general sections of O(2) and O(6) in P(1, 1, 1, 3, 3). It is routine to

check that this has the appropriate singularities.

In fact the two models:

(P(1, 1, 6, 6),O(12)) , and (P(1, 1, 1, 3, 3),O(2)⊕O(6)) ,

are isomorphic. This can be seen by observing that (possibly after a change of

co-ordinates) the vanishing locus of a general section of O(2) on P(1, 1, 1, 3, 3)

is isomorphic to the image of the degree 2 Veronese embedding of P(1, 1, 6, 6)

into P(1, 1, 1, 3, 3) defined by sending:

(x1, x2, y1, y2) 7→ (x2
1, x1x2, x2

2, y1, y2).

In fact the hypersurface model of these surfaces generalises to the construction

of a del Pezzo surface with a pair of R-singularities 1
k1
(1, 1), 1

k2
(1, 1) for any

pair of positive integers k1, k2 ∈ Z>0\ {1, 2, 4}. Consider the polygon P with

vertices (0, 1), (−k1,−1), (k2,−1). This polygon has two R-cones representing
1
k1
(1, 1) and 1

k2
(1, 1) cyclic quotient singularities. Scaffold using the struts as

illustrated:
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4.4 additional surfaces constructed using laurent inversion

(k2,−1)(−k1,−1)

(0, 1)

Laurent inversion gives us the weight matrix:

M =
(

1 k1 k2 1
)

.

Thus the toric variety XP is a subvariety of P(x1:x2:y1:y2)(1, 1, k1, k2) cut out by

the equation:

y1y2 − xk1
1 xk2

2 .

Consider the del Pezzo surface given by the vanishing of a general section of

O(k1 + k2) on P(1, 1, k1, k2). By Theorem 4.2.1 the surface is quasismooth and

the only singularities are inherited from the ambient space. Assume k1 6= k2

and without loss of generality k1 < k2 so that k2 = nk1 + r. If r = 0, then a

general section of O(k1 + k2) is given by:

f =
n−1

∑
i=0

f(1−i)k1+k2
(x0, x1)yi + yz + yn,

where x0, x1, y, z are coordinates on P(1, 1, k1, k2). This surface intersects the

orbifold locus at the points [0 : 0 : 0 : 1] and [0 : 0 : 1 : −1] giving cyclic

quotient singularities 1
k1
(1, 1) and 1

k2
(1, 1) respectively. If r 6= 0, then a general

section of O(k1 + k2) is given by:

f =
n

∑
i=0

f(1−i)k1+k2
(x0, x1)yi + yz.

The zero locus of f intersects the orbifold locus at [0 : 0 : 0 : 1] and [0 : 0 : 1 : 0]

giving cyclic quotient singularities 1
k1
(1, 1) and 1

k2
(1, 1) on the del Pezzo surface.

The case of k1 = k2 is treated similarly.

Corollary 4.4.1. There exists a del Pezzo surface admitting a toric degeneration

with exactly two R-singularities 1
k1
(1, 1) and 1

k2
(1, 1) given by the vanishing of
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4.4 additional surfaces constructed using laurent inversion

a general section of O(k1 + k2) on P(1, 1, k1, k2). Considering the local models

near the smoothable singularities of the respective toric varieties it is verifiable

that this deformation is Q-Gorenstein.

The polygons appearing in Theorems 3.0.1 and 3.0.2 with more than one R-

singularity admit models as sections of O(k1 + k2) in P(1, 1, k1, k2). There are

four Fano polygons with two R-singularities 1
k1
(1, 1) and 1

k2
(1, 1) where k1, k2 <

7. These are the del Pezzo surfaces:

(i) X8 ⊂ P(1, 1, 3, 5) defined by a general section of O(8);

(ii) X9 ⊂ P(1, 1, 3, 6) defined by a general section of O(9);

(iii) X10 ⊂ P(1, 1, 5, 5) defined by a general section of O(10);

(iv) X11 ⊂ P(1, 1, 5, 6) defined by a general section of O(11).

Of these X9 and X10 are needed to complete the desired classifications of The-

orems 3.0.1 and 3.0.2.
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5
R E S T R I C T I O N S O F T H E S I N G U L A R I T Y C O N T E N T O F

FA N O P O LY G O N S

5.1 restrictions using matrices

The work of this section and the following one was completed in Cavey [18].

Let P ⊂ NR be a Fano polygon with vertices v1, v2, . . . , vk labelled anticlockwise.

By convention subscripts are considered modulo k to be in the range {1, . . . , k}.

Consider the set of uniquely determined matrices {Mi ∈ GL (N)}1≤i≤k satisfy-

ing:

Mivi = vi+1, and Mivi+1 = vi+2.

It follows that:

Mk Mk−1 · · ·M1 = Id.

By specifying that the cones spanR≥0
(vi, vi+1) and spanR≥0

(vi+1, vi+2) describe

particular cyclic quotient singularities, and understanding the corresponding

matrices Mi, we create restrictions on when Mk Mk−1 · · ·M1 = Id can hold.

Start with the simple case of a polygon P consisting entirely of 1
3(1, 1) cones.

Note we already know exactly one such polygon exists by Kasprzyk–Nill–

Prince [48] and Theorem 2.5.18. Let E be an edge of P, that is, E is a 1
3(1, 1)
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5.1 restrictions using matrices

cone. Without loss of generality, E has vertices (−1, 3) and (−2, 3). Further

consider the edge adjacent to E sharing the vertex (−2, 3), also a 1
3(1, 1) cone.

The corresponding matrix M ∈ GL(N) satisfies:

M

−1

3

 =

−2

3

 , and det(M) = 1.

The condition det(M) = 1 follows from the fact that M maps a 1
3(1, 1) cone

onto a 1
3(1, 1) cone, and so lattice length and lattice height must be preserved.

Implementing these conditions shows M is of the form:

M =

3− 2a 1−2a
3

3a− 3 a

 , for some a ∈ Z.

The only remaining restriction is that (1− 2a)/3 ∈ Z and so a ≡ 2 (mod 3).

Substituting a = 3n + 2, obtain the set of matrices:

An :=

−6n− 1 −2n− 1

9n + 3 3n + 2

 , where n ∈ Z.

The image of the point (−2, 3) under An, that is the second vertex of the second
1
3(1, 1) cone, is given by:

An

−2

3

 =

6n− 1

−9n

 .

Note if n < 0, convexity of the Fano polygon is broken. Therefore we have a

1-dimensional family of suitable matrices parametrised by Z≥0 each giving a

point v such that spanR≥0
((−2, 3), v) is a cone representing a 1

3(1, 1) singularity.

For example:
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5.1 restrictions using matrices

n = 0←→

−1

0

 ,

n = 1←→

 5

−9

 ,

n = 2←→

 11

−18

 ,

...

Lemma 5.1.1. A Fano polygon consisting only of 1
3(1, 1) R-cones satisfies:

Mk Mk−1 · · ·M1 = An1 An2 · · · Ank .

Proof. We have that:

M1 =An1 ,

M2 =M1An2 M−1
1 = An1 An2 A−1

n1
,

M3 =M2M1An2 M−1
1 M−1

2 = An1 An2 An3 A−1
n2

A−1
n1

,
...

Mi =An1 An2 · · · Ani−1 Ani A
−1
ni−1
· · · A−1

n2
A−1

n1
.

The desired identity then follows by substitution.
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5.1 restrictions using matrices

The problem remains to test when the identity An1 An2 · · · Ank = Id holds. First

consider multiplication of the matrices Ani modulo 3:

An1 ≡

2 n1 + 2

0 2

 (mod 3) ,

An1 An2 ≡

2 n1 + 2

0 2

2 n2 + 2

0 2


≡

1 2n1 + 2n2 + 1

0 1

 (mod 3) ,

An1 An2 An3 ≡

1 2n1 + 2n2 + 1

0 1

2 n3 + 2

0 2


≡

2 n1 + n2 + n3 + 1

0 2

 (mod 3) ,

...

Note that the multiplication of three Ani matrices can never equal the identity

matrix modulo 3, since the upper left entry of An1 An2 An3 is 2 6≡ 1 (mod 3).

Indeed note An1 An2 An3 ≡ An1+n2+n3−1 (mod 3), and then by induction the

identity An1 An2 · · · Ank = Id cannot hold when k is odd. Therefore we assume k

is even. Looking at the multiplication of Ani matrices modulo 9 further narrows

down the possibilities for k. Calculate that:

An1 An2 ≡

∗ ∗
6 ∗

 6≡ Id (mod 9) ,

An1 An2 An3 An4 ≡

∗ ∗
3 ∗

 6≡ Id (mod 9) .

Therefore the smallest possible value of k satisfying An1 An2 · · · Ank = Id is

6.
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5.1 restrictions using matrices

To finish the argument, we use the fact that for a Fano polygon, its boundary

is a closed loop that wraps around the origin once. We shall use the winding

number defined by Poonen–Rodriguez-Villegas [61]:

Considering SL2(R) as a topological space, the fundamental group is given

by π1 (SL2(R)) = Z. The universal cover, denoted S̃L2(R), is the connected

topological group fitting into the exact sequence:

0 −→ Z −→ S̃L2(R) −→ SL2(R) −→ 0.

There is no description of S̃L2(R) as a group of matrices subject to a set of

algebraic conditions. The commonly used description for S̃L2(R) is that of

pairs (M, [γ]), where:

M =

a b

c d

 ∈ SL2(R),

and [γ] is a homotopy equivalence class of paths in R2\{0} from (0, 1) to

(c, d). It follows that S̃L2(R) has the structure of a group via the composition

law:

(M1, [γ1]) · (M2, [γ2]) = (M1M2, [M1 (γ2) ? γ1]) ,

where ? denotes concatenation.

Define S̃L2(Z) to be the inverse image of SL2(Z) under the map S̃L2(R) →

SL2(R). Note this is not a covering space of SL2(Z) since it is not a con-

nected topological space. Lift each matrix Ani to S̃L2(Z) by equipping it

with the appropriate straight line path denoted γi. The algebraic condition

An1 An2 . . . Ank = Id lifted to S̃L2(R), then becomes:

(An1 , [γ1]) · (An2 , [γ2]) · · · · · (Ank , [γk]) = (Id, [anticlockwise loop]) . (4)

In [61], a homomorphism Φ : S̃L2(Z) → Z is introduced to act as a winding

number. The aim is to apply Φ to both sides of equation (4) to obtain an extra

condition on k.

109



5.1 restrictions using matrices

Similarly to how SL2(Z) is generated by:

S =

0 −1

1 0

 , and T =

1 1

0 1

 ,

it is known that S̃L2(Z) is generated by the two elements S̃ and T̃ obtained

from lifting S and T to S̃L2(R) by equipping them with the straight line path

from (0, 1) to (1, 0) and the trivial path respectively. Furthermore it is shown

in [61] that:

Φ(S̃) = −3, and Φ(T̃) = 1.

It is routine to check that (S̃)4 = (Id, [anticlockwise loop]) and so

Φ (Id, [anticlockwise loop]) = −12.

It remains to calculate Φ (Ani , [γi]). By using an algorithm of Conrad [26], we

obtain the expression:

Ani = TS−1T−2S−1T−(ni+1)ST−3.

After lifting to S̃L2(Z) and applying the winding number homomorphism we

obtain:

Φ (Ani , [γi]) = −2− ni.

Therefore applying Φ to both sides of (4) gives the expression:

k

∑
i=1

ni = 12− 2k.

If k > 6 this implies
k
∑

i=1
ni < 0, but convexity determines that ni ≥ 0 and so

there are no solutions. The only remaining case is k = 6, for which the equation

becomes:
k

∑
i=1

ni = 0.
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5.1 restrictions using matrices

Therefore there is a single possible solution given by k = 6 and ni = 0. This

recovers the known Fano polygon consisting of six 1
3(1, 1) R-cones shown in

Figure 10.

Figure 10: Fano polygon with singularity content
(

0,
{

6× 1
3(1, 1)

})
.

We now generalise our approach to consider a Fano polygon consisting only of
1
r (1, 1) cones, for some fixed value of r ∈ Z>0\{1, 2, 4}.

Theorem 5.1.2. There are no Fano polygons with singularity content:(
0,
{

k× 1
r
(1, 1)

})
, where k ∈ Z>0, r ∈ Z≥5.

Proof. Suppose such a Fano polygon exists. First assume r odd. Consider

the standard position of the 1
r (1, 1) cone to have vertices (−(r + 1)/2, r) and

(−(r− 1)/2, r). Then we consider a matrix M ∈ GL(N) such that:

M

− r−1
2

r

 =

− r+1
2

r

 , and det(M) = 1.

Therefore M takes the form:

M =

−ar−a+2r
r−1

r−ar−a−1
2r

2r(a−1)
r−1 a

 .

The entries of M belong to Z if and only if:

a ≡ 1 (mod (r− 1)/2) , and a ≡ −1 (mod r) .

This implies that a = 2r − 1 + n((r − 1)r)/2 for some n ∈ Z. Making this

substitution gives M of the form:

A(r)
n :=

−n r+1
2 r− 2r− 1 −n r2−1

4 − r

nr2 + 4r 2r− 1 + n r−1
2 r

 , where n ∈ Z.
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5.1 restrictions using matrices

By using a generalised version of Lemma 5.1.1, the problem is reduced to test-

ing when the identity:

A(r)
n1 A(r)

n2 · · · A
(r)
nk = Id, (5)

can hold. Studying A(r)
ni modulo r:

A(r)
n1 ≡

−1 −( r2−1
4 )n1

0 −1

 6≡ Id (mod r) ,

A(r)
n1 A(r)

n2 ≡

1 r2−1
4 (n1 + n2)

0 1

 ≡ Id, if n1 + n2 ≡ 0 (mod r) ,

A(r)
n1 A(r)

n2 A(r)
n3 ≡

−1 − r2−1
4 (n1 + n2 + n3)

0 −1

 ≡ A(r)
n1+n2+n3

6≡ Id (mod r) .

Continuing inductively shows there cannot be a solution if k is odd as in the

case r = 3. Furthermore for k even, the identity A(r)
n1 A(r)

n2 · · · A
(r)
nk = Id holds

if and only if
k
∑

i=1
ni ≡ 0 (mod r). Alternatively studying a product of A(r)

ni

matrices modulo r2, observe that:

k

∏
i=1

A(r)
ni ≡

 ∗ ∗

(−1)k4kr ∗

 (
mod r2

)
,

and so A(r)
n1 A(r)

n2 · · · A
(r)
nk = Id holds only if k is a multiple of r. Therefore the

smallest possible value for k in (5) is 2r. Finally, appealing to the winding

number argument as in the case r = 3, calculate by [26] that:

A(r)
n = TS−1(T−2S−1)

r−3
2 T−2S−1T−(n+2)S−1(T−2S−1)

r−5
2 T−2ST−3,

and so Φ
(

A(r)
n , [γi]

)
= −6 + r− n. Applying Φ to (5) obtain:

k

∑
i=1

ni = 12− (r− 6) k.
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Since k must be a multiple of 2r, and
k
∑

i=1
ni must be congruent to 0 modulo r:

12 ≡ 0 (mod r) .

