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Abstract

Algebraic geometry is the study of geometrical shapes defined as solutions to polynomial
equations – algebraic varieties. Amongst varieties, the positively curved ones – Fano varieties
– distinguish themselves for their importance: they can be considered the building blocks
of algebraic geometry. A new approach to the classification of Fano varieties comes from
mirror symmetry and involves analysing an invariant called the regularized quantum period.
This is a sequence of integers which gives a numerical fingerprint for a Fano variety – it
is conjecture to determine a Fano variety uniquely. In this thesis, we approach questions
related to the classification of Fano varieties in this flavour using both traditional mathe-
matics and a novel methodology coming from data analysis and machine learning. The
two main contributions of this thesis are as follows.

In the first part of this thesis, we build accurate machine learning models that predict the
dimension of certain Fano varieties from their regularized quantum period. Guided by the
model, we are able to establish rigorous asymptotic formulae for the regularized quantum
period thatmake the dependence on the dimension clear. This result is proof-of-concept of
two main ideas: firstly how the machine learning models can guide intuition in formulat-
ing and proving rigorous mathematical statement. Moreover, it gives positive evidence for
the conjecture that the regularized quantum period carries geometric information about
the variety.

In the second part of this thesis, we use machine learning differently. When classifying
Fano varieties, we note that the objects that we are after are not smooth and well-behaved
but have to admit some bad points, called terminal singularities. Being able to verify such
a condition is of fundamental importance, but can be very challenging. We develop an
accurate neural network classifier that predicts whether certain Fano varieties (belonging
to a family of geometries that are nicely behaved) have terminal singularities. We use this
classifier to accelerate computations by substituting expensive computer algebra routines.
This allows us to generate a big dataset to give the first sketch of the landscape of this class
of Fano varieties. Moreover, inspired by the machine learning analysis, we formulate and
prove a new global combinatorial criterion for checking if this class of Fano varieties has
terminal singularities. Together with the first sketch of the landscape of this family of Fano
varieties, this gives strong new evidence that machine learning can be an essential tool in
developing mathematical conjectures and accelerating theoretical discovery.
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Introduction

Algebraic geometry studies algebraic varieties, high-dimensional geometric shapes that are
defined as solutions to polynomial equations. These objects arise naturally and have appli-
cations across mathematics and science (for example in coding theory [vLvdG88], cryp-
tography [NX09], string theory [AHDM78], optimisation problems [FRPM06], and alge-
braic statistics [ERSS05]). A central objective in algebraic geometry is classifying algebraic
varieties. The meaning of classifying can change depending on the flavour of geometry we
are looking at, but in our context we consider classifying algebraic varieties in the sense
of the Minimal Model Program (MMP) [KM98, Kol87]. The MMP describes the process
of decomposing a variety into basic pieces, which can be of three types: positively curved
(Fano), flat (Calabi–Yau), negatively curved (general type).

Let us consider the example of algebraic curves, also called Riemann surfaces; see Table 1.
These are one-dimensional geometric shapes over the complex numbers, and they are de-
termined completely by their genus. The projective line (the sphere) has genus zero, and
it admits a metric with positive curvature; this is the only one-dimensional Fano variety.
All elliptic curves (tori) belong to the same family: they have genus one and they admit
a metric with zero curvature. These are the flat examples, or Calabi–Yau. And lastly, we
have different families of hyperelliptic curves, which have genus greater than one and ad-
mit a metric with negative curvature. These are the general type examples. The MMP can
be thought of as a generalisation of this classification of algebraic varieties to dimension
greater than one.

Sphere/ Tori/ Hyperelliptic
P1 Elliptic Curves Curves

Genus 0 1 > 1
Curvature Positive Zero Negative

Table 1: Classification of algebraic curves according to genus.
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The correct notion of equivalence for classifying varieties in this setting is deformation. Intu-
itively, two algebraic varieties are deformation equivalent if we can change the equation of
one to obtain the other by perturbing the coefficients. For example, we can write all elliptic
curves as solution to an equation of the form y2 = x3 + ax+ b for some coefficients a and b.
As we change the coefficients, we change some aspects of the geometry of the variety, but
we keep the topology the same, meaning that they belong to the same family. When look-
ing at classification questions in algebraic geometry, we will consider deformation families
of algebraic varieties rather than the single varieties themselves.

Fano varieties

In the context of the MMP, Fano varieties are – in a precise sense – the atomic pieces of alge-
braic geometry. Not only they are important because they are the positively-curved pieces,
but the other two classes (Calabi–Yau and general type) can be realised in a Fano variety
by imposing extra equations. Therefore, the classification of Fano varieties (up to defor-
mation) can be thought of as building a Periodic Table for geometry. However, despite its
fundamental importance, their classification has been open since the 1930s. It is known
only for the low-dimensional smooth cases. The only one-dimensional smooth example is
the projective line –we have seen this in the classification of algebraic curves. In dimension
two, there are tenmore deformation families, the Del Pezzo surfaces [DP87]. In dimension
three, we jump to 105 families, whose classification combines work of Fano in the 1930s,
Iskovskikh in the 1970s, and Mori–Mukai in the 1980s [Fan47, Isk77, Isk78, Isk79, MM82,
MM03]. Unfortunately, there is no complete classification for dimensions higher than four,
despite knowing that there are finitely many smooth deformation families in each dimen-
sion [KMM92]. Even less is known when the varieties are not required to be smooth, de-
spite the fact that there are finitely many families if the singularities are of bounded com-
plexity [Bir21]. In the context of decomposing varieties into their basic pieces, smoothness
is actually not the right restriction to impose (examples of smooth and singular algebraic
varieties are shown in Figure 1). In fact the building blocks which arise from the MMP
are not necessarily smooth, but satisfy a weaker condition, called Q-factoriality, and admit
mild singularities, called terminal singularities [Cas21, Rei87]. We use the term Q-Fano to
refer to Fano varieties that satisfy these conditions. These types of singularities are the
most restrictive class that needs to be allowed to for the MMP to run.

(a) x2+y2 = z2+1 (b) x2 + y2 = z2 (c) x2 + y2 = z3

Figure 1: Algebraic varieties in R3 with different defining equations: (a) is smooth, (b)
and (c) havesingularity at the origin.
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Besides being the building blocks of algebraic geometry, Q-Fano varieties are interesting
in other contexts as well. They play an important role in the study of K-stability and the
existence of Kähler–Einstein metrics [Ber16]. On the other hand, they also find applica-
tions in theoretical physics. In fact, the main construction of Calabi–Yau manifolds, which
gives geometric models of spacetime in Type II string theory [Pol05, Gre97, CHSW85], are
through ‘anticanonical sections’ ofQ-Fano varieties. Finally, terminal singularities (which
we will focus on the second part of this thesis) not only appear in the Minimal Model
Program [Kol87], but also in other areas of mathematics. For example, they find appli-
cations in F-theory, where they represent the presence of localized matter states for those
M2-branes which are not charged under any massless gauge potential [AGW18]. In addi-
tion to this, in the toric case, a variety having at worst terminal singularities is equivalent
to considering lattice polytopes that only have one lattice point in their interior, so-called
one-point lattice polytopes. These objects are important in optimisation problems.

Mirror symmetry

A new approach to the classification of Fano varieties has arisen using ideas coming from
mirror symmetry. Mirror symmetry is a new and active area of mathematics which has
its roots in string theory. This term was originally used to refer to the correspondence
that has been observed between certain Calabi–Yau varieties by theoretical physicists and
algebraic geometers; see [CHSW85, SYZ96]. Since then, the term mirror symmetry has
been used inmany contexts to refer to awide systemof far-reaching conjectures of a duality
between different geometric objects. In our case, mirror symmetry for Fano varieties refers
to the conjectured correspondence between (deformation classes of) Fano varieties and
(mutation classes) of certain Laurent polynomials [CCG+13]. Both these objects can be
associated to certain power series (the regularized quantum period for Fano varieties, and
the classical period for Laurent polynomials). If these two power series coincide, the two
objects are said to be mirror partners.

Given a Fano variety X , its regularized quantum period is given as

ĜX(t) =
∞∑︂
d=0

cdt
d ,

where c0 = 1, c1 = 0, cd = rdd!, where rd are certain Gromov–Witten invariants of X .
Intuitively, each rd counts the number of rational curves of degree d inX that pass through
a fixed generic point and have a certain constraint on their complex structure. We call
period sequence the sequence (cd)d of coefficients of the regularized quantum period. This
object not only arises in the study of mirror symmetry for Fano varieties, but it is expected
to contain a lot of geometric information about the variety. In fact, it is conjectured to
be a complete invariant of Fano varieties up to deformation. This is proven in the smooth
low-dimensional case, where we have a complete classification, and there are no known
counterexamples [CCGK16]. Regardless of whether the conjecture is true, the regularized
quantum period remains an extremely fine invariant for Fano varieties. One of the major
motivating question behind this thesis is to explore how to extract geometric information
about a variety from its regularized quantum period.
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Amachine learning approach

The central idea of this thesis is to use data analysis and machine learning, in combina-
tion with geometric and combinatorial tools, to explore the landscape of Fano varieties,
with the ultimate aim to formulate and prove rigorous statements. The content of this
work positions itself in the new wave of application of machine learning to pure mathe-
matics [DVB+21, He23, EF21, WDL22, Wag21] and answers affirmatively to the question
‘can machine learning bring insight into pure mathematics research?’. We note that whilst
this is a novel approach, it fits well in the paradigm of how to do mathematics. Pattern
recognition has been at the core of mathematical discovery for centuries. The most famous
examples are perhaps the conjecture of the Prime Number Theorem by Gauss and the for-
mulation of the Birch and Swinnerton-Dyer Conjecture in the 1960s [BSD63]. The latter is
also a prominent example of the use of computer experiments to drive conjecture formula-
tion. More generally, computer assisted experiments in this flavour have led to a growth in
interest and availability of big datasets of mathematical objects; see for example the Atlas
of Lie Groups [APC+16], Kreuzer and Skarke’s dataset of reflexive polyhedra [KS00], the
Atlas of finite groups [CCN+85], and Cremona’s dataset of L-functions [Cre16]. Overall
this increase in development and use of computational tools in pure mathematics is now
being complemented by a new emerging methodology that studies mathematical objects
using tools from data analysis andmachine learning. In particular, in this work we present
two paradigmatic workflows of interplay between machine learning techniques and pure
mathematics. The first one showcases how high-accuracy machine learning models can be
used to guide mathematician’s intuition in conjecturing (and then proving) mathematical
statements. On the other hand, we also give an example of how indispensable machine
learning can be in accelerating mathematical discovery by taking the place of expensive
computer algebra routines in data generation pipelines.

Contribution

In this thesis we summarise the contents of [CKV23b, CKV24] that showcase the interplay
between pure mathematics and the machine learning methodology. Our problem is suit-
able for a machine learning framework for numerous reasons. Firstly, the sheer amount
of data makes this problem hard to navigate on paper, but having many datapoints is the
area in which machine learning methods really shine. In addition to this, we will probe
the landscape of Q-Fano varieties by analysing highly symmetrical objects – toric varieties
– whose geometry is controlled by combinatorics and therefore are suitable examples to
handle in a computational context. The chapters dealing with these themes are comple-
mented by purely theoretical upcoming work, whose construction has relied heavily on
computational tools.

Toric Fano varieties Let us explicitly describe the objects we are considering – toric Fano
varieties. The prototypical example of this class of objects is projective space Pn which can
be defined as the quotient Cn+1 \ {0}/C× under the action

λ · (z0, . . . , zn) = (z0, . . . , zn) .
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This can be generalised to actions that have different weights, such as

λ · (z0, . . . , zn) = (λa0z0, . . . , λ
anzn)

whose quotient gives rise to a weighted projective space P(a0, . . . , an).

For a general toric Fano of Picard rank r and dimensionN −r, its geometry is described by
an integer–valued matrix describing an action of (C×)r on CN , whose geometric quotient
is the variety. In our context, we will mostly concentrate on toric Fano varieties of Picard
rank two, whose data is summarised in a 2×N integer–valued matrix[︃

a1 a2 · · · aN
b1 b2 · · · bN

]︃
(0.0.1)

which describes the action (C×)2 on CN

(λ, µ) · (z1, . . . , zN) = (λa1µb1z1, . . . , λ
aNµbN zN) .