This implies r | 12 and since r is odd and greater or equal 5, there are no

solutions. The case where r is even follows similarly.

Note that r = 3 satisfies the congruence 12 ≡ 0 (mod r) corresponding to the

fact that there is a solution in this case.

5.2 restrictions using continued fractions

In this section, we use results on continued fractions to provide a second exam-

ple of a singularity content that cannot occur for a Fano polygon. The geometry

of continued fractions can be studied in Karpenkov [46].

Definition 5.2.1. Given a0, a1, · · · , ak ∈ R, define the continued fraction by:

[a0 : a1 : · · · : ak] := a0 +
1

a1 +
1

a2 +
1

. . . + 1
ak

.

The numbers ai are called the elements of the continued fraction. A continued

fraction is odd/even if there are an odd/even number of elements.

It is worth noting the difference between a continued fraction and the Hirzeburch-

Jung continued fraction of Section 3.1.

There uniquely exist polynomials Pk and Qk in variables ai satisfying:

[a0 : a1 : · · · : ak] =
Pk(a0, . . . , ak)

Qk(a0, . . . , ak)
, and Pk(0, . . . , 0) + Qk(0, . . . , 0) = 1.
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5.2 restrictions using continued fractions

The first few of these polynomials are:

[a0] =
P0(a0)

Q0(a0)
=

a0

1
,

[a0 : a1] =
P1(a0, a1)

Q1(a0, a1)
=

a0a1 + 1
a1

,

[a0 : a1 : a2] =
P2(a0, a1, a2)

Q2(a0, a1, a2)
=

a0a1a2 + a0 + a2

a1a2 + 1
.

The polynomials Pk and Qk satisfy the recursions:

Pk = akPk−1 + Pk−2, and Qk = akQk−1 + Qk−2.

Continued fractions have applications to integer geometry.

Definition 5.2.2 ([46, Definition 2.7]). Consider an integer triangle ∆ABC, that

is a triangle whose vertices are the integer points A, B and C. The integer area of

∆ABC, denoted lArea(∆ABC), is given by the index of the sublattice generated

by the line segments AB and AC thought of as vectors in the integer lattice.

Definition 5.2.3 ([46, Definition 4.1]). Consider an integer angle ∠ABC, that is

an angle between two integer lines; the line through the primitive line segment

AB and similarly the line through BC, based at the integer point B. The integer

sine of ∠ABC, denoted lsin(∠ABC), is given by:

lsin(∠ABC) :=
lArea(∆ABC)

l(AB)l(BC)
.

Note that the integer sine is independent of the orientation of the integer angle,

that is, lsin(∠ABC) = lsin(∠CBA).

Definition 5.2.4 ([46, Definition 11.1]). A broken line is defined by L = A0A1 · · · An =⋃n−1
i=0 Li, where Li is the line segment between the integer points Ai and Ai+1.

Let L be an integer broken line that does not contain the origin 0 ∈ Z2. If all

the line segments Li are at lattice height 1, then L is called an 0-broken line.
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5.2 restrictions using continued fractions

Definition 5.2.5 ([46, Definition 11.2]). Let A0A1 · · · An be an 0-broken line.

Associate to the broken line its lattice-signed-length-sine (LSLS) sequence given by

(a0, a1, . . . , a2n−2) where

a0 := sign(A00A1) · l(A0A1),

a1 := sign(A00A1) · sign(A10A2) · sign(A0A1A2) · lsin(∠A0A1A2),

a2 := sign(A10A2) · l(A1A2),
...

a2n−3 := sign(An−20An−1) · sign(An−10An)·

sign(An−2An−1An) · lsin(∠An−2An−1An),

a2n−2 := sign(An−10An) · l(An−1An),

and sign(ABC) is defined for arbitrary integer points A, B, C by:

sign(ABC) :=


1, if (BA, BC) is orientated positively;

0, if A, B, C are collinear;

−1, if (BA, BC) is orientated negatively.

Given an 0-broken line the LSLS sequence measures alternatively the lattice

length of the line segments and lattice sine of the angles as we travel along

the broken line, up to some change in sign for each value. Since lattice length

and lattice sign are invariant under GL2(Z) transformations, so is the LSLS

sequence of an 0-broken line.

A strong link between LSLS sequences of 0-broken lines and continued frac-

tions is made via the following theorem from [46]:

Theorem 5.2.6 ([46, Theorem 11.10]). Consider an 0-broken line A0 . . . An with

LSLS sequence (a0, a1, . . . , a2n). Suppose also A0 = (1, 0) and A1 = (1, a0).

Then:

An = (Q2n+1(a0, a1, . . . , a2n), P2n+1(a0, a1 . . . , a2n)) .
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Corollary 5.2.7 ([46, Corollary 11.14]). Consider a broken line A0A1 · · · An with

the LSLS sequence (a0, a1, . . . , a2n). Then the broken line is closed if and only

if:

P2n+1(a0, a1, . . . , a2n) = 0, and Q2n+1(a0, a1, . . . , a2n) = 1.

Let C be the cone over an edge of a Fano polygon P ⊆ NR.

Definition 5.2.8. The sail S(C) of C is given by conv(C\{0} ∩ N).

Lemma 5.2.9. The boundary ∂S(C) of the sail of a cone C defines an 0-broken

line.

Proof. Let ∂S(C) = A0A1 · · · An. We need to show that each component Li

of the broken line is at lattice height 1. Consider the line segment Li with

vertices Ai and Ai+1. By the definition of S(C), there are no interior points

in conv{0, Ai, Ai+1}. Therefore the Euclidean area of conv{0, Ai, Ai+1} is 1/2

which is equivalent to the lattice height of Li being 1.

Using this lemma, associate to a cone an LSLS sequence.

Example 5.2.10. Consider a 1
r (1, 1) R-singularity. First suppose r is even. Since

1
2(1, 1) and 1

4(1, 1) are T-singularities, assume r ≥ 6. Without loss of generality,

assume the 1
r (1, 1) cone has ray generators (−1, r/2) and (1, r/2). The corre-

sponding broken line, that is the boundary of the sail of the cone, then has inte-

ger points (−1, r/2), (0, 1) and (1, r/2) giving a LSLS sequence of [1 : r− 2 : 1].

The odd case with r > 3 is treated similarly by considering the cone C1
r (1,1)

with ray generators (−(r + 1)/2, r) and (−(r− 1)/2, r). The LSLS sequence is

again [1 : r− 2 : 1].

Observe that the sum of the elements of the LSLS sequence of a 1
r (1, 1) singu-

larity is equal to r; the Gorenstein index. This is not a property that generalises

to arbitrary cyclic quotient singularities. For example, consider a 1
9(1, 2) cone
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with rays generated by (−1, 3) and (2, 3). The LSLS sequence of the cone is

[1 : 3 : 2]; the sum of the elements is not equal to the Gorenstein index 9.

Example 5.2.11. Consider the unique Fano polygon P with six 1
3(1, 1) cones. By

glueing the broken line of adjacent cones together along common vertices of

P, obtain a broken line associated to P and through this an LSLS sequence. It

is routine to check for this example that the integer sine for the angles at each

vertex of P is −1, and that the LSLS sequence satisfies:[
1 : 1 : 1 : −1 : 1 : 1 : 1 : −1 : 1 : 1 : 1 : −1 : · · · : 1 : 1 : 1

]
=

0
1

.

Figure 11: The broken line associated to the unique Fano polygon with singu-

larity content
(

0,
{

6× 1
3(1, 1)

})
.

Corollary 5.2.7 provides a test as to whether it is possible to glue together

combinations of R-cones to form a Fano polygon. Namely if there exists a

Fano polygon made of cones, cyclically ordered and corresponding to the cyclic

quotient singularities 1
r1
(1, 1), 1

r2
(1, 1), . . . , 1

rk
(1, 1) respectively, then there is a

solution to the identity:

[1 : r1 − 2 : 1 : m1 : 1 : r2 − 2 : 1 : m2 : · · · : mk−1 : 1 : rk − 2 : 1] =
0
1

,

where mi ∈ Z is the integer sine of the angle of the associated broken line lying

between consecutive cones. Furthermore the convexity of the Fano polygon

dictates that mi < 0. Note this variable mi is analogous to the 1-dimensional

family of matrices parametrised by Z≥0 obtained in Section 5.1.

The association of a broken line to a polygon is not unique. The choice of

starting point for the broken line may change the continued fraction of the
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5.2 restrictions using continued fractions

broken line since the integer sine of the angle at this vertex is omitted from

the LSLS sequence. However the choice of starting point does not affect that

the associated continued fraction should evaluate to 0/1. Indeed this condition

is required to hold for all possible choices of starting point for the broken

line.

Theorem 5.2.12. There are no Fano polygons with singularity content:(
0,
{

1
r1

(1, 1) ,
1
r2

(1, 1) ,
1
r3

(1, 1)
})

, where ri ∈ {3} ∪Z≥5.

Proof. If such a Fano polygon did exist, then by Corollary 5.2.7 there would be

a solution (m1, m2) ∈ Z2
<0 to the following identity:

[1 : r1 − 2 : 1; m1 : 1 : r2 − 2 : 1 : m2 : 1 : r3 − 2 : 1] =
0
1

.

By calculating the polynomials P10(a0, · · · , a10) and Q10(a0, · · · , a10) and substi-

tuting appropriately for the ai the condition of the continued fraction translates

to the simultaneous equations:

P10(1, r1 − 2, 1, m1, 1, r2 − 2,1, m2, 1, r3 − 2, 1) =

Am1m2 + Bm1 + Cm2 + D = 0,

Q10(1, r1 − 2, 1, m1, 1, r2 − 2,1, m2, 1, r3 − 2, 1) =

Em1m2 + Fm1 + Gm2 + H = 1,
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5.3 restrictions using r -modular sequences

where:

A = r1r2r3,

B = 2r1r2r3 − r1r3 − r2r3,

C = 2r1r2r3 − r1r2 − r1r3,

D = 4r1r2r3 − 2r1r2 − 4r1r3 − 2r2r3 + r1 + r2 + r3 − 12,

E = r1r2r3 − r2r3,

F = 2r1r2r3 − r1r2 − r1r3 − 2r2r3 + r2 + r3,

G = 2r1r2r3 − r1r3 − 3r2r3 + r3,

H = 4r1r2r3 − 2r1r2 − 4r1r3 − 6r2r3 + r1 − 3r2 + 5r3 + 1.

Solving the simultaneous equations for m2 gives:

m2 =
−(CF + DE + A− G)±

√
(CF + DE + A− G)2 − 4CE(DF + B− H)

2CE
.

This expression is not integer for ri ∈ {3} ∪Z≥5.

5.3 restrictions using r -modular sequences

Intuitively the winding number of a planar piecewise linear curve, which is de-

fined by a sequence of points, is the number of times that the curve travels

anticlockwise around the origin. In this section we adapt the formula of the

winding number of a unimodular sequence proved in [41] to a more general

setting, and use it to discern a new winding number formula for a Fano poly-

gon. The new winding number is then used to find more restricted singularity

contents. Indeed this section includes a stronger version of Theorem 5.1.2. The

material of this section was joint work with Akihiro Higashitani [19].

Definition 5.3.1. A sequence of vectors v1, . . . , vk, where each vi ∈ Z2 is primi-

tive, is said to be r-modular if the parallelogram conv{0, vi, vi+1, vi + vi+1} con-
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5.3 restrictions using r -modular sequences

tains exactly r − 1 lattice points in its interior, for each i ∈ {1, . . . , k}, where

vk+1 = v1.

Note that the case r = 1 is exactly the notion of unimodular sequences. Indeed

this definition is equivalent to vi ∧ vi+1 = ±r, ∀i ∈ {1, . . . , k}. In this vain

set εi =
vi∧vi+1

r . This variable indicates whether the sequence is moving in an

anticlockwise or clockwise direction.

As in the case of unimodular sequences, for each successive pair of vectors

(vi−1, vi) and (vi, vi+1) of an r-modular sequence, there exists a matrix M ∈

GL(N) such that: (
vi vi+1

)
=
(

vi−1 vi

)
M.

Necessarily det(M) = εi−1εi, and so M takes the form:

M =

0 −εi−1εi

1 −εiai

 ,

for some ai ∈ Q. In fact, since each vi is primitive, by taking an appropriate

unimodular transformation, we can assume that:

vi−1 =

 r

−s

 , and vi =

0

1

 ,

for some s ∈ Z such that 0 ≤ s < r. Then:(
vi−1 vi

)
M =

 r 0

−s 1

0 −εi−1εi

1 −εiai

 =

0 −εi−1εir

1 εi−1εis− εiai

 .

Since εi−1, εi ∈ {±1}, we conclude that ai ∈ Z.

The definition of ai is equivalent to:

εi−1vi−1 + εivi+1 + aivi =

0

0

 . (6)

We use a general version of a lemma used to study unimodular sequences in

Higashitani–Masuda [41]. The proof of this generalised statement is identical

to that of the original proof.
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5.3 restrictions using r -modular sequences

Lemma 5.3.2 ([41, Lemma 1.3]). Consider an r-modular sequence v1, . . . , vk, and

let vj be the vector among the sequence with maximal Euclidean norm. Then

aj ∈ {0,±1}.

Theorem 5.3.3. Given an r-modular sequence v1, . . . , vk where k ≥ 2, its wind-

ing number is:
1

12

(
k

∑
i=1

ai + 3
k

∑
i=1

εi

)
.

Proof. The proof uses induction on the length of the r-modular sequence k.

For the base case k = 2, it is easy to see that ε1 = −ε2, and so from (6) that

a1 = a2 = 0. The winding number is 0, and so the required identity holds

trivially.

For k = 3, by an orientation preserving unimodular transformation assume

(v1, v2) is equal to either ((r,−s) , (0, 1)) or ((0, 1) , (r,−s)), where 1 ≤ s < r

and gcd(r, s) = 1. In both these cases since v2 ∧ v3 = v3 ∧ v1 = ±r, necessarily

v3 is given by one of (r, 1− s), (r,−1− s), (−r, 1+ s) or (−r, s− 1). The desired

formula can be routinely checked for each of these four possibilities.

Suppose k ≥ 4, and that by inductive assumption all r-modular sequences with

less than k vertices satisfies the desired identity. Now choose vj to be the vertex

with maximal Euclidean norm. By Lemma 5.3.2 we know aj ∈ {0,±1}. The

inductive step is split into cases based on the value of aj and the proof follows

exactly as in [41, Theorem 1.2] from this point onwards.

Can this statement be generalised to any sequence of integer points, that is,

allowing the value ri = vi ∧ vi+1 to be arbitrary for all i? A major obstacle is

that when repeating the above matrix calculation for this general case, results

in the conclusion that −ai + s ri
ri−1
∈ Z. It follows that the aj corresponding to

the vector of maximal Euclidean norm belongs to 1
rj−1

Z. The proof for Lemma
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5.3 restrictions using r -modular sequences

5.3.2 then adapts to tell us that |aj| ≤ 1, but this results in a more complicated

problem when compared to the case r1 = r2 = . . . = rk.

We seek to provide a classification of Fano polygons consisting of cones {Ci}k
i=1

such that each Ci represents a 1
r (1, si) cyclic quotient singularity where r is some

fixed positive integer and 1 ≤ si < r with gcd(r, si) = 1, for all i. Such a cone

is referred to as a determinant r cone. The key observation here is that given a

Fano polygon P with determinant r cones only, then the anticlockwise ordered

set of primitive ray generators of each cone, denoted {v1, . . . , vk}, forms an as-

sociated r-modular sequence with winding number 1. Therefore Theorem 5.3.3

provides a condition that the vertices of the Fano polygon must satisfy.

Furthermore properties of Fano polygons translate to properties of the associ-

ated r-modular sequence:

Lemma 5.3.4. The r-modular sequence associated to a Fano polygon with de-

terminant r cones only, has the property that εi = 1, ∀i.

Proof. This is trivial since the vertices are traversed in an anticlockwise fashion.

Lemma 5.3.5. The r-modular sequence v1, . . . , vk associated to a Fano polygon

with determinant r cones only, has the property ai ≥ −2, ∀i. Furthermore the

case ai = −2 means that cones Ci−1 and Ci share an edge of the Fano polygon,

that is vi does not necessarily need to be listed as a vertex.

Proof. The statement follows trivially from the identity vi−1 + vi+1 = −aivi.

In the case where each cone represents a 1
r (1, 1) R-singularity, it is derived in

Section 5.1 that k must be a multiple of 2r. Furthermore since all cones of P
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5.3 restrictions using r -modular sequences

are R-cones and so cannot share an edge with another cone, each ai > −2 by

Lemma 5.2.6. So for some l ∈ Z>0:

12 =
2rl

∑
i=1

ai + 3
2rl

∑
i=1

εi ≥
2rl

∑
i=1

(−1) + 3
2rl

∑
i=1

(1) ≥ −2rl + 6rl = 4rl.

Therefore:

r ≤ 3
l

.

Introducing r-modular sequences has provided a simpler way to complete the

proof of Theorem 5.1.2 by using this identity. Namely the identity is satisfied

by (r, l) = (3, 1) only.

Note further that the winding number of the r-modular sequence associated

to a Fano polygon P with determinant r cones only is enough to provide a

statement on #V(P). Assume P is a Fano polygon with V(P) = {v1, . . . , vk}

where all the vi are necessary (no three consecutive vertices are collinear), and

the determinant of each cone is r. Then:

12 =
k

∑
i=1

ai + 3
k

∑
i=1

εi ≥
k

∑
i=1

(−1) + 3
k

∑
i=1

(1) ≥ −k + 3k = 2k.

So the maximum number of vertices for a Fano polygon is 6. By investigating

case by case each value k ∈ {3, 4, 5, 6}, we construct all Fano polygons satisfy-

ing the necessary conditions allowing us to provide the classification of all Fano

polygons with only cones of determinant r. For an arbitrary Fano polygon, we

introduce the notation σi = Cone(vi, vi+1).

We recall a similar notion to r-modular sequence arising from a Fano poly-

gon.

Definition 5.3.6 ([51, Definition 1.1]). A Fano polygon P is `-reflexive if every

edge is of height `.

As a natural generalisation of reflexive polygons, the class of `-reflexive poly-

gons is of great interest. Kasprzyk–Nill [51] provide a classification of `-reflexive

polygons for ` ≤ 200.
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5.3 restrictions using r -modular sequences

Case k = 3

By a GL(N)-transformation, assume v1 =

 r

−s

 where 1 ≤ s < r with

gcd(r, s) = 1, and v2 =

0

1

. It follows that v3 =

a

b

 satisfies:

det

0 a

1 b

 = r, =⇒ a = −r,

and:

det

−r r

b −s

 = r, =⇒ b = s− 1.

So v3 =

 −r

s− 1

, meaning gcd(r, s− 1) = 1 is also required. Therefore this de-

scribes a unique model for appropriate Fano polygons in the case k = 3.

V(P) Conditions

on variables
Cyclic quotient singularities

Family

1

(−r,s−1),

(0,1),

(r,−s).

gcd(r,s)=1,

gcd(r,s−1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r+1−s),

σ3=
1
r (r−(s−1)b r

sc,r−sb r
sc).

Figure 12: Unique family of Fano polygons with only determinant r cones on 3

vertices.

A model for this family of polygons is illustrated:

k = 3, Family 1 :

(−r, s− 1)

(0, 1)

(r,−s)

σ1

σ2

σ3
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5.3 restrictions using r -modular sequences

It is worth noting at this point that this classification will overlap with the

classification of `-reflexive polygons by Kasprzyk–Nill [51]. Not all the Fano

polygons that arise in family 1 of Figure 12 are `-reflexive polygons for some

` ∈ Z. Indeed if (r, s) = (35, 12), the polygon consists of 3 R-singularities
1

35(1, 3), 1
35(1, 17) and 1

35(1, 19), however two edges are of height 7 and the other

is of height 35.

Case k = 4

Assume without loss of generality that:

v1 =

 r

−s

 , and v2 =

0

1



where 1 ≤ s < r and gcd(r, s) = 1. As before in the case k = 3, if v3 =

a

b

,

then v2 ∧ v3 = r implies that a = −r. Let v4 =

c

d

, and by v4 ∧ v1 = r deduce

that d = −1− cs
r . Finally v3 and v4 are subject to the condition:

det

−r c

b − cs
r − 1

 = r, =⇒ c(s− b) = 0.

Therefore either c = 0 or s = b.

Suppose c = 0. In this case the vertices of P are given by:

v1 =

 r

−s

 , v2 =

0

1

 , v3 =

−r

α

 , and v4 =

 0

−1


where gcd(r, s) = gcd(r, α) = 1. The final condition that needs checked is

that the vertices satisfy convexity. This is easily checked in the language of

r-modular sequences by calculating:

a1 = 0, a2 = s− α, a3 = 0, and a4 = α− s.
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5.3 restrictions using r -modular sequences

Using Lemma 5.3.5 convexity is equivalent to ai > −2, ∀i, and so imposing

the condition |s − α| < 2 arising from a2, a4 > −2 is enough here. Note the

case α = s − 1 is isomorphic to the case α = s + 1 by reflection in both axes.

The cases s = α and s = α + 1 provide the first two families shown in Figure

13.

Now suppose s = b. The vertices of P are of the form:

v1 =

 r

−s

 , v2 =

0

1

 , v3 =

−r

s

 , and v4 =

 c

− cs
r − 1


where 1 ≤ s < r and gcd(r, s) = 1. Note that necessarily v4 is an integer point,

so cs
r ∈ Z. Furthermore since gcd(s, r) = 1, it follows that r | c. Set c = c̃r so

that:

v4 =

 rc̃

−c̃s− 1

 .

It follows that:

a1 = −c̃, and a3 = c̃,

and the convexity condition ai > −2, ∀i, implies that |c̃| ≤ 1. If c̃ = 0, we

have reduced to the previous case c = 0. Therefore assume that c̃ = 1 and

v4 =

 r

−s− 1

, or c̃ = −1 and v4 =

 −r

s− 1

. This describes the third and

fourth k = 4 families seen in Figure 13.

Models for each of these families are illustrated:

k = 4, Family 1 :

(−r, s)

(0, 1)

(r,−s)

(0,−1)

σ1

σ2

σ3

σ4

k = 4, Family 2 :

(−r, s + 1)

(0, 1)

(r,−s)

(0,−1)

σ1

σ2

σ3

σ4
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V(P) Conditions

on variables
Cyclic quotient singularities

Family

1

(−r,s),

(0,1),

(r,−s),

(0,−1).

1≤s<r,

gcd(r,s)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−s),

σ3=
1
r (1,s),

σ4=
1
r (1,r−s)

Family

2

(−r,s+1),

(0,1),

(r,−s),

(0,−1).

1≤s<r,

gcd(r,s)=1,

gcd(r,s+1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−1−s),

σ3=
1
r (1,s+1),

σ4=
1
r (1,r−s).

Family

3

(−r,s),

(0,1),

(r,−s),

(r,−s−1).

1≤s<r,

gcd(r,s)=1,

gcd(r,s+1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−s),

σ3=
1
r (r−sb r

s+1c,r−(s+1)b r
s+1c),

σ4 is an indeterminable R-singularity.

Family

4

(−r,s),

(0,1),

(r,−s),

(−r,s−1).

1≤s<r,

gcd(r,s)=1,

gcd(r,s−1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−s),

σ3 is an indeterminable R-singularity,

σ4=
1
r (r−(s−1)b r

sc,r−sb r
sc).

Figure 13: Four families of Fano polygons with only determinant r cones on 4

vertices.
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k = 4, Family 3 :

(−r, s)

(0, 1)

(r,−s− 1)

(r,−s)

σ1

σ2

σ3

σ4

k = 4, Family 4 :

(−r, s)

(0, 1)

(−r, s− 1)

(r,−s)

σ1

σ2σ3

σ4

Similarly to when k = 3, not every Fano polygon here is `-reflexive. Indeed this

is not even true of any individual family: consider (r, s) = (15, 2) for Family 1,

(r, s) = (15, 7) for Family 2, (r, s) = (15, 13) for Family 3 and (r, s) = (15, 2) for

Family 4. Each of these four explicit Fano polygons have four R-cones which

are not all of equal height.

Case k = 5

Assume:

v1 =

 r

−s

 , and v2 =

0

1

 .

We then have:

v2 ∧ v3 = r =⇒ v3 =

−r

α

 ,

v3 ∧ v4 = r =⇒ v4 =

 rβ

−αβ− 1

 ,

v5 ∧ v1 = r =⇒ v5 =

 rγ

−sγ− 1


with the vertices further subject to the condition v4 ∧ v5 = r.

First suppose β = 0. From the equation:

v3 + v5 + a4v4 =

−r

α

+

 rγ

−sγ− 1

+ a4

 0

−1

 =

0

0

 ,
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5.3 restrictions using r -modular sequences

obtain that necessarily γ = 1. Therefore the vertices are given by:

v1 =

 r

−s

 , v2 =

0

1

 , v3 =

−r

α

 ,

v4 =

 0

−1

 , and v5 =

 r

−s− 1

 .

Calculating that a2 = s − α > −2 and a4 = α − s − 1 > −2 implies that

α ∈ {s, s + 1}. This gives rise to two families of Fano polygons, shown in

Figure 14, on five vertices such that each cone has determinant r.

The case where γ = 0 is addressed similarly. The equation v4 + v1 + a5v5 = 0

implies that β = −1, and so the vertices of the polygon are given by:

v1 =

 r

−s

 , v2 =

0

1

 , v3 =

−r

α

 ,

v4 =

 −r

α− 1

 , and v5 =

 0

−1

 .

The convexity conditions for a2 and a5 imply that α ∈ {s, s + 1} and we obtain

two more families of Fano polygons, however these are both respectively iso-

morphic (with some relabelling) to one of the two families that occurred when

β = 0.

Having completed these two cases, instead assume β, γ 6= 0. The values ai for

the associated r-modular sequence are:

a1 = −γ, a2 = s− α, a3 = β,

a4 =
1− γ

β
, and a5 =

−1− β

γ
.

We split into four sub-cases:

(i) β, γ > 0,

(iii) β > 0, γ < 0,

(ii) β, γ < 0,

(iv) β < 0, γ > 0.
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5.3 restrictions using r -modular sequences

In case (i), a1 = −γ > −2 implies that 0 < γ < 2 and so γ = 1. It follows

that

a5 = −1− β > −2 =⇒ β < 1

and since β > 0, there are no possible integer solutions for case (i). Similarly

in case (ii), a3 > −2 implies −2 < β < 0 and so β = −1. Manipulation of a4,

gives that γ > −1 and there are no integer solutions here either.

Suppose a polygon exists in case (iii). By Theorem 5.3.3, and by calculating

a2 = s− α > −2:

−3 = 12− 3(5)

= 12− 3
5

∑
i=1

εi

=
5

∑
i=1

ai

= −γ + (s− α) + β +
1− γ

β
+
−1− β

γ

> 0 + (−2) + 0 + 0 + 0

= −2.

This is an obvious contradiction and no such Fano polygon can exist.

Finally for case (iv), by the same method as in case (i) and case (ii), obtain

bounds −2 < β < 0 < γ < 2, and hence (β, γ) = (−1, 1). Calculation of the

winding number of Theorem 5.3.3 reduces to α = s + 1, and we obtain a final

family in the case k = 5 with vertices:

v1 =

 r

−s

 , v2 =

0

1

 , v3 =

 −r

s + 1

 ,

v4 =

−r

s

 , and v5 =

 r

−s− 1

 .
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V(P) Conditions

on variables
Cyclic quotient singularities

Family

1

(−r,s+1),

(0,1),

(r,−s),

(0,−1),

(−r,s).

1≤s<r,

gcd(r,s)=1,

gcd(r,s+1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−1−s),

σ3 is an indeterminable R-singularity,

σ4=
1
r (1,s),

σ5=
1
r (1,r−s).

Family

2

(−r,s),

(0,1),

(r,−s),

(0,−1),

(−r,s−1).

1≤s<r,

gcd(r,s)=1,

gcd(r,s−1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−s),

σ3 is an indeterminable R-singularity,

σ4=
1
r (1,s−1),

σ5=
1
r (1,r−s).

Family

3

(−r,s+1),

(0,1),

(r,−s),

(r,−s−1),

(−r,s).

1≤s<r,

gcd(r,s)=1,

gcd(r,s+1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−1−s),

σ3 is an indeterminable R-singularity,

σ4=
1
r (r−sb r

s+1c,r−(s+1)b r
s+1c),

σ5 is an indeterminable R-singularity.

Figure 14: Three families of Fano polygons with only determinant r cones on 5

vertices.
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5.3 restrictions using r -modular sequences

All derived families on five vertices are shown in Figure 14.

Models for these families of polygons are also illustrated:

k = 5, Family 1 :

(−r, s + 1)

(−r, s) (0, 1)

(r,−s)

(0,−1)

σ1

σ2
σ3

σ4

σ5

k = 5, Family 2 :

(−r, s)

(−r, s− 1)

(0, 1)

(r,−s)

(0,−1)

σ1

σ2σ3

σ4

σ5

k = 5, Family 3 :

(−r, s + 1)

(−r, s) (0, 1)

(r,−s− 1)

(r,−s)

σ1

σ2
σ3

σ4

σ5

Again each family here contains a Fano polygon that has five R-cones and is

not `-reflexive: consider (r, s) = (15, 7) for Family 1, (r, s) = (15, 2) for Family

2 and (r, s) = (15, 13) for Family 3.