Toric Fano varieties have many other benefits which makes them amenable to the machine
learning tools we use in this thesis. For example, they have a rich combinatorial structure
which captures their geometric properties. Therefore, they work well within computer al-
gebra systems and automated data generation pipelines. Moreover, in the context ofmirror
symmetry we have explicit formulae to compute their regularized quantum periods.

Machine learning for conjecture generation In [CKV23b], we asked if we can extract
the dimension of a Fano variety from its period sequence. As previously discussed each
coefficient in the sequence counts curves in the variety. One can think of the period se-
quence as a numerical fingerprint of a Fano variety, since it is conjectured be an invariant
that determines the Fano variety uniquely [CCG+13, CCGK16]. Therefore, it is natural to
ask if and howwe can extract geometric properties from it. To answer this, in [CKV23b]we
built very accurate machine learning classifiers predicting the dimension for two classes
of toric Fano varieties (weighted projective spaces and toric varieties of Picard rank two)
from their period sequences. Our machine learning pipeline motivated us to discover and
prove rigorous asymptotics for these classes’ regularized quantum periods, allowing us to
extract the dimension from them. Furthermore, we used this to sketch where these classes
of toric varieties fall in the landscape of all Fano varieties, highlighting how they cluster by
dimension. This gave an important proof-of-concept that the regularized quantum period
indeed carries geometric information and showed a lot of mathematical structure waiting
to be uncovered and understood.

The asymptotic formulae for these classes are generalised to a wider collection of objects,
all toric varieties and toric complete intersections (under some assumptions), in upcoming
work [Ven]. We are restricted to these classes since, among Fano varieties, those that are
toric or toric complete intersections have nice combinatorial formulae that describe the reg-
ularized quantumperiod [CCGK16]. However, this is not a very strong restriction since, in
the known classification of smooth Fano varieties, these represent a big class of examples:
all smooth two-dimensional Fano varieties are toric or toric complete intersections, and so
are 92 of the 105 in the three-dimensional case [CCGK16]. Moreover, there are many ex-
amples of results that were originally proved for toric and toric complete intersections, and
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then generalised to less restrictive classes of varieties [Giv96, Giv98, Giv01, GS19, Tel12].
Therefore, behaviour exhibited in these results is hopefully representative of a wider class
of Fano varieties.

Machine learning for computations In [CKV24] we built a highly accurate neural net-
work model that determines whether a toric Fano variety is terminal. As highlighted
above, being terminal is an essential property, but known terminality tests are often very
computationally expensive. For example, just generating the dataset we used in the paper
took 30 CPU years. With the machine learning model to guide us, we developed a new
algorithm which is 15 times faster than any established method. Moreover, the success of
the neural network (which is up to 2000 times faster than the new algorithm) allowed us
to quickly generate many examples to explore the landscape of terminal toric Fano vari-
eties: generating ten times the original amount of data took only 120 CPU hours. While
exploring the landscape of terminal toric Fano varieties, we discovered a striking depen-
dence between the asymptotics of the regularized quantum period and another invariant
called the Fano index. We expect this approach to bring even more insight on the Fano
classification problem in the future.

In the last part of the thesis, we discuss algorithmic approaches to the study of toric Fano
varieties. We start by presenting the new algorithm that checks if a toric Fano variety of Pi-
card rank two has at worst terminal singularities from [CKV24]. We further generalise this
to check for canonical singularities, and discuss why this methodology is not straightfor-
ward to apply to the cases of Picard rank higher than two. Lastly, we discuss ongoing work
building algorithms to test whether a sequence of number can arise as the period sequence
of a toric Fano variety. We successfully implement this for weighted projective spaces and
a special case of Picard rank two toric Fano varieties. We further discuss generalisations.
Building such algorithms is of importance since, in the context of mirror symmetry we can
look at Fano varieties through their mirror partners, Laurent polynomials. Recall, a Lau-
rent polynomial f is related to a Fano variety X if its classical period (another sequence)
coincides with the regularized quantum period of X . Therefore, being able to determine
whether a classical period could arise as the regularized quantumperiod answers the ques-
tion of whether a Laurent polynomial is a mirror to a Fano variety. Constructing Laurent
polynomials and exploiting this mirror construction has been used to construct new ex-
amples of Fano varieties[CKP19, CHK22, Heu22].

Structure of the thesis

Chapter 1 gives the necessary mathematical background on Fano varieties, toric geometry,
andmirror symmetry for Fano varieties. In Chapter 2, we introduce the keymachine learn-
ing algorithms and methodology that will be utilised in the thesis. Moreover, we discuss
this novel machine learning approach to mathematical data and survey various applica-
tions of machine learning to pure mathematics. Chapter 3 covers the content of [CKV23b]
on the application of machine learning techniques to predict the dimension of toric Fano
varieties from their period sequences. In Chapter 4 we discuss recent progress in the con-
struction of rigorous asymptotics of the regularized quantum period of toric varieties and
toric complete intersections, generalising the result of toric varieties with Picard rank one
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and two from the previous chapter. In Chapter 5 we look at the results of [CKV24] where
we use machine learning to build a classifier that distinguishes between terminal and non-
terminal toric varieties of Picard rank two and dimension eight, and we use this to start
exploring the landscape of Q-Fano toric varieties. In Chapter 6 we summarise different
results relating to the construction of algorithms for toric Fano varieties. In particular,
we discuss a new algorithm to determine whether a Picard rank two toric Fano variety
is terminal or not from [CKV24], which was inspired by the machine learning result in
Chapter 5. In Chapter 7 we conclude the thesis with some outlook, in which we reflect
on our approach and discuss the next steps in integrating pure mathematics and machine
learning.

Impact Statement

The impact of this thesis spans a range of scientific areas. Firstly, the immediate impact
is in algebraic geometry, specifically to the study of the classification of Fano varieties.
This thesis looks at these objects using a machine learning methodology which brings in-
sight into their structure. The classification of Fano varieties is a fundamental problem in
geometry, but any further understanding of it is very impactful across other disciplines,
especially theoretical physics. In fact, four-dimensional Fano varieties naturally contain
three-dimensional Calabi–Yau manifolds, which play a key role in constructing models of
spacetime in string theory [Pol05].

Secondly, this thesis impacts pure mathematics more broadly. This work joins [DVB+21]
as a notable example of a successful application of machine learning to pure mathematics
to drive conjecture generation. In our case this paradigm is applied to geometry, but its im-
pact is potentially much wider. Many mathematical areas have availability of big datasets
(see again [BKnt, APC+16, KS00, CK22, CCN+85, Cre16]). Despite this, a machine learn-
ing and data analysis focused approach to the study of most of these datasets is still very
underexplored. Such experiments can bring insights to these mathematical structures and
lead to the conjecture and proof of new mathematical statements.

Thirdly, this thesis has the potential to impact pure machine learning research as well.
Mathematical data does not have outliers or noise. Therefore, mathematical datasets can be
used as a testbed for machine learning methodologies. For example, the ability (or inabil-
ity!) of deep learning algorithms to achieve high accuracy on complicated data structures
is an interesting problem. This is especially true in the context ofmathematical data, where
we know that there should be a precise mathematical explanation underlying a certain
phenomenon. Moreover, mathematical data provides interesting examples for machine
learning experiments. This is especially true in the context of equivariant and invariant
machine learning approaches. Mathematical data often comes with symmetries which are
usually much richer than, for example, translation and rotation invariance that is consid-
ered in image recognition tasks. Understanding the relationship betweenmachine learning
algorithms and symmetrical data for widely general classes of examples will improve and
develop the robustness of current approaches.
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Conventions Vectors v ∈ Rn are considered as column vectors. We are always working
over the field C.

Data availability All datasets are available on Zenodo [EO13]. The datasets that we refer
to in Chapter 3 are available at [CKV22a, CKV22b] under a CC0 license. The dataset that
we refer to in Chapter 5 is available at [CKV23a] under a CC0 license.

Code availability The code used to run the experiments described in Chapter 3 is avail-
able on BitBucket at [CKV22c] under an MIT licence. The code used to run the experi-
ments described in Chapter 5 is available on BitBucket at [CKV23c] under an MIT licence.
The implementation of algorithms described in Chapters 4 and 6 is available on BitBucket
at [Ven24b] under an MIT licence.
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1 Mathematical Background

In this chapterwe introduce the basics of Fano varieties, toric geometry, andmirror symme-
try. This is aimed at non-specialists and assumes minimal algebraic geometry knowledge.
We limit ourselves to the objects and concepts that will appear in the rest of the thesis.
Nonetheless, we include precise definitions in the footnotes and point the reader to the
references when appropriate.

1.1 Toric varieties

Our main objects of study are toric Fano varieties. In this section we introduce toric vari-
eties from the point of view of Geometric Invariant Theory (GIT). We point the reader to the
references for a broader introduction to toric geometry [Ful93, CLS11]. Toric varieties are
a nice class of highly symmetrical algebraic varieties with a rich combinatorial structure.
Recall from the introduction that algebraic varieties are those geometric shapes defined as
solutions to polynomial equations. For now, the reader can consider the requirement of
being Fano as assuming that these varieties are, in some sense, positively curved – we will
give a precise definition later in the chapter. In the context of toric varieties, we will see
that the condition of being Fano can also be given a combinatorial charactisation.

The prototypical example of a toric Fano variety is projective space, which is defined as the
quotient PN = (CN+1 \ 0)/C×, where the action is given explicitly as

λ · (z0, . . . , zN) = (λz0, . . . , λzN) . (1.1.1)

We can think of the data corresponding to PN to be represented by the vector (1, . . . , 1).
Explicitly, the exponents of λ in (1.1.1).

We can consider C× acting with weights different from one, which then gives rise to a class
of objects called weighted projective spaces. They arise as quotients (CN+1 \ 0)/C×, where
now the action is weighted by (a0, . . . , aN) ∈ ZN

>0, i.e. it is given by

λ · (z0, . . . , zN) = (λa0z0, . . . , λ
aN zN) .

Given any two weighted projective spaces X = P(a0, . . . , aN) and Y = P(b0, . . . , bM), their
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product, X × Y , is not a weighted projective space anymore, but it is a toric variety1. The
product arises as a quotient ofCN+M+2 by an action of (C×)2, where the firstC× acts on the
first N + 1 co-ordinates of CN+M+2 and the second C× acts on the lastM + 1 co-ordinates.
The action is described by a weight matrix (instead of a weight vector as for weighted pro-
jective spaces), [︃

a0 · · · aN 0 · · · 0
0 · · · 0 b0 · · · bM

]︃
.

Explicitly, the action is given by

(λ, µ) · (z1, . . . , zN+1, zN+2, . . . , zM+N+2) = (λa0z1, . . . , λ
aN zN+1, λ

b0zN+2, . . . , λ
bM zM+N+2) .

This construction can be generalised to any action of (C×)2 on CN (for N > 2), which can
be given as

(λ, µ) · (z1, . . . , zN) = (λa1µb1z1, . . . , λ
aNµbN zN)

and can be encoded in a weight matrix of the form[︃
a1 · · · aN
b1 · · · bN

]︃
, (1.1.2)

where all ( ai
bi ) ∈ Z2 \ 0 and they lie in a strictly convex cone2.

The result of taking such a quotient is not assured to be a nice algebraic variety. In fact,
the toric varieties we are after are defined as the geometric quotient of CN by (C×)2, where
geometricmeans that we might have to ignore some point of CN for the quotient to be well-
behaved. In practice, we need to ignore those points whose orbits are not nice. We have
actually already seen this in the case of weighted projective spaces, where the origin of CN

needs to be excluded when taking the quotient by the action of C×, since it is the only
point whose orbit contains just the origin itself. When we have an action of (C×)2 we need
to remove more points from CN . Which points we need to remove depend on what the
action looks like. In practice, the quotient is of CN \ S by the action of (C×)2, where S is a
union of linear subspaces, S− and S+ defined as

S+ := {(x1, . . . , xN) | xi = 0 if bi/ai < b/a} ,
S− := {(x1, . . . , xN) | xi = 0 if bi/ai > b/a} ,

(1.1.3)

for a =
∑︁N

i=1 ai and b =
∑︁N

i=1 bi; see [BCZ04] for details.