Case k = 6

Consider a Fano polygon on six vertices all of whose cones have determinant r.

By studying the winding number equation given in Theorem 5.3.3 obtain:

6

∑
i=1

ai + 3
6

∑
i=1

(1) = 12, =⇒
6

∑
i=1

ai = −6.

Since by convexity ai > −2, there is a unique solution to this equation given

by ai = −1, ∀i. Hence having fixed σ1, that is, v1 =

 r

−s

 where 1 ≤ s < r
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V(P) Conditions

on variables
Cyclic quotient singularities

Family

1

(−r,s+1),

(0,1),

(r,−s),

(r,−s−1),

(0,−1),

(−r,s).

1≤s<r,

gcd(r,s)=1,

gcd(r,s+1)=1.

σ1=
1
r (1,s),

σ2=
1
r (1,r−1−s),

σ3 is an indeterminable R-singularity,

σ4=
1
r (1,s),

σ5=
1
r (1,r−1−s),

σ6 is an indeterminable R-singularity.

Figure 15: Unique familiy of Fano polygons with only determinant r cones on

6 vertices.

with gcd(r, s) = 1, and v2 =

0

1

, all other vertices are determined by the

identity: (
vi vi+1

)
=
(

vi−1 vi

)0 −1

1 1

 .

Namely

v3 =

 −r

s + 1

 , v4 =

−r

s

 ,

v5 =

 0

−1

 , and v6 =

 r

−s− 1

 .

Convexity is already satisfied by construction and therefore the only required

conditions are that gcd(r, s) = gcd(r, s + 1) = 1. This unique model for the

k = 6 case is shown in Figure 15.

A model for this family of polygons is illustrated:
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5.3 restrictions using r -modular sequences

k = 6, Family 1 :

(−r, s + 1)

(−r, s) (0, 1)

(r,−s− 1)

(r,−s)(0,−1)

σ1

σ2
σ3

σ4

σ5 σ6

This k = 6 family is the only family appearing in the paper for which ev-

ery entry is `-reflexive for some ` ∈ Z>0. More specifically the pair of con-

ditions gcd(r, s) = gcd(r, s + 1) = 1 guarentee every Fano polygon here is

r-reflexive.

Each of these cases together prove the following theorem:

Theorem 5.3.7. Let r ∈ Z>0\{1, 2, 4}. Any Fano polygon P with singularity

content:

SC(P) =
(

0,
{

1
r
(1, s1),

1
r
(1, s2), . . . ,

1
r
(1, sk)

})
,

has k ∈ {3, 4, 5, 6} and vertex set unimodular equivalent to one of the following:

• {(0, 1), (−r, s− 1), (r,−s)}, where gcd(r, s) = gcd(r, s− 1) = 1;

• {(0, 1), (−r, s), (0,−1), (r,−s)}, where gcd(r, s) = 1;

• {(0, 1), (−r, s + 1), (0,−1), (r,−s)}, where gcd(r, s) = gcd(r, s + 1) = 1;

• {(0, 1), (−r, s), (r,−s− 1), (r,−s)}, where gcd(r, s) = gcd(r, s + 1) = 1;

• {(0, 1), (−r, s), (−r, s− 1), (r,−s)},

where gcd(r, s) = gcd(r, s− 1) = 1;

• {(0, 1), (−r, s + 1), (−r, s), (0,−1), (r,−s)},

where gcd(r, s) = gcd(r, s + 1) = 1;

• {(0, 1), (−r, s), (−r, s− 1), (0,−1), (r,−s)},

where gcd(r, s) = gcd(r, s− 1) = 1;

• {(0, 1), (−r, s + 1), (−r, s), (r,−s− 1), (r,−s)},

where gcd(r, s) = gcd(r, s + 1) = 1;

134



5.3 restrictions using r -modular sequences

• {(0, 1), (−r, s + 1), (−r, s), (0,−1), (r,−s− 1), (r,−s)},

where gcd(r, s) = gcd(r, s + 1) = 1.

In geometric terms this result is as follows:

Theorem 5.3.8. The existence of a qG-rigid orbifold del Pezzo surface that ad-

mits a toric degeneration, has topological Euler number 0 and has singular lo-

cus equal to a collection of isolated points
{

k× 1
r (1, s)

}
where r ∈ Z>0\{1, 2, 4}

is understood in terms of necessary and sufficient conditions on k, r, s. These

conditions are listed in Theorem 5.3.7.

Given Theorem 5.3.7 we can provide a classification of Fano polygons with sin-

gularity content of the form
(

0,
{

k× 1
r (1, s)

})
. Since the cone C1

r (1,s) has de-

terminant r, every object in this classification will appear as one of the models

above. Note any polygon appearing in this classification, arises as an l-reflexive

polygon in [51]. We analyse each of the derived eight families of Fano polygons

from Theorem 5.3.7 with only determinant r cones, and deduce conditions on

the parameters r, s under which every cone of a family member corresponds to

the same 1
r (1, s) cyclic quotient R-singularity. Note immediately that necessar-

ily r > 2 since 1
r (1, 1) is a T-singularity for r ∈ {1, 2}.

We state three results that will be used repeatedly. These lemmas provide con-

ditions on the variables r and s as to when certain collections of R-singularities

will be isomorphic to each other.

Lemma 5.3.9. Fix r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r. The cones

representing the R-singularities 1
r (1, s) and 1

r (1, r− s± 1) are isomorphic if and

only if either s = r±1
2 , or p ≡ 1 (mod 6) for all primes p | r and s2 ∓ s + 1 ≡

0 (mod r).

Proof. There are two conditions under which the cones C1
r (1,s) and C1

r (1,r±1−s)

are isomorphic, namely:

(i) s = r− s± 1,
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5.3 restrictions using r -modular sequences

(ii) s(r− s + 1) ≡ 1 (mod r).

In case (i) it follows trivially that s = r±1
2 .

Now consider case (ii):

s(r− s± 1) ≡ 1 (mod r) ⇐⇒ s2 ∓ s + 1 ≡ 0 (mod r) .

Techniques in number theory tell us that a quadratic congruence has a solution

if and only if the square root of the discriminant of the quadratic exists in

the finite field. In this case the square root of the discriminant is given by√
(±1)2 − 4(1)(1) =

√
−3. It is a well known result concerning Legendre

symbols that for an odd prime p, then:

(
−3
p

)
=

1, if p ≡ 1 (mod 3) ,

−1, if p ≡ −1 (mod 3) .

Combining this identity with the Chinese remainder theorem (CRT) and the

fact that we know r to be odd (since gcd(r, s) = gcd(r, s − 1) = 1), means s

exists if and only p ≡ 1 (mod 6) for all primes p | r. It is not clear however

how to express s in terms of r with this information.

Lemma 5.3.10. Fix r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r. The

cones representing cyclic quotient R-singularities 1
r (1, s) and 1

r (1, r− s) are iso-

morphic if and only if p ≡ 1 (mod 4) for all primes p | r, and s2 ≡ −1 (mod r).

Proof. The argument is similar to the proof of Lemma 5.3.9. Note that the

singularities 1
r (1, s) and 1

r (1, r− s) are isomorphic if and only if either:

(i) s = r− s;

(ii) s(r− s) ≡ 1 (mod r).
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5.3 restrictions using r -modular sequences

If (i) holds it follows that r = 2s, and since gcd(r, s) = 1, that s = 1 and r = 2

which is not of interest. Therefore the cones are isomorphic R-cones if and only

if s(r− s) ≡ 1 (mod r), which is equivalent to the quadratic congruence:

s2 ≡ −1 (mod r) .

Similarly to the proof of Lemma 5.3.9, we want to understand when the dis-

criminant −1 is a square in the finite ring Z/rZ. It is well known that for an

odd prime p that:

(
−1
p

)
=

1, if p ≡ 1 (mod 4) ,

−1, if p ≡ 3 (mod 4) .

By the CRT a solution for s exists if and only if p ≡ 1 (mod 4) holds for all

primes dividing r.

Lemma 5.3.11. Fix r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r. Consider

three cones representing R-singularities 1
r (1, s), 1

r (1, r − s) and 1
r (1, r − s − 1).

Then all three cones are isomorphic if and only if (r, s) = (5, 2).

Proof. Suppose the three cones are isomorphic. The 1
r (1, s) and 1

r (1, r − 1− s)

cones imply by Lemma 5.3.9 that either s = r−1
2 or s2 + s + 1 ≡ 0 (mod r). Sim-

ilarly the cones 1
r (1, s) and 1

r (1, r − s) imply that s2 ≡ −1 (mod r) by Lemma

5.3.10. It follows that:

0 ≡ s2 + s + 1 (mod r) , =⇒ s ≡ 0 (mod r) ,

which is not possible since gcd(r, s) = 1 and r > 2. Hence the only remaining

possibility is s = r−1
2 , which means:(

r− 1
2

)2

≡− 1 (mod r) ,

(−1)2 ≡− 4 (mod r) ,

0 ≡5 (mod r) .

Therefore (r, s) = (5, 2).

137



5.3 restrictions using r -modular sequences

It remains to analyse each family appearing in Theorem 5.3.7. We do so looking

at k case by case.

Proposition 5.3.12. Fix r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r.

There exists a Fano polygon P such that

SC(P) =
(

0,
{

3× 1
r
(1, s)

})
,

if and only if p ≡ 1 (mod 6) for all primes p | r, and s2 − s + 1 ≡ 0 (mod r).

Proof. There is a unique family of Fano polygons on three vertices all of whose

cones have determinant r, shown in Figure 1. Consider

σ1 =
1
r
(1, s), and σ2 =

1
r
(1, r− s + 1).

By Lemma 5.3.9 there are two possibilies: s = r+1
2 or s2 − s + 1 ≡ 0 (mod r).

Suppose s = r+1
2 , and look at σ3 under this assumption:

σ3 =
1
r

(
r +

(
1− r + 1

2

)⌊
r

r+1
2

⌋
, r− r + 1

2

⌊
r

r+1
2

⌋)

=
1
r

(
r + 1

2
,

r− 1
2

)
=

1
r

(
1,

r + 1
2

(
r− 1

2

)−1
)

=
1
r
(1, r− 1) .

which is a T-singularity, since it is represented by the cone spanR≥0
((0, 1), (r, 1)).

Hence there is no polygon contributed to our classification here.

Alternatively consider σ3 in the case s2 − s + 1 ≡ 0 (mod r):

σ3 =
1
r

(
r− (s− 1)

⌊r
s

⌋
, r− s

⌊r
s

⌋)
,

∼=
1
r

(
1,
(

r− (s− 1)
⌊r

s

⌋) (
r− s

⌊r
s

⌋)−1
)

,

=
1
r
(1, ∗) .

As previously σ3
∼= σ1 if and only if either
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5.3 restrictions using r -modular sequences

• ∗ ≡ s (mod r),

• ∗ ≡ s−1 (mod r).

We claim the first of these two alternatives always holds:

∗ ≡ s (mod r) ,

r− (s− 1)
⌊r

s

⌋
≡ s

(
r− s

⌊r
s

⌋)
(mod r) ,

−(s− 1)
⌊r

s

⌋
≡ −s2

⌊r
s

⌋
(mod r) ,

(s2 − s + 1)
⌊r

s

⌋
≡ 0 (mod r) .

which is true by our condition on s, and so σ1
∼= σ2

∼= σ3 for such a choice of r

and s.

Proposition 5.3.13. Fix r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r.

There exists a Fano polygon P such that

SC(P) =
(

0,
{

4× 1
r
(1, s)

})
,

if and only if p ≡ 1 (mod 4) for all primes p | r, and s2 ≡ −1 (mod r). Further-

more this polygon is unique up to isomorphism, except in the case (r, s) = (5, 2)

where there are two non-isomorphic polygons with the described singularity

content.

Proof. There are four families to analyse for k = 4. We check all four in turn and

determine when all the cones are isomorphic as 1
r (1, s) R-cones. The first family

of Fano polygons with k = 4 shown in Figure 13, has 4 cones representing two

different singularities in total. By Lemma 5.3.10 applied to this family there is

a collection of Fano polygons all of whose cones represent 1
r (1, s) singularities

when s2 ≡ −1 (mod r) and p ≡ 1 (mod 4) for all primes p | r.

Lemma 5.3.11 shows that the only possibility for the second family is when

(r, s) = (5, 2). It is routine to check that for (r, s) = (5, 2) the only other remain-

ing cone σ3 is also isomorphic to the others, and so a single polygon arises from
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this family. This Fano polygon has singularity content
(

0,
{

4× 1
5(1, 2)

})
, the

same singularity content as the polygon arising when (r, s) = (5, 2) in family 1,

however these are two non-isomorphic Fano polygons.

We now look at the third family of polygons shown in Figure 13. As in the

previous family, the cones σ1 and σ2 representing the singularities 1
r (1, s) and

1
r (1, r− s) imply by Lemma 5.3.10, that s2 ≡ −1 (mod r) and all primes divid-

ing r satisfy p ≡ 1 (mod 4). It remains to check σ3 and σ4. The cone σ3 can be

written as:

σ3 =
1
r

(
1,
(

r− (s + 1)
⌊

r
s + 1

⌋)(
r− s

⌊
r

s + 1

⌋)−1
)

=
1
r
(1, ∗)

and is isomorphic to σ1 if and only if either:

(i) ∗ ≡ s (mod r);

(ii) ∗ ≡ s−1 ≡ −s (mod r).

Note in both cases that gcd
(
r,
⌊ r

s+1

⌋)
= 1, since the singularity σ3 is well-

defined, and so
⌊ r

s+1

⌋
is invertible modulo r.

Consider (ii) first:(
r− (s + 1)

⌊
r

s + 1

⌋)(
r− s

⌊
r

s + 1

⌋)−1

≡− s (mod r) ,

−(s + 1)
⌊

r
s + 1

⌋
≡s2

⌊
r

s + 1

⌋
(mod r) ,

−s− 1 ≡− 1 (mod r) ,

s ≡0 (mod r) .

This is not possible since gcd(s, r) = 1, and r > 2.
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Alternatively for (i):(
r− (s + 1)

⌊
r

s + 1

⌋)(
r− s

⌊
r

s + 1

⌋)−1

≡s (mod r) ,

−(s + 1)
⌊

r
s + 1

⌋
≡− s2

⌊
r

s + 1

⌋
(mod r) ,

−s− 1 ≡1 (mod r) ,

s ≡− 2 (mod r) .

Therefore s = r− 2. We require s2 ≡ (r− 2)2 ≡ (−2)2 ≡ −1 (mod r) which im-

plies r = 5 and s = 3. For these values, σ4 has vertices (5,−3) and (5,−4)

which we know to describe a 1
5(1, 2) cyclic quotient singularity. Therefore

(r, s) = (5, 3) describes a suitable Fano polygon. However it is easy to check

that this polygon is isomorphic to the k = 4, family 2 polygon for the values

(r, s) = (5, 2).

The fourth family of Figure 13 follows very similarly to the third. The cones

σ1 and σ2 being isomorphic is equivalent to s2 ≡ −1 (mod r) by Lemma 5.3.10.

Then σ4 = 1
r (r− (s− 1)

⌊ r
s
⌋

, r− s
⌊ r

s
⌋
) is isomorphic to σ1 and σ2 if and only if

either:

(i) r− s
⌊ r

s
⌋
≡ s

(
r− (s− 1)

⌊ r
s
⌋)

(mod r);

(ii) r− s
⌊ r

s
⌋
≡ s−1 (r− (s− 1)

⌊ r
s
⌋)

(mod r).

Consider (ii):

r− s
⌊r

s

⌋
≡s−1

(
r− (s− 1)

⌊r
s

⌋)
(mod r) ,

−s
⌊r

s

⌋
≡s(s− 1)

⌊r
s

⌋
(mod r) ,

−s ≡s2 − s (mod r) ,

0 ≡− 1 (mod r) ,
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which is uninteresting since we specify r > 2. Finally for (i):

r− s
⌊r

s

⌋
≡s
(

r− (s− 1)
⌊r

s

⌋)
(mod r) ,

−s
⌊r

s

⌋
≡− s(s− 1)

⌊r
s

⌋
(mod r) ,

−s ≡− s2 + s (mod r) ,

s2 ≡2s (mod r) ,

s ≡2 (mod r) ,

−1 ≡ s2 ≡4 (mod r) ,

0 ≡5 (mod r) .

Therefore either (r, s) = (5, 2) for which the polygon is isomorphic to when

(r, s) = (5, 2) in family 2 of Figure 13, or (r, s) = (5, 3) for which σ4 is not then

isomorphic to the other cones of the polygon.

Proposition 5.3.14. For all r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r,

there does not exist a Fano polygon P such that

SC(P) =
(

0,
{

5× 1
r
(1, s)

})
.

Proof. Consider the first family of Fano polygons with cones of determinant r

shown in Figure 14. By Lemma 5.3.11, the only possibility is (r, s) = (5, 2). The

ray generators of σ5 are now (5,−3) and (5,−2) and describe a 1
5(1, 1) cone

which is not isomorphic to the other σi cones. No polygons of interest arise in

the first k = 5 family.

Consider the second k = 5 family shown in Figure 14 whose analysis follows

very similarly to that of the first family. An application of Lemma 5.3.9 implies

s2 ≡ −1 (mod r). Additionally in order for σ1 = 1
r (1, s) and σ4 = 1

r (1, s− 1) to
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be isomorphic, we require s(s− 1) ≡ 1 (mod r), since s ≡ s− 1 (mod r) will

clearly not giving rise to an interesting polygon. So:

s(s− 1) ≡1 (mod r) ,

s2 − s ≡1 (mod r) ,

−1− s ≡1 (mod r) ,

s ≡− 2 (mod r) .

We have already seen that s ≡ −2 (mod r) combined with s2 ≡ −1 (mod r)

leads to (r, s) = (5, 3). It follows though that σ3 is not isomorphic to the other

cones for these values of r and s. No suitable polygons arise here either.

There is a final remaining family for k = 5 shown in Figure 14. In order for

σ1 = 1
r (1, s) and σ2 = 1

r (1, r− s− 1) to be isomorphic it is required by Lemma

5.3.9 that either:

(i) s = r−1
2 ,

(ii) s2 + s + 1 ≡ 0 (mod r).

Studying σ4 in (i):

σ4 =
1
r

(
r−

(
r− 1

2

)⌊
r

r+1
2

⌋
, r−

(
r + 1

2

)⌊
r

r+1
2

⌋)

=
1
r

(
r + 1

2
,

r− 1
2

)
=

1
r

(
1,
(

r + 1
2

)−1(r− 1
2

))

=
1
r
(1, r− 1)

which is a T-singularity and so is not of interest.

Alternatively in (ii) where s2 + s + 1 ≡ 0 (mod r), we can write:

σ4 =
1
r

(
1,
(

r− (s + 1)
⌊

r
s + 1

⌋)(
r− s

⌊
r

s + 1

⌋)−1
)

.
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Suppose: (
r− (s + 1)

⌊
r

s + 1

⌋)(
r− s

⌊
r

s + 1

⌋)−1

≡s (mod r) ,

−(s + 1) ≡− s2 (mod r) ,

s2 − s− 1 ≡0 (mod r) .

However this equation alongside s2 + s+ 1 ≡ 0 (mod r) implies 2s2 ≡ 0 (mod r),

and we know r > 2 and gcd(r, s) = 1. Instead suppose:(
r− (s + 1)

⌊
r

s + 1

⌋)(
r− s

⌊
r

s + 1

⌋)−1

≡s−1 ≡ r− s− 1 (mod r) ,

−(s + 1)
⌊

r
s + 1

⌋
≡(−s− 1)

(
−s
⌊

r
s + 1

⌋)
(mod r) ,

−s− 1 ≡s2 + s (mod r) ,

s2 + 2s + 1 ≡0 (mod r) ,

s ≡0 (mod r) ,

which we know to be contradictory. Therefore there are no cases of a Fano

polygon all of whose cones represent the same R-singularity in this final family.

Proposition 5.3.15. Fix r ∈ Z>0\{1, 2, 4}, and s ∈ Z>0 such that 0 < s < r.

There exists a Fano polygon P such that

SC(P) =
(

0,
{

6× 1
r
(1, s)

})
,

if and only if either (r, s) = (3, 1) or p ≡ 1 (mod 6) for all primes p | r, and

s2 + s+ 1 ≡ 0 (mod r). Furthermore this polygon is unique up to isomorphism.

Proof. There is a unique family of Fano polygons with k = 6 shown in Figure

15, each with 3 different isomorphism classes of cones since σ1
∼= σ4, σ2

∼= σ5

and σ3
∼= σ6. By Lemma 5.3.9, σ1

∼= σ2 if and only if either:

(i) s = r−1
2 ;
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5.3 restrictions using r -modular sequences

(ii) s2 + s + 1 ≡ 0 (mod r).

In (i), we study σ3 and when it is isomorphic to a 1
r

(
1, r−1

2

)
cone. Note that

here, σ3 has ray generators
(
−r, r+1

2

)
and

(
−r, r−1

2

)
, and hence is a 1

r (1, 1)

cone. Therefore σ3 is a 1
r (1, r−1

2 ) cone if and only if r = 3. Hence (r, s) = (3, 1)

gives rise to a Fano polygon with six 1
3(1, 1) cones which appears in the known

classification of [48] and in Section 5.1. This is later discussed in Example

5.3.18.

Alternatively for (ii) when s2 + s + 1 ≡ 0 (mod r):

s2 + s + 1 = nr, for some n ∈ Z.

The linear map determined by the matrix:1 + s r

−n −s

 ∈ GL(N),

maps σ3 7→ σ4 and σ6 7→ σ1. Hence all the cones σi represent 1
r (1, s) cyclic

quotient singularities. We have shown the following proposition:

Propositions 5.3.12, 5.3.13, 5.3.14 and 5.3.15 together prove the following re-

sult:

Theorem 5.3.16. Fix r ∈ Z>0\{1, 2, 4} and s, k ∈ Z>0 such that 0 < s < r. Then

there exists a Fano polygon P such that

SC(P) =
(

0,
{

k× 1
r
(1, s)

})
,

if and only if one of the following holds:

• k = 3, p ≡ 1 (mod 6) for all primes p | r, and s2 − s + 1 ≡ 0 (mod r);

• k = 4, p ≡ 1 (mod 4) for all primes p | r, and s2 + 1 ≡ 0 (mod r);

• k = 6, r = 3 and s = 1;

• k = 6, p ≡ 1 (mod 6) for all primes p | r, and s2 + s + 1 ≡ 0 (mod r).
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5.3 restrictions using r -modular sequences

Furthermore in each of these cases P is unique up to isomorphism with the

exception of the case (k, r, s) = (4, 5, 2) in which there are two non-isomorphic

models for P.

In geometric terms this result is as follows:

Theorem 5.3.17. The existence of a qG-rigid orbifold del Pezzo surface that ad-

mits a toric degeneration, has topological Euler number 0 and has singular lo-

cus equal to a collection of isolated points
{

k× 1
r (1, s)

}
where r ∈ Z>0\{1, 2, 4}

is understood in terms of necessary and sufficient conditions on k, r, s. These

conditions are as listed in Theorem 5.3.16.

Note that the condition r ∈ Z>0\{1, 2, 4} in Theorems 5.3.7, 5.3.8, 5.3.16 and

5.3.17 comes from the geometric fact that the cyclic quotient singularities 1
1(1, 1),

1
2(1, 1) and 1

4(1, 1) and 1
4(1, 3) are T-singularities and hence are smoothable on

the toric variety which corresponds to a Fano polygon with the prescribed sin-

gularity content. This is made precise in the theorems by the statement that

the topological Euler number is 0. From a purely combinatorial approach, we

could generalise the theorems to remove this condition.

For a fixed value of r there is a significant overlap between the Fano poly-

gons of Theorem 5.3.7 and the set of r-reflexive polygons, though neither

set is contained in the other. The Fano polygons of Theorem 5.3.16 are all

r-reflexive.

Example 5.3.18. Consider when (k, r, s) = (6, 3, 1). By Theorem 5.3.16 there

exists a unique polygon with singularity content SC(P) =
(

0,
{

6× 1
3(1, 1)

})
,

and by Theorem 5.3.7 a model for this polygon has vertices given by:

V(P) = {(0, 1), (−3, 2), (−3, 1), (0,−1), (3,−2)(3,−1)} .

This polygon appears in [48] as the unique Fano polygon with singularity con-

tent of the form SC(P) =
(

n,
{

6× 1
3(1, 1)

})
where n ∈ Z≥0, and also appears
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5.3 restrictions using r -modular sequences

in Section 5.1 as the unique Fano polygon with singularity content of the form

SC(P) =
(

0,
{

k× 1
r (1, 1)

})
where k, r ∈ Z>0.
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6
M U TAT I O N G R A P H O F P 1 × P 1

6.1 mutation graph of weighted projective planes

Akhtar–Kasprzyk [6] efficiently describe the effect of a mutation on a weighted

projective plane. This description is subsequently used to understand the graph

of mutations, or mutation graph, of a weighted projective plane via links to

Diophantine equations.

Consider a Fano triangle P = conv {v0, v1, v2} ⊂ NQ such that v0, v1, v2 gen-

erate the lattice N. By Borisov-Borisov [16, Proposition 2], XP is a weighted

projective space. More specifically, there exists pairwise coprime λ0, λ1, λ2 such

that:

λ0v0 + λ1v1 + λ2v2 =

0

0

 .

The toric surface XP is P(λ0, λ1, λ2).

Proposition 6.1.1 ([6, Proposition 3.3, Lemma 3.8, Proposition 3.9]). Let XP

be the weighted projective plane P(λ0, λ1, λ2). Then there exists a one-step

mutation from the Fano polygon P to the Fano polygon Q representing a

weighted projective plane XQ if and only if up to relabelling λ0 | (λ1 + λ2)
2

and XQ = P
(

λ1, λ2, (λ1+λ2)
2

λ0

)
.
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6.1 mutation graph of weighted projective planes

This is exactly the case in Example 2.5.13. Iterating this simple test and calcu-

lating weights via Proposition 6.1.1 allows the mutation graph of a weighted

projective space to be computed. The mutation graph of P2 is shown to depth

four in [6]. Here Figure 16 shows the trivalent structure of the P2 mutation

graph: each polygon of the mutation graph can be mutated with respect to the

three primitive T-singularities.

P2

P(1, 1, 4)

P(1, 1, 4)P(1, 1, 4)

P(1, 4, 25)

P(1, 4, 25)

P(1, 4, 25)P(1, 4, 25)

P(1, 4, 25)

P(1, 4, 25)

Figure 16: Mutation graph of P2

Figure 17 demonstrates the P2 mutation graph modulo isomorphism with the

toric variety of each vertex shown:
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6.1 mutation graph of weighted projective planes

P2

P(1, 1, 4)

P(1, 4, 25)

P(4, 25, 841) P(1, 25, 169)

P(25, 841, 187489) P(4, 841, 28561) P(25, 169, 37636) P(1, 169, 1156)

Figure 17: Mutation graph of P2 modulo isomorphism

For P(1, 1, 1) it does not matter which weight is chosen as λ0 when testing

for a mutation; up to reordering we obtain the weights (1, 1, 4). Hence the

vertex P2 in Figure 17 has valency one. This is reflected in the symmetries of

the Fano polygon PP2 . Mutating the weights of P(1, 1, 4) by choosing λ0 = 4

brings us back to P2. Choosing λ0 = 1, then P(1, 1, 4) mutates to P(1, 4, 25)

after relabelling. Hence the point P(1, 1, 4) has valency two. Every other point

has valency three and again this is reflected in the combinatorics of the Fano

polygons.

The weights that appear in the mutation graph of a weighted projective space

correspond to solutions of an associated Diophantine equation.

Theorem 6.1.2 ([6, Lemma 3.11, Proposition 3.12]). Consider the weighted pro-

jective space XP = P(λ0, λ1, λ2). Set:

• λi = cia2
i where ci is square-free, for i ∈ {0, 1, 2};

• (λ0+λ1+λ2)
2

λ0λ1λ2
= m2

rk2 , where m, k, r ∈ Z>0 and r is square-free.

Then (a0, a1, a2) is a solution to the Diophantine equation:

mx0x1x2 = k
(

c0x2
0 + c1x2

1 + c2x2
2

)
.
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6.2 cluster algebras

Furthermore the weights of any mutation of P also provide a solution to the

same Diophantine equation.

The proof of this theorem involves exploiting the fact that the anticanonical

degree of a Fano variety is invariant under mutation.

The Diophantine equation corresponding to P2 is given by:

3x0x1x2 = x2
0 + x2

1 + x2
2.

It is routine to check that the triples (a0, a1, a2) corresponding to weighted pro-

jective spaces P(a2
0, a2

1, a2
2) appearing in Figure 17 are solutions to this Diophan-

tine equation. For example the solutions (1, 1, 1), (1, 1, 2) and (1, 2, 5) corre-

spond to the weighted projective planes P2, P(1, 1, 4) and P(1, 4, 25) respec-

tively.