Of course, a similar construction can be done for CN quotiented by an action of (C×)r

for r > 2. This action will be described an r × N integer–valued weight matrix (whose
columns lie in a convex cone). In this case we do not have as nice of an expression for the
points to remove as in (1.1.3), but we can still define them explicitly as follows.

Firstly, note that the construction of toric varieties as GIT depends on the choice of a stability
condition, which is an element in the column space of the weight matrix. In our cases, since

1A toric variety is an irreducible algebraic variety which contains a torus (C×)n as an open subset such
that the action of the torus on itself extends to a morphism of varieties (C×)n ×X → X .

2The requirement of the cone to be convex implies that the variety is projective.
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we will require all our toric varieties to be Fano (we will detail the definition of Fano later
in this chapter), the stability condition is always chosen to be the sum of the columns. This
choice of stability condition affects which points ofCN need to be removed for the quotient
to be geometric. For example choosing the stability condition to be the sum of the columns
of thematrix (1.1.2) gives (1.1.3) for the points to be removed. Given a stability condition ω
we can define

Aω = {I ⊂ {1, . . . , N} | ω ∈ ∠I} ,

where, if αi ∈ Zr is the ith column of the weight matrix,

∠I =

{︄∑︂
i∈I

λiαi | λi ∈ R>0

}︄
.

Then, we can define
Uω =

⋃︂
I∈Aω

(C×)I × CĪ

where Ī = {1, . . . , N}\I . Here, Uω can be written asCN minus a union of linear subspaces.
Then, the toric variety is realised as the quotient Uω/(C×)r. Clearly, different choices of sta-
bility condition ω give rise to different Uω and in turn different algebraic varieties, which
might not be Fano. However, choosing the stability condition to be the sum of the columns
of the weight matrix assures it is always Fano. Different quotients arising by taking differ-
ent stability conditions for the same action are related to each other by birational transfor-
mations3.

Note that given a toric Fano variety, there are multiple weight matrices that can give rise
to it, via this GIT quotient construction we have described above. In fact, we have two
group actions on a weight matrix that leave the corresponding quotient unchanged. Given
a weight matrix W ∈ Zr×N , there is an SN action that permutes the columns of W , and
a GLr(Z)4 action that reparametrises the basis of the torus, acting by multiplication on the
left. Both of these actions changeW but leave the corresponding GIT quotient unchanged.
Remark 1.1.1. For the rest of the thesis we will always choose the stability condition to be
the sum of the columns of the weight matrix.

1.1.1 From weight matrices to fans

More traditional surveys of toric varieties usually first introduce the concept of fans, rather
than the GIT quotient description we have given above. Therefore, we now describe how
to construct a fan structure associated to a weight matrix. Note that this process is not
unique, just as the choice of weight matrix does not uniquely identify the toric variety.

Let W be a weight matrix as in the last section. We denote the columns of W by αi ∈ Zr.
Let ω be the stability condition we have mentioned above, which we take to be the sum of

3The process is referred to as variation of GIT quotients [DH98].
4Recall that GLr(Z) is the group of r× r integer–valued invertible matrices whose inverse is also integer–

valued.
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the weight matrix columns. Consider the short exact sequence

0→ Zr → ZN → ZN−r → 0 ,

where the map Zr → ZN is given byW T and β : ZN → ZN−r is its cokernel map. Let ρi ∈
ZN−r be the primitive images of the standard basis in ZN under β and σI be the cone gen-
erated by {ρi | i ∈ I}. Then, the corresponding fan Σ is the cone complex in ZN−r

Σ = {σI | Ī ∈ Aω} .

We will also consider the concept of the spanning polytope. This is the convex polytope P
obtained as the convex hull of the primitive generators of the rays (i.e. the one-dimensional
cones) of the fan Σ.

Example 1.1.2. Consider the weight matrix[︃
1 0 1 1
0 1 1 2

]︃
. (1.1.4)

Then,we can construct a corresponding fanΣ inZ2 withprimitive generators of the rays e1 =
( 1
0 ), e2 = ( 0

1 ), e3 =
(︁ −1
−1

)︁, e4 = (︁ −1
−3

)︁, since(︃
1
0

)︃
+

(︃
0
1

)︃
+

(︃
−1
−1

)︃
=

(︃
0
0

)︃ (︃
1
0

)︃
+ 3

(︃
0
1

)︃
+

(︃
−1
−3

)︃
=

(︃
0
0

)︃
.

The appropriate fan and (spanning) polytope are pictured in Figure 1.1.

( 0
1 )

( 1
0 )

(︁ −1
−3

)︁
(︁ −1
−1

)︁

Figure 1.1: Polytope (in blue) and fan corresponding to the toric variety arising from the
weight matrix in (1.1.4).

1.1.2 Terminal quotient singularities

As mentioned in the Introduction, in the context of the Minimal Model Program smooth
Fano varieties are not the correct basic pieces to consider. In fact, the minimal objects need
not be smooth. The correct restriction is requiring them to beQ-factorial and admit certain
singularities, called terminal singularities. This is the most restrictive class of singularities
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that has to be allowed in the Minimal Model Program to make it work. We will call these
objects Q-Fano varieties.
The definition of Q-factorial for algebraic varieties is more general5, but for the toric case
we have a combinatorial characterisation. Locally, a Q-factorial toric singularity of dimen-
sion n is defined as the quotient of affine space An by a finite abelian subgroup of GLn. For
toric Fano varieties, the condition of being Q-factorial is equivalent to checking that the
spanning polytope is simplicial.
Terminal singularities6 were originally introduced by Reid [Rei80]. In dimension two, an
algebraic variety has at worst terminal singularities if and only if it is being smooth. In
dimension three, we have an analytic classification of terminal singularities [Mor85, Rei87],
which specialises to the classification in the toric case. In dimension four we do not even
have the toric classification.
In the context of toric Fano varieties, checking whether they have at worst terminal singu-
larities reduces to a combinatorial criterion. For weighted projective spaces we do so using
the following results. Note that Proposition 1.1.3 is a necessary and sufficient condition,
while Proposition 1.1.4 is only a necessary condition, but it is still useful to rule out many
examples.
Proposition 1.1.3 (Proposition 2.3, [Kas13]). Let X = P(a0, . . . , aN) be a weighted projective
space of dimension at least three. Then X has at worst terminal singularities if and only if

N∑︂
i=0

{kai/a} ∈ {2, . . . , N − 2}

for each k ∈ {2, . . . , a − 2}. Here a = a0 + · · · + aN and {q} denotes the fractional part q − ⌊q⌋
of q ∈ Q.

Proposition 1.1.4 (Theorem 3.5, [Kas09]). Let X = P(a0, . . . , aN) be a weighted projective
space of dimension at least two, with weights ordered a0 ≤ a1 ≤ . . . ≤ aN . If X has at worst
terminal singularities then ai/a < 1/(N − i+ 1) for each i ∈ {2, . . . , N}.

A result of this thesis is a generalisation of the criterion from Proposition 1.1.3 to the Pi-
card rank two case, proved in Chapter 6, but otherwise checking if a higher Picard rank
variety has at worst terminal singularities uses the fan data rather than the GIT quotient
data. Given a D-dimensional toric Fano variety X , let Σ ⊂ RD be its fan with primitive
rays e1, . . . , eN . Then we can write each top-dimensional cone σ ∈ Σ as

σ = ⟨ei1 , . . . , eiD⟩R≥0
,

i.e. it is generated by a subset ofD of the vectors defining the fan (under the assumption of
the variety beingQ-factorial). Then, the generators of each cone lie in a (D−1)-dimensional

5An algebraic variety X is Q-factorial if it is normal and, in addition, for each rank-one reflexive sheaf E
onX , some tensor power of E is a line bundle. This implies that the dimension of the singular locus inX is
at most dim(X)− 2, and that some tensor power of the canonical sheaf (of top-degree differential forms) is
a line bundle.

6A variety X has terminal singularities if it satisfies two conditions: there exists r ∈ Z≥1 such that rKX is
Cartier; if f : X → Y is a resolution of singularities and {Ei}i is the family of all exceptional prime divisors
of f then rKy = f∗(rKX) +

∑︁
i aiEi for ai > 0.
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hyperplaneH . Testing terminality for the variety is equivalent to, for each top-dimensional
cone in the fan, testingwhether the only lattice points in the cone that lie on or belowH are
the generators of the cone and the origin. In fact, we can say that a toric variety X has at
worst terminal singularities if and only if the corresponding spanning polytope P is such
that P ∩ ZD = vert(P ) ∪ 0.

1.2 Some definitions

In the thesis we will use the concept of Picard rank and Fano index of toric Fano varieties.
We recall the general definitions of these, and give a combinatorial characterisation, which
is the only thing that will be relevant for the other chapters of this thesis.

1.2.1 The Picard rank

Definition 1.2.1. Given an algebraic varietyX , we denote by Pic(X) its Picard group, which
is the group of isomorphism classes of line bundles (i.e. one-dimensional vector bundles)
on the variety.

Definition 1.2.2. TheNeron–Severi group is the quotient Pic(X)/Pic0(X), here Pic0(X) is the
connected component of the identity.

The Neron–Severi group is finitely generated and its rank is called the Picard rank of the
variety.

In the context of toric Fano varieties given as weight matrices that we are considering in
this section, the Picard rank is bounded above by the number of rows of the weight matrix.
For example, a weight matrix like (1.1.2) could represent either a Picard rank one variety
(a weighted projective space) or a Picard rank two variety. Wemake precise the conditions
needed for our weight matrices to have the Picard rank coincide with the number of rows
in Section 1.4. Note that the dimension of a toric variety can be read from its weight matrix
representation as the number of columns minus the number of rows.

1.2.2 The Fano index

Throughout the report we will also consider another invariant of Fano varieties, called the
Fano index. Let us first recall here the precise definition of a Fano variety.

Definition 1.2.3. X is a Fano variety if it is a normal projective variety over the complex
number with Q-Cartier and ample anticanonical divisor. The anticanonical divisor is de-
fined as −KX = ΛnTX (where TX is tangent coherent sheaf).

Definition 1.2.4. The Fano index of a Fano variety X is the largest integer n such that KX

is divisible by n in Pic(X). Note that if X is D-dimensional, then the index of X is less or
equal to D + 1.
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In the case of toric Fano varieties, the Fano index is the greatest common divisor of the
sums of each row of a weight matrix giving rise to X .
Example 1.2.5. The Fano index of P1×P1 is two, sincewe can consider it as the GIT quotient
specified by the weight matrix [︃

1 1 0 0
0 0 1 1

]︃
,

whose columns sum to ( 2
2 ).

1.3 Known classification results

In this section we summarise some known results in the classification of Fano varieties.
Smooth Fano varieties have been classified (up to deformation) in dimension one, two
[DP87], and three [MM82, MM82]; see Table 1.1. If we restrict to smooth Fano varieties
that are toric, the classification has been exploredmore, Table 1.3. There are eighteen exam-
ples in three dimensions [Bat81, Bat91, WW82] and 124 in four dimensions [Bat99, Sat00].
Smooth toric Fano varieties in dimension five were classified using an inductive algorithm
by Kreuzer and Nill [KN09], and all the dimensions up to seven were classified by a dif-
ferent inductive algorithm due to Øbro [Øbr07].
Once we remove the smoothness requirement we still have some classification results. Iso-
morphism classes of weighted projective spaces with terminal singularities have been clas-
sified by Kasprzyk in dimensions up to four (inclusive); see Table 1.2 for a summary. Clas-
sifications in higher dimensions are hindered by the lack of an effective upper bound on a,
the sum of the weights of a weighted projective space.
Isomorphism classes of toric Fano varieties have been classified by Kasprzyk up to dimen-
sion three (inclusive); see Table 1.3. Note that in dimension one and two having at worst
terminal singularities and being smooth are equivalent. Classifying toric Fano varieties
always relies on first classifying weighted projective spaces, so the lack of a classification
in higher dimensions for the latter hinders the classification for the former.

Dimension
1 2 3

P1 10 105
see [DP87] see [MM82, MM03]

Table 1.1: The known classification smooth Fano varieties in low dimension (up to defor-
mation).

Dimension
1 2 3 4

P1 P2 7 28 686
see [Kas06] see [Kas13]

Table 1.2: The known classification of terminal weighted projective spaces in low dimen-
sions (up to isomorphism).
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Dimension Smooth Q-factorial and terminal Total
1 1 1 1
2 5 5 5
3 18 233 634

see [Bat81, Bat91, WW82] see [Kas06] see [Kas06]
4 124

see [Bat99, Sat00]
5 866

see [KN09]
6 7 622

see [Øbr07]
7 72 256

see [Øbr07]

Table 1.3: The known classification of toric Fano varieties (up to isomorphism).

1.4 General assumptions

In this thesis, when we consider weighted projective spaces P(a0, . . . , aN), we will always
impose the following assumption.
Assumption 1.4.1. Given a weighted projective space P(a0, . . . , aN) assume the following.

1. ai ∈ Z>0 for all i = 0, . . . , N .
2. gcd(a0, . . . , aN) = 1.
3. gcd(a0, . . . , âi, . . . , aN) = 1, for all i = 0, . . . , N .

Condition 3 assures that the set of singular points of the weighted projective space has
dimension at most N − 1. It also means that weighted projective spaces respecting these
conditions are uniquely identified by theirweights. This condition is calledwell-formedness.
All weighted projective spaces are Q-factorial (since their fans have D + 1 rays in RD, so
they are trivially simplicial), hence we do not need any extra assumption.

For the remainder of this thesis the weight matrices considered for toric Fano varieties of
Picard rank two will always satisfy the following conditions.
Assumption 1.4.2. Given a weight matrix[︃

a1 · · · aN
b1 · · · bN

]︃
assume the following.

1. The columns of the matrix span a strictly convex cone in R2.
2. None of the columns are the zero vector.
3. The sum of the columns is not a multiple of any of them.
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4. The subspaces S+ and S−, defined above, are both of dimension at least two.
5. The weight matrix is well-formed.

Conditions 1 and 2 together guarantee that the corresponding fan Σ is complete; that is,
its support covers RN−2. The toric variety X is therefore projective (i.e. compact). Con-
dition 3 ensures that each top-dimensional cone in the fan has N − 2 rays; that is, the fan
is simplicial. This implies that the toric variety X is Q-factorial. Condition 4 ensures that
each of the vectors e1, . . . , eN generates a one-dimensional coneR≥0ei in the fanΣ. Together
with Q-factoriality, this implies that the Picard rank of X is two and not lower.
Condition 5 is equivalent to condition 3 in Assumption 1.4.1. It requires the variety to have
no quotient grading. This is a natural requirement since it identifies the simply connected
algebraic varieties. Considering only well-formed weight matrices guarantees that a toric
variety determines and is determined by its weight matrix, uniquely up to GL2(Z) and SN

actions. Explicitly this is checked by ensuring that every submatrix obtained by removing
one column is standard. Here, we define an r × N matrix to be standard if the greatest
common divisor of its r × r minors is one.

1.5 The regularized quantum period

In this section we introduce precisely the ingredients we will need in the context of the
study of mirror symmetry for Fano varieties.

1.5.1 Fano varieties

As mentioned in the Introduction, one of the central objects in our investigation is the
regularized quantum period of a Fano variety.
LetX be a Fano variety. IfX is smooth, then it is called a Fanomanifold. Wewill not consider
the general case of X not smooth, but only when we have nice well-behaved singularities.
Namely, this is the case of X being an (N -)orbifold, meaning that X is locally analytically
like CN/G for a finite group G acting faithfully on CN . Given a Fano orbifold X , we can
define n-pointed stable map of genus g as a holomorphic map

f : (Σ, x1, . . . , xn)→ X ,

where Σ is a curve of genus g and x1, . . . , xn are nmarked smooth points on it. Such a map
is stable if it has only nodes as singularities and has only finitely many automorphisms. We
can define a moduli space of such maps as

Xg,n,k := {f | f is a n-pointed stable map of genus g with deg f ∗(−KX) = k} / ∼ ,

where∼ is reparametrisation. We can define a power series, called the quantum period forX

GX(t) =
∑︂
d≥0

cdt
d
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where
cd =

∫︂
[X0,1,d]vir

ψd−2ev∗(pt) .

Here, pt is the Poincaré dual to a point (i.e. the cohomology class defined by the volume
form) and the evaluation map is defined as

ev : X0,1,d → X

(Σ, f, x) ↦→ f(x)

and ψ = c1(L), where L is the line bundle on X0,1,d with fibre Lf = T ∗
xΣ. We call the

sequence of coefficients of the quantum period the period sequence.

In particular, we will consider the regularized version of the quantum period, which is
defined as

ĜX(t) =
∑︂
d≥0

cdd!t
d

(and the corresponding regularized period sequence is defined accordingly). This is the
Fourier–Laplace transform of GX(t).

Note that the regularized period sequence looks like an infinite amount of data, but it is
not. In fact, there exists a differential operator [CCG+13, Theorem 4.3]

Q̂X(t) =
k∑︂

j=0

pj(t)D
j ,

whereD = t d
dt
, pj ∈ Z[t], such that Q̂X · ĜX ≡ 0. This differential operator is defined up to

multiplication by a constant if both k and deg pk are as small as possible. The operator Q̂X

allows us to determine the coefficients of ĜX from a finite amount of information, since
it establishes a recursive relationship between the coefficients of the (regularized) period
sequence.
Remark 1.5.1. When studying the regularized quantum period from the point of view of
machine learning and data analysis in Chapter 3, we will only look at a truncated list of
its coefficients. The existence of this differential operator Q̂X(t)means that it is reasonable
to expect to conclude general results (via machine learning) from a truncated version of
the period sequence: we are not missing or throwing away information, since the entire
structure is determined by its initial terms.

1.5.2 Laurent polynomials

In the context of mirror symmetry for Fano varieties, the mirror objects to Fano varieties
are Laurent polynomials7.

7The actual mirror objects are Landau-Ginzburg models (Y,w), where Y is an n-complex manifold,
and w : (Y,Ω) → C is a holomorphic function, where Ω is a holomorphic n-form on Y . In our case we
will always have Y to be a torus and w a Laurent polynomial
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Definition 1.5.2. Given a Laurent polynomial f ∈ C[x±1
1 , . . . , x±1

n ], its classical period is de-
fined as

πf (t) =

(︃
1

2πi

)︃n ∫︂
1

1− tf
dx1
x1
· · · dxn

xn
.

The classical period for a Laurent polynomial f can be written as power series

πf (t) =
∞∑︂

m=0

cmt
m

where
cm = coeff1(f

m) .

This can be seen by applying the Residue Theorem multiple times.

As for the regularized quantum period there exists a differential operator [CCG+13, The-
orem 3.2]

Lf =
k∑︂

j=0

pj(t)D
j

whereD = t d
dt
, pj ∈ Z[t], such thatL·πf ≡ 0. Again, this is unique up tomultiplication by a

constant if k and deg pk are as small as possible. The recursion relations on the coefficients
of the classical period are ∑︂

k≤m

pk(m− k)cm−k = 0

form = 0, 1, 2, . . . .

Let us look at an example in the case of a well-known mirror of P2.

Example 1.5.3 (Example 3.5, [CCG+13]). Consider the Laurent polynomial f = x+y+ 1
xy
.

Its classical period is calculated as follows,

πf (t) =
1

(2πi)2

∫︂
S1×S1

1

1− tf
dx

x

dy

y
=

1

(2πi)2

∫︂
S1×S1

∞∑︂
k=0

tkfkdx

x

dy

y

=
∞∑︂
k=0

tk
1

(2πi)2

∫︂
S1×S1

fkdx

x

dy

y
=

∞∑︂
k=0

tkcoeff1(f
k)

=
∞∑︂
k=0

tkcoeff1

(︄ ∑︂
a+b+c=k

k!

a!b!c!

xayb

(xy)c

)︄
=

∞∑︂
k=0

(3k)!

(k!)3
t3k .

We note that the coefficients satisfy the following recursive relation

k2c3k − 3(3k − 1)(3k − 2)c3k−3 = 0

which is equivalent to the differential operator

[D2 − 27t3(D + 1)(D + 2)]πf ≡ 0 .
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1.5.3 Mirrors

Definition 1.5.4. Given a Fano varietyX and a Laurent polynomial f , we say that they are
mirror partners if ĜX ≡ πf .

It is conjectured that there is a bijection between deformation classes of certain Fano vari-
eties and mutation classes of certain Laurent polynomials8, under which the regularized
quantum period corresponds to the classical period; see [CKPT21]. Therefore, this leads
to the related expectation that the regularized quantum period is a complete invariant of
Fano varieties.

1.5.4 Toric varieties and toric complete intersections

Gromov–Witten invariants are notoriously hard to compute. Fortunately, for certain classes
of Fano varieties, namely when they are toric and toric complete intersections, we have
some explicit formulae to compute the regularized quantum period.
For a weighted projective space X = P(a0, . . . , aN), the regularized quantum period is
computed using the formula [CCGK16],

ĜX(t) =
∑︂
k∈N

(ka)!∏︁N
i=0(kai)!

tka (1.5.1)

where a =
∑︁N

i=0 ai.
In general, assumewe are given a toric varietyX by an r×N weightmatrix, as in Section 1.1.
Let (αi)i=1,...,N be the columns of the weight matrix. Then the regularized quantum period
is given by the formula [CCGK16],

ĜX(t) =
∑︂

k∈Zr∩C

(αT · k)∏︁N
i=1(α

T
i · k)!

tα·k , (1.5.2)

where α = α1 + · · ·+ αN and C is the convex cone

C = {x ∈ Rr | αT
i · x ≥ 0 for all i = 1, . . . , N} .

Note that in [CCGK16] the above is stated only for smooth varieties. However, this is
generalised to our case since we are considering projectiveQ-factorial varieties; [CCIT15].
Example 1.5.5. Consider projective space P2, which is a smooth toric variety with weight
data (1, 1, 1). Using (1.5.1) we obtain that its quantum period is

GP2(t) =
∑︂
k≥0

1

(k!)3
t3k ,

8These areMMLP (maximallymutable Laurent polynomials); see [CKPT21] for the definition. Mutations
of Laurent polynomials can be understood combinatorially in terms of rearrangement of slices of the corre-
sponding Newton polytope (i.e. the polytope obtained as the convex hull of the exponents in the Laurent
polynomial).
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and the regularized version is

ĜP2(t) =
∑︂
k≥0

(3k)!

(k!)3
t3k . (1.5.3)

Note that this coincides with the classical period for the Laurent polynomial in Exam-
ple 1.5.3, since P2 is its mirror.

Lastly, consider a smoothQ-factorial toric varietyX , whose data is given by an r×N integer
valuedmatrixwith columns (αi)i=1,...,N . Consider the smooth Fano complete intersection Y
inX defined by a section of E = L1⊕ · · · ⊕LM , for line bundles Li. Let βi = c1(Li), i.e. the
first Chern classes of the line bundles9. This data can also be written in an r ×M matrix
with columns (βi)i=1,...,M . Then the quantum period of Y is [CCGK16, Corollary D.5]

GY (t) =
∑︂

k∈Zr∩C

∏︁M
i=1(β

T
i · k)!∏︁N

i=1(α
T
i · k)!

(ωT · k)tωT ·k , (1.5.4)

where ω =
∑︁N

i=1 αi −
∑︁M

i=1 βi and C is the convex cone

C = {x ∈ Rr | αT
i · x ≥ 0 for all i = 1, . . . , N} .

If cd = d!
∑︁

ωT ·k=d

∏︁M
i=1(β

T
i ·k)!∏︁N

i=1(α
T
i ·k)! , then the regularized version of GY (t) is

ĜY (t) =
∑︂
d≥0

d∑︂
k=0

(︃
d

k

)︃
(−c1)d−kckt

d . (1.5.5)

This formula holds outside the smooth case, for quasi-smooth10 (a generalisation of smooth-
ness) toric complete intersections in a Q-factorial toric ambient space, which have an orb-
ifold11 structure and when the line bundles Li’s are convex12 [Wan19, SW22].
Example 1.5.6. Let Y be a smooth cubic threefold: it is the hypersurface of degree three
in P5. The toric ambient weight data is (1, 1, 1, 1, 1), and β = 3. Therefore, ω = 2 and its
quantum period is

GY (t) =
∑︂
k≥0

(3k)!