We aim to find analogous results for P1 × P1 to those for weighted projec-

tive planes, and to gain a similar understanding of the P1 × P1 mutation

graph.

6.2 cluster algebras

The definition and basics of cluster algebras are recalled in this section. Cluster

algebras are much more involved in the study of mutation graphs than one

may initially perceive. We focus on material from Chapter 2 of the book by

Marsh [55].

Let n, m ∈ Z>0 with n ≤ m.

Definition 6.2.1 ([55, Definition 2.1.1]). A seed is a pair (ũ, B̃) where:

• ũ = {u1, . . . , um} is a free generating set of Q(x1, . . . , xm) over Q;

• B̃ = (bi,j)1≤i≤m,1≤j≤n is an integer matrix, known as the exchange matrix;
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6.2 cluster algebras

• The submatrix of B̃ given by B = (bi,j)1≤i,j≤n, known as the principal part

of B, is skew-symmetric.

The elements of {u1, . . . , un} are called the cluster variables of the seed, and the

elements of {un+1, . . . , um} are called the cluster coefficients.

Definition 6.2.2 ([55, Definition 2.1.3]). Let k ∈ {1, . . . , n}. The mutation µk(ũ, B̃) =

(ũ′, B̃′) in the direction k of the seed (ũ, B̃), is defined as follows:

• ũ′ = {u′1 . . . u′m}, where u′i = ui for i 6= k, and u′k satisfies the exchange

relation:

uku′k = ∏
j∈{1,...,m}:bkj>0

u
bkj
j + ∏

j∈{1,...,m}:bkj<0
u
−bkj
j ; (7)

• B̃′ = (b′i,j)1≤i≤m,1≤j≤n where:

b′i,j =

−bi,j, if i = k or j = k,

bi,j +
|bi,k|bk,j+bi,k|bk,j|

2 , otherwise.

Since bk,k = 0 by definition, it follows that uk does not appear on the right hand

side of the exchange relation (7). The mutation terminology of this definition

is not coincidental. Also note that cluster coefficients do not change under

mutation but cluster variables can.

Lemma 6.2.3 ([55, Lemma 2.1.5]). The mutation µk of a seed is self-inversing,

that is:

µ2
k(ũ, B̃) = (ũ, B̃).

Two seeds are said to be mutation equivalent if there is a sequence of mutations

taking one to the other.

Definition 6.2.4 ([55, Definition 2.1.6]). The cluster algebra with initial seed

(ũ, B̃), denoted A(ũ, B̃), is the subring of Q(x1, . . . , xm) generated by the clus-

ter coefficients and all the cluster variables of the seeds mutation equivalent to

(ũ, B̃).
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6.2 cluster algebras

The principle part B of an exchange matrix can be recorded as a directed graph,

known as a quiver and denoted Q(B), as follows:

• Vertices correspond to elements of {1, . . . , n};

• If bi,j > 0, then there are bi,j arrows from i to j;

Note the final point here implies by skew-symmetry that if bi,j < 0, then there

are −bi,j = bj,i arrows from j to i. It follows that Q(B) will not have any loops

or 2-cycles.

Lemma 6.2.5 ([55, Definition 2.3.1]). There is a one-to-one correspondence be-

tween n × n skew-symmetric integer matrices and quivers without loops or

2-cycles.

This association can be extended to obtaining a quiver Q(B̃) from the whole

exchange matrix B̃ as follows:

• Vertices correspond to elements of {1, . . . , m};

• The subquiver on vertices 1, . . . , n is Q(B);

• For i ∈ {n + 1, . . . , m} and j ∈ {1, . . . , n}, then if bi,j > 0 there are bi,j

arrows from i to j and if bi,j < 0 there are −bj,i arrows from j to i.

Example 6.2.6. The exchange matrix:

B̃ =


0 0 −2 2

0 0 2 −2

2 −2 0 0

−2 2 0 0

 ,

corresponds to the quiver:

Q(B) =

v1

v4v2

v3 2

2

2

2
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6.2 cluster algebras

The notion of mutation can be defined for these quivers such that a mutation

of an exchange matrix corresponds to a mutation of a quiver.

Definition 6.2.7 ([55, Definition 2.3.2]). The mutation of a quiver at a vertex vk,

for k ∈ {1, . . . n}, is defined by the following steps:

(i) For all paths vi → vk → vj, counted up to multiplicity, add an arrow from

vi → vj;

(ii) Cancel a maximal set of disjoint 2-cycles that now exist;

(iii) All arrows incident with vk are reversed.

Note we do not allow ourselves to mutate with respect to a vertex vk ∈ {vn+1, . . . , vm}.

These are known as frozen vertices.

Example 6.2.8. We mutate the exchange matrix of Example 6.2.6 in direction 1,

and the corresponding quiver with respect to v1:
0 0 −2 2

0 0 2 −2

2 −2 0 0

−2 2 0 0


v1

v4v2

v3 2

2

2

2


0 0 2 −2

0 0 2 −2

−2 −2 0 4

2 2 −4 0


v1

v4v2

v3 2

2

2

2 4

µ1 µ1

Lemma 6.2.9 ([48, Proposition 3.17]). Let B̃ be an exchange matrix. Then:

Q
(
µk(B̃)

)
= µk (Q(B)) .
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6.2 cluster algebras

It follows that a cluster algebra can be defined using a quiver as opposed to

an exchange matrix. This is of vital importance when quivers are associated to

Fano polygons in Section 6.4.

Definition 6.2.10 ([55, Definition 2.5.1]). The mutation graph of a cluster algebra

is defined as having vertices corresponding to seeds, and edges corresponding

to mutations.

Example 6.2.11. Consider the following mutation graph of a cluster algebra

which has only finitely many seeds:


{

x1x4+1
x2

, x1x3x4+x2+x3
x1x2

, x3, x4

}
,


0 −1

1 0

0 −1

−1 0






{

x1x4+1
x2

, x1, x3, x4

}
,


0 1

−1 0

0 1

−1 0






{

x2+x3
x1

, x1x3x4+x2+x3
x1x2

, x3, x4

}
,


0 1

−1 0

0 −1

1 −1






{

x2+x3
x1

, x2, x3, x4

}
,


0 −1

1 0

−1 1

0 1





{x1, x2, x3, x4} ,


0 1

−1 0

1 0

0 1





It follows from the association of a quiver to a Fano polygon that the mutation

graph of a Fano polygon describes exactly a cluster algebra, and so the classi-

fication of the P1 ×P1 mutation graph is equivalent to calculating the cluster

algebra associated to P1 ×P1.
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6.3 mutation graph of P1 × P1

6.3 mutation graph of P1 × P1

Consider the Fano polygon PP1×P1 which has four primitive T-cones labelled

a, b, c, d each lying on a distinct edge. Hence there are four possible one-step

mutations that can be applied to PP1×P1 .

PP1×P1 =

c

bd

a

First we try to find the underlying shape of the mutation graph of P1 × P1,

similar to that of P2 in Figure 16. If we ignore isomorphisms of Fano polygons

within the graph, then at every node there are four mutations that can be

applied, all of which are self-inversing. The mutation graph is the free product

of four copies of Z/2Z as shown in Figure 18.

P1 ×P1

a

c
db

a bd
aa

bd cc

b d

c

a

b
a

c

b

b

a

c

d

d

c

a
db

c bd
cc bd

aa

db

c

a

d
a

c

d

d

a

c

b

b

Figure 18: Mutation graph of P1 ×P1 without isomorphic equivalence
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6.3 mutation graph of P1 × P1

By abuse of notation, we often refer to a to mean the mutation of a polygon

with respect to the T-cone a, and likewise for b, c and d. More specifically the

free group of four copies of Z/2Z is a group G which acts on the set of all

Fano polygons that are mutation equivalent to P1 × P1. So for an element

g = g1g2 · · · gk ∈ G, where gi ∈ {a, b, c, d}, and a polygon P belonging to the

mutation graph of P1 ×P1, we define gP = µgk · · · µg1(P).

By exploiting the combinatorics and symmetries of the Fano polygon PP1×P1 ,

we determine isomorphisms between polygons in the mutation graph of Figure

18.

As a result of the rotational symmetry of PP1×P1 , the first mutation performed

will map to PP(1,1,2) irrespective of which mutation is chosen. As a result the

four branches from P1 × P1 are isomorphic and we need only consider one.

Without loss of generality assume a is the first mutation.

PP(1,1,2) =

c

b

d

a

At this point the mutation a is the inverse of the first mutation and so takes

us back to PP1×P1 . Since the T-cone b lies on the same edge as a in PP(1,1,2),

the mutation b also maps to PP1×P1 so we discount this branch of the mutation

graph by isomorphism. By a GL(N)-transformation the T-cones c and d are

indistinguishable. Therefore the only new edge of the mutation graph modulo

isomorphism from PP(1,1,2) = aPP1×P1 is c.

The T-cones c and d are now distinguishable. However a and b are T-cones on

the same edge and so are not distinguishable in caPP1×P1 . Hence the branches

obtained by applying a or b are isomorphic. Therefore the new edges from
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6.3 mutation graph of P1 × P1

the PP(1,1,2) vertex that occur are a and d. Indeed this argument continues if we

alternatively apply c and d to aPP1×P1 to study the Fano polygons (dc)naPP1×P1

and c(dc)naPP1×P1 which form a spine of the mutation graph: the T-cones a and

b are bound along the same edge, the T-cones c and d are distinguishable and

there are two new Fano polygons obtained by applying a, and either c or d

respectively at each stage.

What if we choose to apply a along this spine, namely consider the Fano poly-

gon a(dc)naPP1×P1 . Any argument for a(dc)naPP1×P1 can be identically applied

to ac(dc)naPP1×P1 . At this point all four T-cones have separate edges, the only

caveat being that the edges of the T-cones a and b are parallel. The mutations

c and d (either of which are possible) break this parallel property for the edges

of the T-cones a and b, so the mutation graph from this point on has valency

four. Instead if we mutate b (we do not perform a as this was the last mutation),

then a and b are again bound together and indistinguishable.

The polygon ba(dc)naPP1×P1 is similar to the Fano polygon aPP1×P1 = PP(1,1,2).

Applying either mutation a or mutation b takes us back to a(dc)naPP1×P1 ,

whereas c and d are both permitted. For either polygon cba(dc)naPP1×P1 or

dba(dc)naPP1×P1 , there is no distinction between a and b, and so we disregard

the mutation b as isomorphic to the mutation a. The only other possible muta-

tion for cba(dc)naPP1×P1 and dba(dc)naPP1×P1 are d or c respectively. There are

two new spines consisting of polygons of the form ci(dc)n2badi(cd)n1caPP1×P1

and dj(cd)n2badi(cd)n1caPP1×P1 where i, j ∈ {0, 1} and n1, n2 ∈ Z≥0. The whole

argument repeats inductively to this spine, either applying ba to some entry of

a spine producing two new spines, or applying either ca or da to some entry

producing a valency four subgraph.

This discussion is summarised by the following proposition:
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6.3 mutation graph of P1 × P1

Proposition 6.3.1. Every Fano polygon in the mutation graph of P1 ×P1 mod-

ulo isomorphism is represented by a word in the alphabet {a, b, c, d} which

obeys the following rules:

• a2 = b2 = c2 = d2 = 1;

• All words must start with the letter a;

• The second letter (if it exists) must be c;

• The second occurrence of a (if it exists) must be before a first occurrence

of b;

• If a second occurrence of a is followed immediately by b, then the third

occurrence of a (if it exists) must be before a second occurrence of b. This

rule repeats inductively until an a is not followed by a b.

This is shown in Figure 19. We conjecture that this representation is unique.

The structure here is certainly less simple than that of P2 in Figure 17, and

certainly does not appear to be particularly natural. For this reason one may

propose that looking modulo isomorphism is not the correct way to study mu-

tation graphs. In general I suspect that mutation graphs modulo isomorphism

are Tits buildings, see [1, 66].
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6.3 mutation graph of P1 × P1

P1 ×P1

a

c

d

c

d

c

ac

d

b

a

a
b
c

b

d

c

d
a

c

a

d

d a

b
c d

dc b

a
c

a c

b

d

a

a
b

c

d

b

c

d
a

c

a
d

da

bc
d

d
cb

a
c

ac

d

b

a

a
b
c

b

d

c

d

a c

b

d

a

a
b

c

d

b

c

d

Figure 19: Mutation graph of P1 ×P1 modulo isomorphic equivalence
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6.3 mutation graph of P1 × P1

It is interesting at this point to consider the work of Hacking–Prokhorov [38]

who give a classification of del Pezzo surfaces with quotient singularities of

Picard rank 1 which admit a qG-smoothing. In particular [38, Theorem 4.1]

links a family of toric surfaces of the form P(a2, b2, 2c2) to solutions (a, b, c)

of the Markov equation a2 + b2 + 2c2 = 4abc, in similar fashion to that of

Proposition 6.1.1. Note that P(1, 1, 2) is one such of these surfaces. Similarly

to P2, the mutation graph of P(1, 1, 2) is valency three. The mutation graph of

P(1, 1, 2) modulo isomorphism is shown in Figure 20.

P(1, 1, 2)

P(1, 2, 9)

P(2, 9, 121) P(1, 9, 50)

P(2, 121, 1681) P(9, 121, 8450) P(1, 50, 289) P(9, 50, 3481)

Figure 20: Mutation graph of P(1, 1, 2) modulo isomorphism

In particular the solution (a, b, c) = (1, 1, 1) to the Markov equation gives rise to

the surface P(1, 1, 2), which is obtained by any one step mutation of P1 ×P1.

Therefore the toric surfaces in this classification will appear in the mutation

tree of P1 × P1. Figure 21 shows how infinitely many copies of the P(1, 1, 2)

mutation graph sit inside the P1 × P1 mutation graph. Note that when at-

tempting to place the mutation graph of P(1, 1, 2) inside the P1 ×P1 mutation

graph, it may not at a glance appear to be valency three. The reason for this is

that when two primitive T-cones, say a and b, share the same edge, there is no

distinction in the P(1, 1, 2) mutation graph between the two-step mutations ab

and ba, whereas there is in the P1×P1 mutation graph. In Figure 21, entries of

the P1 ×P1 mutation graph that are of Picard rank 2 are in black, and copies
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6.4 quivers and hamiltonian cycles

of the P(1, 1, 2) mutation graph are shown in red. The mutation graph is show

up to depth 4 except in selected areas.