(k!)5
t2k ,

and its regularized quantum period is

ĜY (t) =
∑︂
k≥0

(2k)!(3k)!

(k!)5
t2k .

9This is an element of H2(X;Z).
10Let Y be defined by the complete intersection of polynomials f1, . . . , fM in the toric variety X , for fi ∈

H0(X;Li). Recall that the toric variety is given as the quotient of Uω/(C×)r as discussed before. Then Y is
smooth if the common zero set of f1, . . . , fn in U is a smooth subvariety of codimension n.

11Recall that an orbifold is a space that locally looks like Cn/G for G a finite group. More precisely, we
are requiring the toric complete intersection to be a smooth Deligne–Mumford stack with projective coarse
moduli space.

12This is a positivity assumption on the line bundles. For example every ample line bundle is convex.
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2 Machine Learning Background

In the first part of this chapter we introduce the basic terminology used in the context of
machine learning problems. This is aimed at non-specialists and does not survey machine
learning in its entirety. Instead, we introduce only those algorithms and tools that will be
used in Chapters 3 and 5. We point the reader to the references for a more comprehensive
introduction [GBC16, RS20, Gér22]. In the second part of this chapter, we survey various
applications of machine learning to pure mathematics. For discussions of a similar flavour
see [Wil23, He23].

2.1 Machine learning fundamentals

Machine learning is a subset of artificial intelligence that refers to a suite of algorithms
that aims at processing data and learning patterns within the data improving accuracy
over time. Machine learning algorithms are (historically) classified into three types: su-
pervised, unsupervised, and reinforcement learning.

• Supervised learning refers to those algorithms that aim at predicting a label or a quan-
tity given some features of a datapoint. Here, the labels or the property thatwe aim to
predict are included into the data that is shown to the algorithm during the training
step (this is called training data). Therefore, for supervised learning we must have a
correctly labelled dataset. A classic example of supervised learning is spam filters.

• Unsupervised learning refers to algorithms that do not get trained on the labels of data.
Instead, they are trained on data without labels and find patterns within the data
without a specific instruction. Examples of this are clustering algorithms, like in
market segmentation or social network analysis.

• Lastly, the term reinforcement learning is used to describe those algorithms that are
designed as a game. It consists of an agent which observes its environment, select
and performs actions, and gets feedback via a reward function. The result is the
agent learning the best strategy to maximise the reward function. Perhaps, the most
famous example is AlphaGo [SHM+16].

In this thesis, we will only apply machine learning algorithms in a supervised fashion.
Let us outline the workflow of using machine learning on a dataset, before going into the
details of individual algorithms.
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Data in this thesis will always have a vector of features and a label associated to it, looking
something like Table 2.1. Not all data (of course) has this shape, for example we could
have data consisting of matrices (in the case of image classification tasks, for example) or
graphs (a popular representation for problems relating to social networks data). However,
in our context our datasets will always have a vector representation.

Our aim is to build a model that takes in the features of a certain sample and returns a
label as accurately as possible. In particular, since we will work within a supervised learning
framework, we will train the machine learning model using the known labels to optimise
the model parameters. This workflow can be broken down into the following steps:

• Model selection. Given a problem the user chooses a machine learning model that is
most suitable.

• Train–test split. The data is then split into training (used to train the algorithm), and
testing (used to evaluate the algorithm at the end of training). We will refer to the
percentage of data used for training as the train–test split.

• Data preprocessing. Depending on the choice of model, the data might need to un-
dergo some preprocessing step, for example some scaling and normalisation.

• Hyperparameter tuning. A small amount of training data is held out for tuning the
hyperparameters of the models. Most machine learning models come with hyperpa-
rameters that can be chosen by the user, and their value can affect training time and
accuracy greatly. By trying out different hyperparameters, the user can decide on the
most promising configuration to fix.

• Training the model. The model, with specified hyperparameters, is trained using the
training data. Note that since we are doing supervised learning, the model is shown
the correct labels of the training samples during this step.

• Testing the model. The model is evaluated on the testing data, which was completely
unseen during training. In the case of classification, the model is evaluated using
accuracy, which is the percentage of testing samples that are correctly labelled by the
model.

Feature 1 · · · Feature k Label
sample 1 x11 · · · x1k y1

sample 2 x21 · · · x2k y2

... ... ... ... ...
sample N xN1 · · · xNk yN

Table 2.1: Data with N samples, each of it has k features and a label.
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2.2 Preprocessing steps

2.2.1 Feature scaling

With a few exceptions, most machine learning model perform better when the features
are scaled. There are two common approaches to feature scaling: min-max scaling and
standardisation.

Assume we have been given a dataset with N samples each of which has a feature xji for
j = 1, . . . , N . Min-max scaling (often called normalisation) scales each feature xji in the
following way

MinMax(xji ) =
xji −mink(x

k
i )

maxk(xki )−mink(xki )
.

This results in all the features belong to the range [0, 1].

On the other hand standardisation scales each xji so that the resulting distribution has zero
mean and unit variance, i.e.

StandardScaler(xji ) =
xji −

∑︁N
k=1 x

k
i

σ

where σ is the standard deviation. Unlike the min-max scaling, standardisation does not
bound the feature values and it is much less affected by outliers.

2.2.2 Principal component analysis

Dimensionality reduction is a very important technique used in machine learning prob-
lems. In fact, datasets often include thousands of features which slow down the training
regime. Moreover, datasets with many features are often representative of very sparse
point clouds in high-dimensional space, meaning that there is the need to increase the
number of training samples to assure that themachine learningmodel is learning on a rep-
resentative sample of the distribution. This is commonly referred to as the curse of dimen-
sionality. In these cases, it is useful to employ techniques that reduce the dimensionality of
the data, whilst retaining asmuch information as possible. Another reason dimensionality
reduction is important is to aid in visualisation by reducing the number of input features
to two or three, which can then be plotted.

A common technique to reduce the dimensionality of the data is projecting to a hyperplane
of a lower dimension. In choosing the hyperplane we would like to be able to determine
the one that contains the most amount of information possible. This is the aim of Prin-
cipal Component Analysis (PCA). PCA identifies new axes (called principal components)
along which the data varies the most: these are orthogonal to each other, so that they are
uncorrelated.

Let X ∈ RN×k be a matrix containing the feature values for all the (N) samples. The first
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step is to compute the covariance matrix

Cov =
1

k − 1
(X − X̄)(X − X̄)T

where X̄ is thematrix of column-wisemeans (this is because PCA assumes that our data is
centred at zero, hencewe need to translate themean to zero). Note that Cov is a symmetric
matrix, so it can be diagonalised

Cov = V LV T

where V is the matrix of eigenvectors, and L is the diagonal matrix of eigenvalues. Now, if
we want to perform PCA with d principal components (meaning that we are projecting to
a hyperplane of codimension (N − d)), we consider Vd which is V where we are selecting
only the d eigenvectors with largest d eigenvalues. Then, the projection of the data along
the top d principal components is

PCA(X, d) = XVd ∈ RN×d .

We refer to the normalised eigenvalue corresponding to each component of the PCA as its
explained variance. It intuitively measures how much of the total variance of the original
dataset is explained by each PCA component.

x1

x2

−−→PCA1

−−→PCA0

Figure 2.1: Pictorial representation of PCA with two components applied on two-
dimensional data.

2.3 Some models

2.3.1 Linear regression

Linear regression is an example of a regressionmodel (i.e. the dataset labels are continuous
rather than discrete, as they would be for a classification model) that takes in some input
features x ∈ Rk, with label y ∈ R, and predicts the value of a dependent variable ŷ ∈ R as

ŷ = wT · x+ b , (2.3.1)

for w ∈ Rk and b ∈ R. A linear regression model is trained by finding the values of w
and b such that the linear output ŷ best approximates the actual label y. This is done by
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optimising the parameters w and b to minimise some measure of the error between the
predicted and the actual values. For example, theMean Squared Error (MSE) is commonly
used and it is defined as

1

N

N∑︂
i=1

(yi − ŷi)
2 (2.3.2)

where N is the number of training samples. The result of running linear regression is
represented pictorially in Figure 2.2.

x

y

Figure 2.2: Pictorial representation of linear regression. The black dots are data
points {(xi, yi)}i and the green line is the line of best fit.

When applying linear regression to data with just one feature (i.e. xi ∈ R for i = 1, . . . , N)
we can compute the standard error of the two coefficients that determine the line of best
fit, i.e. the slope and the y-intercept (w, b ∈ R in (2.3.1)). The standard error helps us
determine how representative the sample data is of the larger population.

Let (x1, . . . , xN) be the features and (y1, . . . , yN) the targets forN samples. Let x̄ =
∑︁N

i=1 xi.
Then, we define the standard error of the slope of the linear regression as

sslope =

(︄∑︁N
i=1(yi − yî)2

N − 2
× 1∑︁N

i=1(xi − x̄)

)︄1/2

(2.3.3)

and the standard error of the y-intercept as

sint =

(︄∑︁N
i=1(yi − yî)2

N − 2
× Nx̄2 +

∑︁N
i=1(xi − x̄)2

N
∑︁N

i=1(xi − x̄)

)︄1/2

. (2.3.4)

The standard error allows us to assess the accuracy of the predictions. Approximately 95%
of the observations should fall within an absolute distance of twice the standard error from
the regression line. Therefore, a low standard error suggests that the datapoints all lie close
to the regression line, while a high standard error means that the datapoints are further
away from the line of best fit.
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2.3.2 (Linear) Support vector machines

In this thesis we will make use of a Support Vector Machine (SVM) with linear kernel for
classification. Given a labelled point cloud of data belonging to two classes, a linear SVM
computes the optimal hyperplane separating the two classes.

In practice, a linear SVM relies on a decision function, which takes in the features x ∈ Rk

of a sample and assigns it a label (in this case ±1, which correspond to the two classes)

f(x) =

{︃
1 if wT · x+ b ≥ 0
−1 if wT · x+ b < 0

.

Here w ∈ Rk and b ∈ R are the parameters defining the hyperplane in Rk, also called
decision boundary. The problem of finding the optimal hyperplane dividing the two classes
of data points is equivalent to maximising the margins around the hyperplane. The mar-
gins are defined as the distance between the hyperplane and the closest two data points
belonging to the two classes. These data points are called support vectors. A pictorial rep-
resentation of the hyperplane resulting from a linear SVM is shown in Figure 2.3.

Note that since wT · x + b = 0 and c(wT · x + b) = 0 define the same hyperplane (for
any c ̸= 0), then we are able to normalisew such thatwT ·x1 + b = 1 andwT ·x2 + b = −1,
for x1,x2 support vectors. Therefore, the margin of the hyperplane is defined as

wT · x1 + b−wT · x2 − b
∥w∥

=
2

∥w∥
,

where ∥w∥ is the norm ofw. Therefore, we are trying to solve the constrained optimisation
problem

min
w

(∥w∥2) subject to
yi(w

T · xi + b) > 1 for all i = 1, . . . , N .

Note that we optimise with respect to ∥w∥2 instead of ∥w∥ since the latter is not differen-
tiable at the origin.

The above problem solves the hard-margins linear SVM objective, since it does not allow
for outliers. However, this does not work well in practice since it assumes that the data
is linearly separable: in real-world applications this is often not the case. Therefore, in
practice we need a more flexible model, which is the soft-margin version of linear SVM.
This is done by introducing a regularisation parameter C: a lower value of C allows more
flexibility with outliers, while a higher value of C is stricter. Note that C is an example of
hyperparameter (which we have mentioned in the previous section) that needs to be fixed
before training the model.

Explicitly, for the soft margin SVMwe introduce a slack variable z = (z1, . . . , zN) ∈ RN
≥0 and
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solve the following optimisation problem

min
w,zi

(︄
∥w∥2 + C

N∑︂
i=1

zi

)︄
subject to

yi(w
T · xi + b) > 1− zi for all i = 1, . . . , N .

Then, the regularisation parameter C tells us how much weight to give to the slack vari-
ables.

x1

x2

Figure 2.3: Pictorial representation of a linear SVM on two-dimensional data. The green
line is the decision boundary and the colours of the dots (red and blue) correspond to
datapoints with two different labels. The grey area represents the margins of the decision
boundary. The bigger dots are two support vectors.

Note that as we have presented linear SVM here it seems to only support binary classifi-
cation. This is indeed the case, however we can tackle multi-class classification problems
using multiple support vector machines. This is done by breaking down the problem into
individual binary classification problems, one for each pair of classes.

2.3.3 Artificial neural networks

An Artificial Neural Network (ANN) is a type of machine learning architecture. It can be
used in the context of supervised, unsupervised, and reinforcement learning. In this sec-
tion, for expository purposes, let us consider the supervised learning classification prob-
lem of detecting handwritten digits to go through the details of this algorithm; see Fig-
ure 2.4 for some examples of labelled data points from the MNIST dataset [LCB10].

Figure 2.4: Examples of 8×8 images of handwritten digits and their labels, from theMNIST
dataset [LCB10].

The architecture of a neural network is represented by amultipartite graph, where the first
layer takes in the input values (the features), and the last layer gives a prediction of the
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correct label. The nodes of the graph are called neurons and the edges are called connections.
Assume we are given the MNIST dataset [LCB10] consisting of 8 × 8 grey-scale images
of handwritten digits (from 0 to 9), which have been correctly labelled. The supervised
learning task that we aim to solve is to train a machine learning algorithm to predict the
correct digit label given the pixel values of an image. Therefore, our neural network will
have an input layer made of 64 neurons (since we have 8 × 8 = 64 pixels in each image),
taking the input values of the pixels of an image, and an output layer made of 10 neurons,
one for each possible class (since we are classifying digits between 0 and 9). The output of
the network will be a probability distribution (p0, . . . , p9), where pi will correspond to how
probable it is for the label of the image to be i. Therefore, the desired output for an image
with label 0 is (1, 0, . . . , 0); see Figure 2.5.

...

... ...
8× 8 = 64 10

1

0

...
0

0

Data LabelInput
Layer

Output
Layer

Hidden
Layer

Figure 2.5: Schematic representation of a neural network with one hidden layer predicting
labels for pictures of handwritten digits.

Between the input and the output layers there are hidden-layers, which are also made out
of neurons. Between two consecutive layers in a neural network, we have edges between
all vertices. The edges represent affine-linear maps. For example if we have three neurons
in a layer (a1, a2, a3) connected to a neuron in the following layer (as shown in Figure 2.6),
then the value of neuron v1 is

v1 = a1w1 + a2w2 + a3w3 + b

for some weights w = (w1, w2, w3) ∈ R3 and a bias b ∈ R. Each edge in a neural network
correspond to a weight, and each neuron also carries a bias. These are all learnable pa-
rameters: they are initialised randomly, but will change during the training of the neural
network, in order to optimise its output to be as close as possible to the correct label for as
many datapoints as possible.
However, if we only had affine-linear maps between neurons we would only be able to
use a neural network to approximate affine-linear functions. To counteract this, we add a
non-linear element, called an activation function. An activation function is just a non-linear
function that is composedwith the affine-linearmap. In the context of Figure 2.6, wewould
have

v1 = σ(a1w1 + a2w2 + a3w3 + b)

for some activation σ : R → R. There are many activation functions to choose from, we
recall a couple (ReLU and LeakyReLU) in the following example.
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a1

a2

a3

v1

w1

w2

w3

+b

Figure 2.6: Example of connections to a neuron in a neural network, from three neurons in
a previous layer.

Example 2.3.1. A popular activation function is the rectified linear unit (ReLU) [Aga18]. It
is defined as σ : R→ R,

σ(x) =

{︃
x if x ≥ 0
0 otherwise .

A variation of this is LeakyReLU, which includes a small positive slope for the negative
values in order to mitigate the vanishing gradient problem [MHN13]. For a specified
slope s > 0, we define LeakyReLU as σ : R→ R

σ(x) =

{︃
x if x ≥ 0
s · x otherwise .

In summary, a neural network is just a composition of affine-linear maps (Ai) and activa-
tion functions (σ)

RnI
A1−→ RnH1

σ−→ RnH1
A2−→ RnH2

σ−→ · · ·RnHk
Ak−→ RnO (2.3.5)

where nI is the number of inputs, nO is the number of outputs, and nHi
is the number of

neurons in the ith hidden layer.

Note that in (2.3.5) we are using the same activation function throughout the network,
except in the output layerwhere it is omitted. In the context ofmulti-classification (like our
running example about classifying handwritten digits) the output layer should represent a
probability distribution. Hence, the output is passed through the softmax σ : RnO → RnO ,

σ(x)i =
exi∑︁nO

i=j e
xj
. (2.3.6)

Now that we have the architecture of a neural network, we can address what it means to
train a neural network. The parameters (i.e. the weights and biases of the affine-linear
maps Ai’s) are initialised randomly. We can feed our randomly initialised neural network
function some data points (in our case images of handwritten digits) and see what the
output is: since the network has not been trained at all, it will almost always produce the
incorrect output. We can calculate the cost function (or loss function) between the correct
output and the output of the neural network. There aremany loss functions to choose from,
for simplicity the reader can think of the mean squared error from (2.3.2), but we recall the
usual loss function used in classification problems in the following example.
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Example 2.3.2. Consider the binary classification problem of deciding whether a hand-
written digit is 0 or 1. For N samples {(x1, y1), . . . , (xN , yN)}, the output of the network
will be a probability pi of the label being 1, and probability 1 − pi of the label not being 0
(for the ith sample). We compute the binary cross entropy loss as

− 1

N

N∑︂
i=1

yi log(pi) + (1− yi) log(1− pi) .

This can be easily generalised to include multiple classes (not just 1 and 0) for multi-
classification problems (then it is called just the cross entropy loss).

Once we have the loss function, we can perform gradient descent on the loss function to
update the learnable parameters w,

w = w − α∇L(w)

where α is the learning rate. The learning rate is a quantity that regulates how big of a
step we are taking when updating the weights: a larger learning rate means a model that
changes more quickly but might not converge to the minima because the steps are too big.
A smaller learning rate is less likely going to miss a minimum, but it is much slower, and
might get stuck in the wrong local minimum unable to get out. The process of computing
the gradient of the loss function is actually very slow and hard, so in practice algorithms
use gradient estimation methods (i.e. backpropagation) and more sophisticated optimis-
ers than naïve gradient descent (like stochastic gradient descent or adaptive gradient al-
gorithms).
The process is repeated, and the learnable parameters keep being updated, until the loss
function has found a satisfactory minimum (we would hope it is a global minimum, how-
ever since the loss landscape is usually a space that is very complicated and very far from
being convex, this is usually a local minimum). Once we have reached a plateau of the
loss function, we stop the training and test our network on completely unseen data – the
testing data.
As an aside, let us remark on the difference between parameters and hyperparameters, in
the context of neural networks. The parameters are the weights and biases: they specify
the neural network function, and they are updated during training. On the other hand,
a network depends on a number of hyperparameters, defining its architecture and the
training regime, which are fixed before training (in the hyperparameter tuning portion of
the machine learning workflow that we have described at the beginning of this section).
Examples of hyperparameters in the context of neural networks are as follows.

• The size of the network (i.e. number of layers, number of neurons).
• The choice of loss function.
• The choice of activation function.
• The choice of optimisation algorithm and related optimisation parameters.
• The choice of learning rate or, in case we want the learning rate to change during

training (for example, we might want it to decay), then the choice of learning rate
scheduler.
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The architecture as we have defined it describes a feedforward fully-connected multi-layer per-
ceptron, which we will abbreviate as MLP. Feedforward means that the nodes in our ar-
chitecture do not form loops. This is not always the case, for example recurrent neural
networks are an example of neural networks which are not feedforward. Fully-connected
refers to the fact that all connections layer to layer are present: each input node in our ar-
chitecture is connected to each output node. Again this does not have to be the case: for
example convolutional layers in convolutional neural networks are not fully-connected.

2.4 Performance measures and explainability

After we have trained a model, we need to evaluate its performance. Let us recall some
performance measures.

Accuracy In the context of classification problems, to test the performance of a model we
compute its accuracy. The accuracy is calculated only on testing data (data that has not
been seen during training), and it is

accuracy =
#correctly labelled samples

#all samples .

Confusion matrices Whilst accuracy is a compact performance metric, it is potentially
misguided. In fact, if a model is biased and always gets wrong one class, this will not be
obvious just by looking at the accuracy. Therefore, we use confusion matrices to give a better
measure of the performance of a model. Confusion matrices are n× nmatrices where n is
the number of distinct classes in the problem. The rows correspond to the actual classes and
the columns to the predicted classes. Therefore, the entry in the ith row and jth column will
record howmany samples with correct label i, have beenmisclassified as j. In Table 2.2 we
give an Example for a hypothetical binary classifier with labels Positive and Negative. The
accuracy of such a classifier would be 66.7%, however it is clearly not a good model, since
it misclassifies the majority of samples with label Positive.

Negative Positive
Negative 15 10
Positive 0 5

Table 2.2: Example of confusion matrix for a binary classification problem with labels Pos-
itive and Negative.

Throughout this thesis, we often produce confusion matrices normalising the entries with
respect to either of the axes: this is just to aid in visualisation.

Saliency analysis Saliency analysis is tool to aid in understanding why a neural network
is performingwell. It measures which inputs of the network influence the output themost.
In this thesis, we will use saliency analysis in the form of SHapley Additive exPlanations
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Values (SHAP). They were first introduced in the context of game theory to calculate the
payout for each player depending on their contribution to the total payout [Sha53]. In the
context of machine learning, they calculate the contribution of each feature to the overall
prediction for a sample, compared to the average prediction for the data.

2.5 Machine learning for pure mathematics

We conclude this chapter by surveying works applying machine learning methodology to
pure mathematics problems and objects. Part of this section covers content from [Ven24a].
One of the main aims of this thesis is to showcase the power of a workflow integrating ma-
chine learning, data analysis, and other computational techniques in algebraic geometry.
However, this approach is potentially widely applicable to many areas of pure mathemat-
ics. Such a workflow can be summarised in a sequence of steps, ensuring a mathematical
question is amenable to these methods, gathering the correct data, and building the ma-
chine learning model; see Figure 2.7. Let us highlight the considerations one must keep
when walking through the steps of this workflow.

Formulate a Mathematical Question

Collect Data

Build an
ML model

Formulate a conjecture Use the model for
data-driven exploration

Figure 2.7: The steps of applying machine learning to pure mathematics problems: red are
mathematical steps, green are computational steps, and yellow is a machine learning step.

The workflow starts with the formulation of a mathematical question that is amenable
to this data-driven methodology, for example we could ask if a certain property can be
predicted bymachine learning orwhether it is able to understand anunknown relationship
between different mathematical invariants. The key property of such a question is that
we need to be able to generate many distinct examples to train on, in a relatively short
amount of time. This workflow is particularly effective when applied to those problems
for which we have an abundance of data, but lack a general rigorous understanding. The
datasets needed could be already available (examples of big mathematical datasets were
mentioned in the Introduction) or might need to be generated from scratch. The problem
of generating a large enough dataset might mean that the question needs to change, for
example we might need to restrict to a class for which there are algorithms that can be
used to generate samples (an example of this is how, in this thesis, we always restrict to the
case of toric Fano varieties). One must bear in mind that the data generation process can
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introduce bias in different ways. Is the class of objects appearing in the data representative
of a more general class? Will the sampling methodology influence the results? Questions
of this type should be considered, and they are the reason why the data generation step is
of fundamental importance in this workflow.

After the data has been generated, or obtained from pre-existing datasets, the next step is
the choice of the model. There are many frameworks to choose from. An important note to
considerwhen choosing amodel is the balance between explainability and performance. A
model like a Support VectorMachine (see Section 2.3.2) is very easy to decipher, but might
not perform as well as a Neural Network (see Section 2.3.3). However, the latter is much
harder to interpret! Being able to build a machine learning model that can relate mathe-
matical quantities when there is no theoretical understanding why they should be related,
is already important when guiding intuition: the confidence that a statement must be true
can guide centuries of research (consider for example Fermat’s Last Theorem). However,
any explainability we can get from a model can be a huge help when trying to come up
with the appropriate mathematical statement and proof. There have been examples of us-
ing saliency analysis to understand the importance of different features in the predictions
made by a model [DVB+21, JCB+23] – and we will bring an example of this in Chapter 3.