P1 ×P1 P(1, 1, 2) P(1, 2, 9)

P(1, 2, 9)

P1 ×P1

P(1, 1, 2)

P(1, 2, 9)

P(1, 2, 9)P1 ×P1

P(1, 1, 2)P(1, 2, 9)

P1 ×P1

P(1, 2, 9) P(1, 1, 2)

P(1, 2, 9)

P(1, 2, 9) P1 ×P1

P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)
P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)

P(1, 1, 2)
P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)
P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)

P(2, 9, 121)
P(2, 9, 121)

a

c

db

a
bd

aa
bd

cc

b d

c

a

b

a

c

b

b

a

c

d

d

c

a

db

c bd

cc
bd

aa

db

c

a

d

a

c

d

d

a

c

b

b

b

a

d

c

b

a

d

c

Figure 21: Mutation graphs of P(1, 1, 2) lying in the mutation graph of P1×P1

6.4 quivers and hamiltonian cycles

As mentioned in Section 6.2, given a Fano polygon P, by [15, 34] we can as-

sociate a quiver QP. Namely take a partial crepant resolution to divide the

Fano polygon into primitive T-cones and R-cones; each vertex of QP is indexed

by one of these cones. The frozen vertices are exactly those corresponding to
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6.4 quivers and hamiltonian cycles

R-cones. Consider two vertices v and v′ of QP corresponding to cones Cv and

Cv′ respectively. The number of arrows from v to v′ is given by max (n ∧ n′, 0)

where n and n′ are the inward pointing normals of the edges Ev and Ev′ of the

two respective cones.

Example 6.4.1. Consider P1 ×P1 and calculate the quiver QP1×P1 . Note there

are no frozen vertices since SC
(

PP1×P1
)
= (4,∅).

c

bd

a

PP1×P1

a

db

c 2

2

2

2

QP
P1×P1

Definition 6.4.2 ([49, Definition 1.7]). A quiver Q is weighted if for each ver-

tex v ∈ V(Q) there is an associated non-negative integer, denoted weight(v),

known as the weight of v. The weight of an edge v → v′ is the product of the

source weight and the target weight:

weight
(
v→ v′

)
= weight(v) ·weight(v′).

Definition 6.4.3 ([49, Definition 1.7]). A weighted quiver Q is balanced if:

∑
v′→v

weight(v′ → v) = ∑
v→v′′

weight(v→ v′′), ∀v ∈ V(Q).

That is informally, at any vertex the number of arrows going in equals the

number of arrows coming out counted up to weight and multiplicity.

Note that the condition for a quiver to be balanced is equivalent to:

∑
v′→v

weight(v′) = ∑
v→v′′

weight(v′′), ∀v ∈ V(Q).

For a quiver associated to a Fano polygon there is always a choice of integers

at each vertex to balance the quiver:
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6.4 quivers and hamiltonian cycles

Lemma 6.4.4 ([49, Lemma 2.3]). Let P be a Fano polygon, and QP be the as-

sociated quiver. If each vertex v ∈ V(QP) is given weight `(Ev), where Ev is

the edge of the cone Cv, then the resulting weighted quiver, denoted Q(b)
P is

balanced.

Proof. Let {p1, p2, . . . , pk} be the vertices of a partial crepant resolution of P into

its primitive T-cones and R-cones ordered anticlockwise so that pi and pi+1 are

the primitive points define the generating rays of Cvi . Let di be the primitive

direction vector from pi to pi+1, that is the primitive vector lying on Evi with

appropriate orientation, and let ni be the inward pointing normal of Evi . Since

P is closed:

`(Ev1)d1 + . . . + `(Evk)dk = 0.

Taking the symplectic product on this identity:

`(Ev1)n1 + . . . + `(Evk)nk = 0,

and then taking the wedge product with ni, for 1 ≤ i ≤ k gives the result.

Example 6.4.5. The balanced quiver Q(b)
P1×P1 is as follows:

a

db

c (1)

(1)(1)

(1) 2

2

2

2

Q(b)
P

P1×P1

A final piece of information that can be associated to a quiver QP is a choice of

Hamiltonian cycle. Recall that a Hamiltonian cycle of a quiver Q is a cycle that

visits each vertex exactly once.
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6.4 quivers and hamiltonian cycles

Definition 6.4.6. The Hamiltonian cycle associated to a balanced quiver of the

form Q(b)
P is the unique path through the vi in the order determined by the an-

ticlockwise orientation of the corresponding cones Cvi . We denote the balanced

quiver of a Fano polygon with Hamiltonian cycle equip by Q(b,H)
P .

By definition, a Hamiltonian cycle will not travel against an arrow of a quiver.

More specfically , consider two cones C1, C2 lying adjacently in an anticlock-

wise orientation. It follows that n1 ∧ n2 ≥ 0, and so there is not an arrow from

v2 to v1 in the quiver. It is however possible for the Hamiltonian cycle to pass

between two vertices that do not have an arrow between them. Indeed this is

exactly the case when C1, C2 belong to the same edge.

Example 6.4.7. The balanced quiver with Hamiltonian cycle of P1×P1 is given

by:

a

db

c (1)

(1)(1)

(1) 2

2

2

2

Q(b,H)

P1×P1

Lemma 6.4.8. Given a balanced quiver with Hamiltonian cycle Q(b,H)
P belong-

ing to the mutation graph of Q(b,H)

P1×P1 , it is possible to recover the corresponding

Fano polygon P.

Proof. This is a simple exercise in linear algebra to reconstruct the affine loop

which forms the boundary of the Fano polygon. Since every edge of P repre-

sents a primitive T-singularity, this determines where the origin is.

This lemma is almost true in greater generality. If a Fano polygon P has singu-

larity content (n,B) where B 6= ∅, then we can recover P from the balanced
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6.4 quivers and hamiltonian cycles

quiver with Hamiltonian cycle Q(b,H)
P , if one knows which vertices of Q(b,H)

P

are frozen.

It is understood how to mutate a quiver, see Bernstein–Gelfand–Ponomarev

and Fomin–Zelevinsky [15, 34], and we recall this definition from Section

6.2.

Definition 6.4.9. Let Q be a quiver and v ∈ V(Q). Define the mutation of Q at

v, denoted mutv(Q), to be the quiver obtained from Q by:

(i) For every pair of arrows v′ → v and v→ v′′, add an arrow v′ → v′′;

(ii) Delete a maximal set of disjoint two-cycles;

(iii) Reverse all arrows incident to v.

Suppose QP is the quiver associated to a Fano polygon P. By convention we

do not mutate with respect to frozen vertices.

Proposition 6.4.10 ([48]). Consider a Fano polygon P and the corresponding

quiver QP. Let v ∈ V(QP), and E be the edge of the T-cone corresponding to v.

Then

mutv(Qp) = Qmut(nE ,F)(P).

This notion of quiver mutation can be extended to the mutation of a weighted

quiver as shown in [49].

Definition 6.4.11. Consider a balanced quiver Q(b), and v ∈ V(Q(b)). Let Q

by the underlying quiver of Q(b), that is, the quiver obtained from Q(b) by

ignoring the weights of the vertices. Set Q′ = mutv(Q). The quiver Q′ can be

balanced by assigning the weights ofQ(b) to every vertex v′ 6= v, and then using

any arrow of Q′ incident to v to obtain a balancing condition that uniquely

determines weight(v). This new balanced quiver, denoted mutv(Q(b)), is called

the mutation of the balanced quiver Q(b).

Mutation of a balanced quiver is well-defined by Lemma 6.4.4.
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6.4 quivers and hamiltonian cycles

We look to extend this notion to the mutation of a balanced quiver with a

Hamiltonian cycle Q(b,H)
P associated to a Fano polygon P.

Definition 6.4.12. Choose a vertex v ∈ V(Q(b,H)
P ). By starting at u1 = v and

following the Hamiltonian cycle, label the vertices of Q(b,H)
P by u1, . . . , uk. For

2 ≤ i ≤ k, set

ni = #(arrows from ui to v)− #(arrows from v to ui).

Choose j to be the smallest integer such that sign(nj) 6= sign(nj+1), where

sign(n) =


1, if n > 0,

0, if n = 0,

−1, if n < 0.

Define a Hamilton cycle H′ on the vertices of Q(b,H)
P by u2u3 . . . uju1uj+1 . . . uk.

The mutation of Q(b,H)
P with respect to v, denoted by mutv

(
Q(b,H)

P

)
, is the quiver

mutv

(
Q(b)

P

)
equipped with the Hamiltonian cycle H′.

Example 6.4.13. Consider the quiver Q(b,H)

P1×P1 from Example 6.4.7 and mutate

with respect to v1. With the above notation, the Hamiltonian cycle of Q(b,H)

P1×P1

is u1u2u3u4 = adbc. Mutating the Hamiltonian cycle with j = 3, it follows that

the new Hamiltonian cycle is u2u3u1u4 = dbac.

a

db

c (1)

(1)(1)

(1) 2

2

2

2 4

muta

(
Q(b,H)

P1×P1

)

In some cases there may not be a unique choice for j. When there is more than

one vertex of P with respect to the inward pointing normal used in the muta-
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6.4 quivers and hamiltonian cycles

tion, then the choice of j is akin to the choice of primitive slice F = conv {0, vE}

in Definition 2.5.12.

Proposition 6.4.14. Consider a Fano polygon P and the corresponding quiver

Q(b,H)
P . Let v ∈ V(Q(b,H)

P ), and E be the edge of the T-cone corresponding to v.

Then

mutv(Q(b,H)
p ) = Q(b,H′)

mut(nE ,F)(P).

Proof. Using Lemma 6.4.4 and Proposition 6.4.10 it remains only to check the

Hamiltonian cycle. Informally we have seen that mutation lifts a T-cone C over

an edge E, and places it onto the vertex of P that is maximal with respect to

the grading induced by the inward pointing normal nE. It follows that this

vertex will be the end point of two edges E1 and E2 such that sign(nE ∧ nE1) 6=

sign(nE ∧ nE2). The two cones either side of C will then lie adjacent. Therefore

the Hamiltonian cycle of mutv(Q(b,H)
p ) is the correct one.

By Lemma 6.4.8 and Proposition 6.4.14, studying the mutation graph of P1 ×

P1 is equivalent to studying the mutation graph of the quiver Q(b,H)

P1×P1 . From

Section 6.3, the shape of the mutation graph of Q(b,H)

P1×P1 is known. With this

in mind we study the central spine of the P1 × P1 mutation graph, that is

polygons of the general form (dc)naP1 × P1 and c(dc)naP1 × P1, where n ∈

Z≥0.

We have already seen Q(b,H)

aP1×P1 in Example 6.4.13. In particular, Q(H)

aP1×P1 is of

the form
a

db

c (1)

(1)(1)

(1) p

q

q

p 4

for some p, q ∈ Z>0. Mutate this quiver with respect to c followed by the

mutation with respect to d:
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a

db

c p

q

q

p 4 µc7−→

a

db

c p

4p− q

4p− q

p 4 µd7−→

a

db

c 15p− 4q

4p− q

4p− q

15p− 4q 4

Note that the underlying shape of the quiver has been preserved under muta-

tion. Hence Q(H)

(dc)naP1×P1 is given by

a

db

c pn

qn

qn

pn 4

where pn and qn satisfy the linear recursions

pn = 15pn−1 − 4qn−1, p0 = 2, p1 = 22,

qn = 4pn−1 − qn−1, q0 = 2, q1 = 6.

Uncoupling the two linear recursions we obtain:

pn = 14pn−1 − pn−2,

qn = 14qn−1 − qn−2.

The sequence {pn}n∈Z≥0 has characteristic equation x2− 14x+ 1 = 0 which has

roots x1 = 7 + 4
√

3 and x2 = 7− 4
√

3. Using the conditions p0 = 2, p1 = 22

to find the constants in the expression pn = C1(7 + 4
√

3)n + C2(7− 4
√

3)n, we

find that C1 = 3+
√

3
3 and C2 = 3−

√
3

3 . Therefore

pn =
1
3

[
(3 +

√
3)(7 + 4

√
3)n + (3−

√
3)(7− 4

√
3)n
]

.

Similarly calculate that

qn =
1
3

[
(3−

√
3)(7 + 4

√
3)n + (3 +

√
3)(7− 4

√
3)n
]

.
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Consider the quiver Q(H)

(dc)naP1×P1 :

a

db

c (ω
(n)
a )

(ω
(n)
d )(ω

(n)
b )

(ω
(n)
c ) pn

qn

qn

pn 4

The balancing weights of Q(H)

(dc)naP1×P1 on the vertices a and b are the same as

those for Q(H)

aP1×P1 by Definition 6.4.11, that is ωa = ωb = 1. Deriving a linear

equation for ωc and ωd by balancing about d and c respectively gives:

ω
(n)
c =

1
6

[
(3−

√
3)(7 + 4

√
3)n + (3 +

√
3)(7− 4

√
3)n
]

,

ω
(n)
d =

1
6

[
(3 +

√
3)(7 + 4

√
3)n + (3−

√
3)(7− 4

√
3)n
]

.

The quiver Q(H)

c(dc)naP1×P1 can be found by mutating the quiver Q(H)

(dc)naP1×P1

about the vertex c. It is of the form

a

db

c (1)

(ω
(n)
d )(1)

(ω
(n+1)
c ) pn

4pn − qn

4pn − qn

pn 4

The toric variety associated to either Q(H)

(dc)naP1×P1 or Q(H)

c(dc)naP1×P1 by Lemma

6.4.8 is the weighted projective space given by P(2, ω2
c , ω2

d). Note that ωc and

ωd are increasing functions in n so there will be no further index two toric

varieties along this mutation line.

Additionally consider the following quiver, which is a general form of the quiv-

ers Q(H)

(dc)naP1×P1 , and two mutations with respect to a then b.
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a

db

c p

q

q

p r µa7−→

a

db

c p

q

q

p
pq− r

µb7−→

a

db

c p

q

q

p
2pq− r

It follows that the quivers Q(H)

ba(dc)naP1×P1 have a very similar form to the quivers

Q(H)

(dc)naP1×P1 , and so we know how to alternatively apply the mutations c and d

to Q(H)

ba(dc)naP1×P1 . The same analysis holds when for calculating Q(H)

bac(dc)naP1×P1 .

Repeating this inductively allows to to understand large portions of the muta-

tion graph, namely we understand the mutation graph while the cones a and b

either share an edge or are parallel.

As an interesting aside we highlight a link between the weights of the quivers

in the central spine of the P1×P1 mutation graph, and the domino tilings of a

3× 2n grid. This link was noticed using [45].

A domino tiling of a grid of squares is a covering with 2× 1 grid-sized tiles

such that every tile covers exactly two squares of the grid and none of the tiles

overlap. Milchev–Karamfilova [58] outline various dependencies between the

number of domino tilings between grids. In particular they produce a formula

for the number of domino tilings, denoted An of a 3× 2n grid where n ∈ Z>0,

namely:

An =
1
6

[
(3 +

√
3)(2 +

√
3)n + (3−

√
3)(2−

√
3)n
]

.