Once we have built a high-accuracy machine learning model that answers our question
there are many ways that it can be used to drive mathematical discovery. As mentioned
in the Introduction, in this thesis we will explore two ways in which mathematicians can
use trained machine learning models: aiding theorem conjectures, and replacing expen-
sive computational routines. We note that the first example of applications of a machine
learning driven workflow to inspire conjectures in pure mathematics is [DVB+21]. In
this work, which was a collaboration of machine learning researcher from DeepMind and
mathematicians from the University of Oxford and the University of Sydney, the authors
use machine learning and saliency analysis to guide conjecture generation in knot the-
ory and representation theory, which are subsequently proven using traditional meth-
ods [BBD+22, DJLT21]. There have been more examples of machine learning applied to
mathematical structures, to predict quantities that are hard to compute, in the context of
string theory [BHJM18, DLQ22], knot theory [GHMR23, Hug20], combinatorics [CHK23,
BHH+23, JCB+23], algebraic geometry [HKS22, BHH+22], and number theory [HLOP22,
Lee23, HLO22].

Finally, whilst we will concentrate on applications of machine learning in this flavour –
for guiding conjecture generation – let us remark that these are not the only examples
of interactions between pure mathematics and machine learning. Machine learning rou-
tines have been used to construct examples of mathematical objects [BHH+24], or coun-
terexamples to conjectures [Wag21]. On the other hand, there are many examples of ma-
chine learning pipelines being used to accelerate exact computational routines: in the
context of Gröbner basis calculations [PSHL20, MPP23, KIK+23, WDL22], computer al-
gebra [HEW+14, HKS22], symbolic mathematics [LC20]. Lastly, all approaches we have
mentioned are complemented byworks in using Large LanguageModels (LLMs) to guide
mathematical proofs and mathematical reasoning [RPBN+24, IDS23, AAt24, PHZ+22].
This is often done in conjunction with formal proof assistant, such as LEAN [YSG+24],
Isabelle [JLHW21]. We note that in contrast with this work, our methodology often em-
ploys classical machine learning architectures, which are relatively low in computational
cost compared to LLMs, and therefore are more accessible to the working mathematician.
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3 The Dimension of a Fano Variety

The aim of this chapter is to investigate whether the regularized quantum period of a Fano
variety contains geometric information about the variety. Recall that the regularized quan-
tum period of a Fano variety is a power series

ĜX(t) =
∞∑︂
d=0

cdt
d ,

where c0 = 1, c1 = 1, and cd = rdd!, where each rd are certain Gromov–Witten invariants
ofX . We will refer to the coefficients (cd)d as the period sequence ofX . It is conjectured that
the regularized quantum period is a complete invariant of Fano varieties. Therefore, we
should be able to recover all the geometric information aboutX given its period sequence.
To explore this we look at one of the easiest invariants: does the regularized quantum
period know the dimension of the variety? We investigate this question using machine
learning tools on two datasets, one of weighted projective spaces and one of Picard rank 2
toric varieties. In both cases we require that are varieties are toric Q-Fano.

This chapter covers some of the content of [CKV23b].

3.1 Data generation

In this section we detail the data generation steps for the weighted projective space dataset
(DSdim_wps) and for the toric varieties of Picard rank two (DSdim_rk2). The datasets are
generated using Magma v2.25-4, [BCP97].

3.1.1 Weighted projective spaces

The dataset DSdim_wps consists of 150 000 distinct randomly generated weighted projective
spaces satisfying the conditions in Assumption 1.4.1. In addition, the weighted projective
spaces are required to have at worst terminal singularities. This check is done by using
Propositions 1.1.4 and 1.1.3: the first result is only a necessary condition, but it helps to get
rid of many examples efficiently. On the other hand, Proposition 1.1.3 is a necessary and
sufficient condition, so it is used as the final check.
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The examples are generated by choosing a random dimension D ∈ {1, . . . , 10}. Once the
dimension is fixed, we generate a random example by choosing a random string of inte-
gers [a0, . . . , aD] such that a0 ≤ · · · ≤ aD ≤ 10D. If the generated example does not satisfy
Assumption 1.4.1 or it is not terminal, it is discarded and the process is repeated. The
dataset is deduplicated by eliminating examples that are defined by the same string of in-
tegers (since we have assumed well-formedness – Condition 2 in Assumption 1.4.1 – this
is enough to ensure we are not counting weighted projective spaces multiple times).

3.1.2 Toric varieties of Picard rank two

The dataset DSdim_rk2 consists of 200 000 distinct randomly generated toric Fano varieties
of Picard rank two satisfying the conditions in Assumption 1.4.1 and that have at worst
terminal singularities (this check is performed in the naïve way described in Section 1.1.2).

In particular, the data generation process starts by choosing a dimensionD ∈ {2, . . . , 10} at
random, and then generating aD-dimensional toric variety of Picard rank two as a 2×(D+
2) weight matrix as in (1.1.2) with weights 0 ≤ ai, bi ≤ 5. Unfortunately, deduplicating
randomly-generated toric varieties of Picard rank two is a lot harder than deduplicating
weighted projective spaces, because different weight matrices can give rise to the same
toric variety. Therefore, we use the fan to deduplicate them according to the isomorphism
type of Σ, by putting Σ in normal form; for details see [KS04, GK13].
Remark 3.1.1. When we generate Picard rank two data, we impose that each 2 ×N matrix
contains an identity sub-block and all non-negative entries, i.e.[︃

1 0 a1 · · · aN
0 1 b1 · · · bN

]︃
.

This implies thatC = R2
≥0 in the formula for the regularized qunatumperiod (4.1.1), which

simplifies the computational routine. This assumption is very mild, and all the theoretical
results coming from the analysis on the dataset DSdim_rk2 hold without assuming the
presence of this identity sub-block.

3.2 Data analysis

In this section we discuss the preliminary data analysis performed on the regularized
quantum period data of the toric Fano varieties in the datasets DSdim_wps and DSdim_rk2.

3.2.1 Weighted projective spaces

We compute an initial segment of the period sequence of all the terminal weighted pro-
jective spaces from the dataset DSdim_wps, (c0, . . . , cm) where m ≈ 100 000, using (1.5.1).
As a first step, we note that the non-zero coefficient of cd appear to grow exponentially
with d (we will give a rigorous proof of this statement in Chapter 4). Therefore, instead
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DSdim_wps DSdim_rk2

Dimension Sample size Percentage Dimension Sample size Percentage
1 1 0.001
2 1 0.001 2 2 0.001
3 7 0.005 3 17 0.009
4 8 936 5.957 4 758 0.379
5 23 584 15.723 5 6 050 3.025
6 23 640 15.760 6 19 690 9.845
7 23 700 15.800 7 35 395 17.698
8 23 469 15.646 8 42 866 21.433
9 23 225 15.483 9 47 206 23.603
10 23 437 15.625 10 48 016 24.008

Total 150 000 Total 200 000

Table 3.1: The number and percentage of terminal weighted projective spaces and toric
varieties of Picard rank two appearing in datasets DSdim_wps and DSdim_rk2, by dimension.

of considering the coefficients of the period sequence, we consider (log cd)d∈S where S =
{d ∈ Z≥0 | cd ̸= 0}, which then appears to be growing linearly. As a dimensionality reduc-
tion step, we fit a linear model to the set {(d, log cd) | d ∈ S} (see Section 2.3.1) and use
the regression coefficients (slope and y-intercept) as the features in the machine learning
models. In Figure 3.1 we depict a typical example of a terminal weighted projective space
from DSdim_wps and highlight the linear behaviour of the logarithm of the non-zero terms
of its period sequence.

Figure 3.1: The logarithm of the non-zero period sequence coefficients cd for a typical ex-
ample: the weighted projective space P(5, 5, 11, 23, 28, 29, 33, 44, 66, 76).

After fitting a linear model to the logarithm of the non-zero coefficients of the period se-
quences, we can plot the slope against the y-intercept and colour datapoints by dimension
to obtain Figure 3.2. The data clusters by dimension, and it is clearly linearly separable.
This suggests that classification models such as Support Vector Machines should be able
to determine the dimension from the slope and y-intercept alone.

To justify the use of linear regression we produce some error statistics demonstrating that
the approximation is very accurate. The distribution of the standard errors for the slope
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and the y-intercept are depicted in Figure 3.3 (recall the definitions (2.3.3) and (2.3.4)): the
errors for the slope are between 3.9×10−8 and 1.4×10−5, and the errors for the y-intercept
are between 0.0022 and 0.82. This error increases as the dimension grows; see Figure 3.3c

Figure 3.2: The slopes and y-intercepts from the linear model applied to the period se-
quences of terminal weighted projective spaces from DSdim_wps. The colour records the
dimension of the weighted projective space. The circled bigger dots correspond to projec-
tive spaces Pn for n = 1, . . . , 10.

(a) Standard error for the slope. (b) Standard error for the y-intercept.

(c) Standard error for the y-intercept by dimension.

Figure 3.3: The distribution of standard errors for the slope and y-intercept from the lin-
ear model applied to the period sequences of terminal weighted projective spaces from
DSdim_wps.
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3.2.2 Toric varieties of Picard rank two

As for weighted projective spaces, we note that the period sequence (cd)d of toric varieties
of Picard rank two grows exponentially (again, wewill prove this rigorously in Chapter 4).
Therefore, we fit a linear model to {(d, log cd) | d ∈ S} where S = {d ∈ Z≥0 | cd ̸= 0} and
use the regression data (slope and y-intercept) as features in themachine learningmodels.
See Example 3.2.1 for a typical example of growth of the logarithm of the non-zero terms
of the period sequence.

(a) The first 250 terms. (b) Terms between 1000 and 1250.

Figure 3.4: Different sections of the graph of the logarithm of the non-zero coefficients of
the period sequence (cd)d for Example 3.2.1, together with the line of best fit computed by
the linear regression.

Example 3.2.1. Let us consider a typical example of a toric variety of Picard rank two, given
by a weight matrix [︃

1 2 5 3 3 3 0 0 0 0 0
0 0 0 3 4 4 1 2 2 3 4

]︃
.

In Figure 3.4 we plot the logarithm of the non-zero terms of its period sequence along with
the linear approximation. Figure 3.4a shows only the first 250 terms, whilst Figure 3.4b
shows the interval between the 1000th and the 1250th term. We see considerable devia-
tion from the linear approximation amongst the first 250 terms; the deviation reduces for
larger d.

For each example of toric variety of Picard rank two we compute its period sequence, us-
ing (1.5.2). Note that the formula is a lot more involved that the corresponding one for
weighted projective spaces, hence in order to reduce computational costs, we compute
pairs (d, log cd) for 1000 ≤ d ≤ 20 000 by sampling every 100th term. Here, we discard the
beginning of the period sequence because of the noise it introduces to the linear regres-
sion (as seen in Example 3.2.1). When sampling from the period sequence in this manner
we might encounter some zero coefficients: when this occurs we instead consider the next
non-zero coefficient.
After computing the logarithm of the period sequences in this manner, we extract the
regression coefficients (slope and y-intercept) from the linear regression. Plotting slope
against y-intercept and colouring datapoints by dimension we obtain Figure 3.2. Note that
this figure is a lot less clear than Figure 3.2 – the equivalent for weighted projective spaces.
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Figure 3.5: The slopes and y-intercepts from the linear model applied to the period se-
quences of toric Fano varieties from DSdim_rk2. The colour records the dimension of the
toric variety.

3.2.3 Restricting the standard error

Unlike for the dataset DSdim_wps, the study of the standard errors of the linear approx-
imation for the dataset DSdim_rk2 reveals that the errors present a larger variation. In
Figure 3.6 we plot histograms for the standard errors of the slope and the y-intercept for
DSdim_rk2. The standard errors for the slope are small compared to the range of slopes,
but in many cases the standard error for the y-intercept is relatively large.

Discarding those samples that give rise to large standard errors for the y-intercept appears
to reduce some noise, as shown in Figure 3.7. This observation appears to suggest that
some underlying structure is obscured by the inaccuracies of the linear regressions: this
is not surprising, since in the data generation step we might have undersampled from the
period sequence.

(a) Standard error for the slope. (b) Standard error for the y-intercept.

Figure 3.6: The distribution of standard errors for the slope and y-intercept from the lin-
ear model applied to toric varieties of Picard rank two with terminal singularities from
DSdim_rk2.
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(a) All data points. (b) sint < 1 (101 183/200 000 points).