Proposition 6.4.15. The integer sequence (ω
(0)
d , ω

(0)
c , ω

(1)
d , ω

(1)
c , ω

(2)
d , . . .) of new

balancing conditions appearing in the central spine of the P1 × P1 mutation

graph is equal to the integer sequence (A0, A1, A2, . . .).
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Proof. By calculating (2 +
√

3)2n = (7 + 4
√

3)n, it follows that A2n = ω
(n)
d . We

also have that

A2n−1 =
1
6

[
(3 +

√
3)(2 +

√
3)2n−1 + (3−

√
3)(2−

√
3)2n−1

]
=

1
6

[
(3 +

√
3)

(2 +
√

3)
(7 + 4

√
3)n +

(3−
√

3)
(2−

√
3)
(7− 4

√
3)n

]

=
1
6

[
(3−

√
3)(7 + 4

√
3)n + (3 +

√
3)(7− 4

√
3)n
]

= ω
(n)
c .

At the level of Fano polygons, Proposition 6.4.15 is a statement about the chang-

ing lattice lengths of the edges of PP1×P1 under a certain sequence of muta-

tions.

6.5 plücker coordinates of P1 × P1

We recall the construction of a toric variety which generalises the well-known

construction of projective space. This is well documented and can be studied

in [2, 29, 30] among others.

Let XΣ be a Fano toric variety given by the complete fan Σ ⊂ NR
∼= Rn, where

the minimal ray generators uρ of Σ span NR. Consider the n× |Σ(1)| matrix

B whose columns are given by the generators uρ, ρ ∈ Σ(1). Let A be the

|Σ(1)| × (|Σ(1)| − n) matrix which is the dual of B, that is, the rows of A give

relations among the uρ. These matrices define the functions in the short exact

sequence of Theorem 1.4.1:

0 −→ M B−→ CDivT(XΣ) ∼= Zn A−→ Pic(X) −→ 0. (8)
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The matrix A is uniquely determined up to the action of GL (n− |Σ(1)|). So

we always assume A contains a submatrix of the form λI|Σ(1)|, for some λ ∈

Z>0.

Definition 6.5.1 ([29]). For each ρ ∈ Σ(1), define a variable xρ. Set S =

C
[
xρ : ρ ∈ Σ(1)

]
. Define the degree of a monomial ∏

ρ∈Σ(1)
xdρ

ρ as:

deg

 ∏
ρ∈Σ(1)

xdρ
ρ

 =

 ∑
ρ∈Σ(1)

dρDρ

 ,

where Dρ is the divisor corresponding to ρ, and [D] is the class of the divisor

D in Pic (XΣ). The ring S with this grading is called the Cox ring of XΣ.

Example 6.5.2. Let X = Pn. Then the Cox ring S is the homogeneous coordi-

nate ring C[x0, . . . , xn] where all variables xi have weight 1.

Example 6.5.3. Let X = P(a0, . . . , an). Then the Cox ring S is the ring C[x0, . . . , xn]

where xi has weight ai.

Indeed the Cox ring is the generalisation of the homogeneous coordinate ring

to toric varieties.

Since Pic(XΣ) depends only on Σ(1), so does S. Indeed we can reconstruct

Σ(1) from the Cox ring. In dimension n = 2, this is enough to find Σ (using

completeness) but if n ≥ 3, Σ cannot be recovered from Σ(1).

Let σ ∈ Σ. Set xσ̂ = ∏
ρ/∈σ(1)

xρ.

Definition 6.5.4. The irrelevant ideal of X is given by:

I = 〈xσ̂ : σ ∈ Σ〉 ⊂ S.

Lemma 6.5.5. For a Fano variety, only the maximal full dimensional cones need

to be considered when defining the irrelevant ideal, that is:

I = 〈xσ̂ : σ ∈ Σ(n)〉.

Theorem 6.5.6. The data A and I determine Σ, and hence XΣ.
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Proof. The matrix A determines the rays of Σ. The ideal determines the maxi-

mal cones. Together this is enough to determine Σ.

Applying HomZ(−, C∗) to the short exact sequence of (8), we obtain:

1 −→ G = HomZ (Cl(XΣ), C∗)
M−→ (C∗)n −→ T −→ 1, (9)

where M = AT.

Definition 6.5.7. M is called the GIT matrix of XΣ.

Note the columns of M are the ray generators of the secondary fan of XΣ. The

ideal I can also be read off the secondary fan. The anticanonical divisor −KXΣ

is given by the sum of the columns of M. This can be marked on the secondary

fan.

Lemma 6.5.8. The irrelevant ideal is given by:

I =
〈

xρj1
xρj2

. . . xρjn
: −KXΣ ∈ Cone

(
xρj1

, xρj2
, . . . , xρjn

)〉
.

The short exact sequence (9) describes an action of G = HomZ (Cl (X) , C∗) on

(C∗)n. Namely:

(
λ1, . . . , λn−|Σ(1)|

)
· (x1, . . . , xn) =

((
n−|Σ(1)|

∏
i=1

λ
ai,1
i

)
x1, . . . ,

(
n−|Σ(1)|

∏
i=1

λ
ai,n
i

)
xn

)
.

The significance of all these definitions lie in the following theorem.

Theorem 6.5.9. The toric variety XΣ is isomorphic to the categorical quotient(
CΣ(1)\V(I)

)
/G.

Example 6.5.10. Consider P1×P1, and the corresponding Fano polygon PP1×P1 :

v2

v1

v4

v3
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The columns of B are given by the vertices of P, that is:

B =

1 0 −1 0

0 1 0 −1

 .

Calculating the dual matrix and transposing gives the GIT matrix:

v1 v2 v3 v4

1 0 1 0

0 1 0 1

This determines that −KP1×P1 =

2

2

, and the secondary fan is given by:

−KX

v2, v4

v1, v3

From here it is easy to read that the irrelevant ideal is given by:

I = 〈x1x2, x1x4, x2x3, x3x4〉 = 〈x1, x3〉 ∩ 〈x2, x4〉.

Recall the general definition of Plücker coordinates which can be studied from

[59]. Given an algebraically closed field k, consider a d × n matrix M whose

entries lie in k.

Definition 6.5.11. Given a subset S ⊂ [n] where |S| = d, denote MS as the

d× d submatrix obtained by only considering the columns indexed by S. The

maximal d× d minors of M form a list (det(MS) : S ⊂ [n], |S| = d) called the

Plücker coordinates of M.
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6.5 plücker coordinates of P1 × P1

Proposition 6.5.12 ([59, Proposition 14.2]). The list (det(MS) : S ⊂ [n], |S| = d)

considered up to scale, identifies the row span of M uniquely. More precisely

a matrix M′ has the same row span as M if and only if there exists λ ∈ k such

that:

det(MS) = λ det(M′S), ∀S ⊂ [n] with |S| = d.

Given a toric variety XP, we can associate Plücker coordinates through the GIT

matrix M.

Definition 6.5.13. Suppose XP has Picard rank 2, that is |V(P)| = 4. The Plücker

coordinates of XP are given by the four maximal 2× 2 minors of M such that the

corresponding rays to the two chosen columns give variables whose product

does not belong to the irrelevant ideal. In this case we say that the maximal

minor crosses the irrelevant ideal. Furthermore there are two minors that do not

cross the irrelevant ideal giving forbidden Plücker coordinates. Since Plücker

coordinates are considered up to a scalar, assume that the greatest common

divisor of the coordinates is zero.

Example 6.5.14. Consider P1 ×P1. The GIT matrix is given by:

v1 v3 v2 v4

1 1 0 0

0 0 1 1

Here the columns of M have been reordered according to the anti-clockwise

ordering of the secondary fan. It follows that the Plücker coordinates from Def-

inition 6.5.13 of P1×P1 are given by (1, 1, 1, 1). The extended Plücker coordinates,

that is the usual Plücker coordinates with the two forbidden Plücker coordi-

nates attached, are given by (0, 1, 1, 1, 1, 0) where the forbidden coordinates are

in red.

This construction can be generalised to when the Picard rank of XP is k > 2. It

follows that P has k + 2 vertices and there will be k relations among them. As
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6.5 plücker coordinates of P1 × P1

before we have the GIT matrix M, which will now have dimensions k× (k + 2).

The Plücker coordinates are the maximal k × k minors. The minors that give

the usual Plücker coordinates are those where the two omitted columns of M

correspond to two vertices that define an edge of P. The remaining maximal

minors are the forbidden ones.

We calculate the GIT data and Plücker coordinates of the entries of the P1×P1

mutation graph, and this is shown in Figures 23 and 24.
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6.5 plücker coordinates of P1 × P1

1 1 0 0

0 0 1 1



1 1 2 0

0 0 1 1



1 1 4 0

0 2 9 1



9 1 56 0

0 2 121 9



121 1 780 0

0 2 1681 121



1681 1 10864 0

0 2 23409 1681



1 1 4 0

0 4 25 1

1 1 4 0

0 6 49 1



25 841 4 0

0 154 1 25



1 9 50 0

0 4 25 1



9 1 56 0

0 56 4225 9



9 121 8450 0

0 56 4225 9


4225 1 27234 0

0 56 2036329 4225



9 1 56 0

0 1886 143641 9



121 1 780 0

0 780 811801 121



1681 1 10864 0

0 10864 157377025 1681



a

c

d

c

d

c

ac

d

b

a

d

c

b

d

c
b

a

a

c
b

d

a
b

c

b
a

d

c
d

ac

d

b

a c

b

d

Figure 23: GIT matrix of mutation graph of P1 ×P1
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(0, 1, 1, 1, 1, 0)

(2, 1, 1, 1, 1, 0)

(2, 9, 1, 1, 1, 4)

(56, 1, 9, 1, 121, 2)

(2, 1681, 121, 1, 1, 780)

(2, 23409, 1681, 1681, 1, 10864)

(4, 25, 1, 9, 1, 4)(6, 49, 1, 25, 1, 4)

(154, 1, 25, 9, 841, 4)

(4, 25, 1, 25, 9, 50)

(56, 4225, 9, 121, 1, 56)

(56, 4225, 9, 4225, 121, 8450)

(56, 2036329, 4225, 121, 1, 27234)

(1886, 143641, 9, 4225, 1, 56)

(780, 811801, 121, 1681, 1, 780)

(10864, 157377025, 1681, 39350529, 1, 10864)

a

c

d

c

d

c

ac

d

b
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d

c

b

d

c
b
a

a

c
b

d

a
b

c

b
a
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c
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d

b
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b

d

Figure 24: Plücker coordinates of mutation graph of P1 ×P1
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6.6 extended quiver and plücker coordinates

Ideally we would like to be able to answer the question ’When do six inte-

gers (a, b, c, d, e, f ) describe the Plücker coordinates of an entry of the P1 ×P1

mutation graph’?

It is a known result that given a Fano polygon P such that SC(P) = (n,∅) for

some n ∈ Z>0, and corresponding balanced quiver Q(b)
P , that the balancing

condition on a vertex v ∈ V
(
Q(b)

P

)
is the square root of one of the maximal

minors of the GIT matrix. We generalise this statement:

Lemma 6.6.1. Let P be a Fano polygon and v, w ∈ V(P). Define E as the line

segment from v to w. Let pE be the maximal minor obtained by removing the

two columns corresponding to v and w. Then:

pE = l(E)× h(E).

Combining Lemma 6.4.4 and Lemma 6.6.1 proves the following corollary which

is a stronger version of the above statement.

Corollary 6.6.2. Let P be a Fano polygon, and Q(b)
P be the corresponding bal-

anced quiver. Let v ∈ V
(
Q(b)

P

)
correspond to the cone C of P. Then the

Plücker coordinate pC is equal to the balancing condition on v multiplied by

h(C).

When v and w are chosen in Lemma 6.6.1 to define a facet of P, then pE is

a usual Plücker coordinate. Alternatively in the case of pE being a forbid-

den Plücker coordinate, E is a forbidden edge of P. However the statement of

Corollary 6.6.2 still holds for these forbidden edges, that is, pE is equal to

l(E)× h(E).

Example 6.6.3. Consider the polygon PP1×P1 shown below:
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6.6 extended quiver and plücker coordinates

v1

v2

v3

v4

Note P1 × P1 has four non-forbidden edges, that is the standard facets, and

two forbidden edges: the line segment from v1 to v3 and the line segment from

v2 to v4. These are marked in red. From Example 6.5.14 the Plücker coordinates

of P1 ×P1 are given by (0, 1, 1, 1, 1, 0). It is easy to verify Corollary 6.6.2 here.

Conjecture 6.6.4. The lattice length of a forbidden edge of a Fano polygon P

belonging to the mutation graph of P1 ×P1 is two.

Note we do not go as far as to claim that the lattice length of forbidden edges

is a mutation invariant. Indeed consider the counter-example to this statement

given by a mutation of PF1 :

PF1 =

E

mutE (PF1) =

The forbidden lines of PF1 have lattice lengths two and one, while both forbid-

den edges of mutE (PF1) have lattice length one. Therefore the lattice length of

forbidden edges is not a mutation invariant in general.
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Corollary 6.6.2 and Conjecture 6.6.4 can be used to provide restrictions on the

Plücker coordinates of an entry P of the P1 ×P1 mutation graph. Specifically

each facet E (a non-forbidden edge) of P describes a primitive T-singularity.

Therefore l(E) = h(E) and so the Plücker coordinate pE must be square. Al-

ternatively if E is a forbidden edge then l(E) = 2, and so pE must be even.

Therefore the Plücker coordinates of P take the form (2a, b2, c2, d2, e2, 2 f ). Ad-

ditionally the coordinates must satisfy the standard Plücker relation:

4a f + c2d2 = b2e2.

Example 6.6.5. Consider the Fano polygon acaPP1×P1 of the mutation graph of

P1 ×P1, see Figure 19, which has vertices:

V(acaPP1×P1) = {(−1, 0), (4, 1), (25, 4), (0,−1)} .

The Plücker coordinates can be calculated to be (4, 25, 1, 9, 1, 4). This satisfies all

the required conditions. Indeed starting with these coordinates it is possible to

recover the Fano polygon acaPP1×P1 , either by calculating the correspond GIT

matrix, or by finding four vertices that satisfy the necessary length and height

conditions.

Unfortunately these conditions are not a sufficient condition for the correspond-

ing Fano polygon to belong to the mutation graph of P1×P1, as illustrated by

the next example.

Example 6.6.6. Consider the Plücker coordinates (2, 25, 1, 9, 1, 8), that describe a

Fano polygon P. Note that the coordinates satisfy the desired even and square

conditions. The corresponding GIT data is given by:

1 1 8 0

0 2 25 1

.

Writing this as a matrix, dualizing, and taking the kernal gives us the matrix:−1 1 0 −2

−8 0 1 −25

 ,
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6.6 extended quiver and plücker coordinates

whose columns represent the vertices of P, that is:

V(P) = {(0, 1), (1, 0), (−2,−25), (−1,−8)} .

However SC(P) =
(

2,
{

1
9(1, 4), 1

25(1, 2)
})

, and so this cannot be any entry of

the mutation graph of P1 ×P1.
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