(c) sint < 0.3 (67 445/200 000 points).

Figure 3.7: The slopes and y-intercepts from the linear model applied to toric varieties of
Picard rank two from DSdim_rk2, selecting data points according to the standard error sint
for the y-intercept. The colour records the dimension of the toric variety.

Example 3.2.2. Consider the five-dimensional toric varietywith Picard rank two andweight
matrix [︃

1 10 5 13 8 12 0
0 0 3 8 5 14 1

]︃
. (3.2.1)

This example is one of the outliers in Figure 3.5. The regression coefficients obtained by
fitting a linear model to the logarithm of the non-zero coefficients of the period sequence
are 1.637, for the slope, and −62.64, for y-intercept. In order to test how the behaviour of
the standard error of the y-intercept changes, we compute the first 40 000 coefficients cd
as in (1.5.2) (without sampling every 100 terms). As shown in Figure 3.9b, as d increases
the y-intercept of the linear model increases to −28.96 and the corresponding standard
error (sint) decreases to 0.7877. On the other hand, the slope and corresponding error re-
mains more or less unchanged. This is positive evidence for the theory that bad linear fit
are a result of our data generation process, wherewemight be undersampling the sequence
and not computing enough terms. We expect that generating (many) more coefficients of
the period sequencewould significantly reduce noise in Figure 3.5, but it remains impracti-
cal computationally – see Figure (3.2.1) for a comparison of the timing data for computing
different numbers of terms in the period sequence (40 000 terms takes roughly 100 times
longer than 10 000 terms). Moreover, note that in this example even 40 000 coefficients may
not be enough (for example it still gets misclassified by the Support Vector Machine as a
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six-dimensional example, see Figure 3.23 and later discussion).

Figure 3.8: Timings for computing 10 000, 20 000, 30 000, 40 000 terms of the period se-
quence of the weight matrix (3.2.1). The timings are scaled so t10 000 = 1.

(a) For the slope (b) For the y-intercept.

Figure 3.9: The slope and the y-intercept, and their respective standard errors for Exam-
ple 3.2.2, computed from pairs (k, log ck) such that d − 20 000 ≤ k ≤ d by sampling ev-
ery 100th term, together with a LOWESS-smoothed trend line.

We remark that computing more coefficients of the period sequence for the whole dataset
might result in improved standard errors for the y-intercept. However, this approach is
impractical from the point of view of computation time, therefore we restrict to those toric
varieties of Picard rank two such that the y-intercept standard error sint is less than 0.3; see
Table 3.2 for the data breakdown by dimension.

3.3 Machine learning

In this section, we buildmachine learning classifiers that predict the dimension of varieties
in datasets DSdim_wps and DSdim_rk2 from data coming from their period sequences. The
experiments were conducted using scikit-learn [PVG+11], a standard machine learning
library for Python. For all models, we fix the most promising hyperparameters by trying
many configurations using randomised grid search. The code used to perform this analysis
is available from Bitbucket [CKV22c] under an MIT licence.
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DSdim_rk2with sint < 0.3

Dimension Sample size Percentage
3 17 0.025
4 758 1.124
5 5 504 8.161
6 12 497 18.530
7 16 084 23.848
8 13 701 20.315
9 10 638 15.773
10 8 244 12.224

Total 67 443

Table 3.2: The number and percentage of toric varieties of Picard rank two with sint < 0.3
appearing in DSdim_rk2, by dimension.

3.3.1 Weighted projective spaces

We consider the dataset DSdim_wps excluding dimensions one and two (since there is only
one terminal weighted projective space in each class, namely P1 and P2), so the data is
reduced to 149 998 samples. We do not work directly with the regularized quantum peri-
ods, but instead we set the features to the regression data (pairs of slope and y-intercept)
labelled by dimension, which varies between three and ten.

Figure 3.10: Learning curves for a linear SVM applied to data coming from DSdim_wps (ex-
cluding dimensions one and two). The plot shows the means of the training and valida-
tion accuracies for five different random train–test splits. The shaded regions correspond
to the 1σ interval, where σ denotes the standard deviation.

We apply a Support Vector Machine (SVM) with linear kernel and regularisation param-
eter C = 10 on the standardised features (obtained by translating the mean to zero and
scaling the variance to one). Figure 3.10 shows the learning curves for different train–test
splits: here the confidence intervals are given by the standard deviation calculated for five
random train–test split each time. Using 10% of the data for training we obtained an accu-
racy of 99.99%. This very accurate SVM gives us linear decision boundaries that separate
the different clusters of examples of different dimension, as shown in Figure 3.11.
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Figure 3.11: Decision boundaries computed from a linear SVM trained on 70% of the data
coming from DSdim_wps (excluding dimensions one and two). Note that the data has been
standardised.

3.3.2 Toric varieties of Picard rank two

As discussed in Section 3.2.3, we restrict attention to toric varieties with Picard rank two
such that the y-intercept standard error (sint) is less than 0.3. We also exclude dimension
two from the analysis, since in this case there are only two varieties (namely, P1×P1 and the
Hirzebruch surfaceF1). The resulting dataset contains 67 443pairs of slope and y-intercept,
labelled by dimension; the dimension varies between three and ten, as shown in Table 3.2.

Figure 3.12: Learning curves for a linear SVM applied to the data coming from DSdim_rk2

(with sint < 0.3 and excluding dimension two). The plot shows the means of the training
and validation accuracies for five different random train–test splits. The shaded regions
correspond to the 1σ interval, where σ denotes the standard deviation.

Support Vector Machine We use an SVMwith linear kernel and regularisation parame-
ter C = 50 on DSdim_rk2 (with sint < 0.3 and excluding dimension two). By considering
different train–test splits we obtained the learning curves shown in Figure 3.12, where the
means and the standard deviations were obtained by performing five random samples for
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each split. Note that the model does not overfit. We obtain a validation accuracy of 88.20%
using 70% of the data for training. Figure 3.13 shows the decision boundaries computed
by the SVM between neighbouring dimension classes. Figure 3.14 shows the confusion
matrices for the same train–test split.

Figure 3.13: Decision boundaries computed from a linear SVM trained on 70% of the data
coming from DSdim_rk2 (with sint < 0.3 and excluding dimension two). Note that the data
has been standardised.

(a) (b)

Figure 3.14: Confusion matrices for a linear SVM trained on 70% of the data coming from
DSdim_rk2 (with sint < 0.3 and excluding dimension two): (a) is normalised with respect
to the true axis; (b) is normalised with respect to the predicted axis.

Neural Networks Neural networks do not handle unbalanced datasets well. Therefore,
we remove those terminal weighted projective spaces with dimensions two, three, four,
and five fromour DSdim_rk2 (with sint < 0.3) and call this dataset DSdim_rk2_cut. We train
a Multilayer Perceptron (MLP) (recall the architecture from Section 2.3.3) classifier on the
same features (slope and y-intercept), using an MLP with three hidden layers (10, 30, 10),
Adam optimiser [KB14], and ReLU activation function (see Example 2.3.1). The learning
curve in Figure 3.15a is produced by using different train–test splits, and again note that
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the model does not overfit. With 70% of the data for training the MLP gave a validation
accuracy of 88.7%. We refer to this network as MLP2.

Moreover, in order to work with more balanced data, we have performed random un-
dersampling on the data so that there are the same number of samples in each dimen-
sion (8244 representatives). We do so using a Python undersampling library imalanced-
learn [LNA17]. This however does not improve the accuracy of the model: the benefit
brought by a better balanced dataset was outweighed by the loss of data caused by the
undersampling. Therefore, the results we will discuss are not performed on a perfectly
balanced dataset.

(a) MLP2. (b)MLP102.

(c)MLP100.

Figure 3.15: Learning curves for the classifiersMLP2,MLP102,MLP100 applied to data com-
ing from DSdim_rk2_cut. The plot shows the means of the training and validation accu-
racies for five different random train–test splits. The shaded regions show the 1σ interval,
where σ is the standard deviation.

In order attempt to get a better performing model, we also train an MLP with the same ar-
chitecture but supplementing the features by including some period sequence coefficients.
The features are the two regression coefficients and log cd for 1 ≤ d ≤ 100 (setting this
quantity to zero when cd = 0). We refer to this neural network as MLP102 since it has 102
features. The learning curve for different train–test splits is in Figure 3.15b. Using 70% of
the data for training, theMLP102 model gave a validation accuracy of 97.7%.

It is unclear the reason whyMLP102 performs better thanMLP2. One possible explanation,
and the underlying reasonwhywe have included the first 100 terms of the period sequence
rather than other portions of it, is that the beginning of the period sequence exhibits amore
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noisy oscillatory behaviour. This behaviour decays as d grows – see Figures 3.4. This ini-
tial part reduces the accuracy of the linear regression (which is the reason why we had
originally excluded it), but it might still carry important information. For example, by ex-
amining for which index cd is zero at the beginning of the period sequence, it is sometimes
possible to recover the values of a and b (the sum of the top and bottom row in the weight
matrix as in (1.1.2)) – see Section 6.2 for more details. This type of information is help-
ful: for example larger values of a and b usually go along with a larger dimension. Note
however, that most of the information is encoded in the slope and y-intercept. This is high-
lighted by the SHAP plot in Figure 3.16, which analyses the model sensitivity to the input
features. This analysis suggests that the dimension ofX should be visible from a rigorous
estimate of the asymptotic behaviour of log(cd).

Moreover, training an MLP on just the coefficients log cd for 1 ≤ d ≤ 100 with the same
architecture (we refer to this MLP as MLP100) gives an accuracy of only 62%, indicating
even more strongly that the regression data plays a fundamental role in determining the
dimension; the learning curves are depicted in Figure 3.15c.

Figure 3.16: Model sensitivity analysis using SHAP values, for the model MLP102 trained
on the data coming from DSdim_rk2_cut. It predicts the dimension with 97.7% accuracy.

Comparison of models We compare the test accuracies of all the different models (the
SVM and the three neural networksMLP2,MLP100, andMLP102) in Table 3.3, against base-
line (i.e. always predicting the most populated class – dimension seven). These accuracies
are obtained by training and testing on 70% of the same dataset, the data coming from
DSdim_rk2_cut. Moreover, we note that misclassified examples across all models are usu-
ally in high dimension, which is consistent with the theory that the errors in the classifi-
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cation are related to the data generation workflowmaking it harder to read off the asymp-
totic behaviour from the linear regression. In fact, higher dimension examples tend to have
higher a and b. Since the non-zero elements of the period sequence depend on integer lin-
ear combinations of a and b, we note that there is a correlation between high-dimensional
examples and the need for more terms of the period sequence in order to get to a more
regular behaviour.

We compare their confusion matrices in Table 3.4.

ML models
Baseline SVM MLP2 MLP100 MLP102

23.8% 87.7% 88.7% 62.0% 97.7%

Table 3.3: Comparison of model accuracies. Accuracies for various models applied to the
data coming from DSdim_rk2_cut: a linear SVM and the neural networks MLP2, MLP100,
andMLP102. They are compared with the baseline accuracy of always predicting the most
populated class (dimension seven).

3.4 Asymptotic behaviour

The above analysis strongly suggests that the asymptotic behaviour of log(cd) should con-
tain information about the dimension. It inspires the conjecture of rigorous asymptotics for
the regularized quantum period of weighted projective spaces and Picard rank two toric
Fano varietieswhichmakes this dependence clear. We state here the results as in [CKV23b]
(where they are also proven), but we prove the more general version of these statements
in Chapter 4 for all toric Fano varieties (Theorem 4.1.2).

Theorem 3.4.1 (Theorem 5, [CKV23b]). Let X be the weighted projective space P(a0, . . . , aN)
satisfying Assumption 1.4.1, so that the dimension of X is N . Let cd denote the coefficient of td in
the regularized quantum period ˆ︁GX(t) (as in (1.5.1)). Let a = a0+ · · ·+aN . Then cd = 0 unless d
is divisible by a, and

log cd ∼ Ad− dimX

2
log d+B

as d→∞, where

A = −
N∑︂
i=0

pi log pi B = −dimX

2
log(2π)− 1

2

N∑︂
i=0

log pi (3.4.1)

and pi = ai/a.

Theorem 3.4.2 (Theorem 6, [CKV23b]). LetX be a toric variety of Picard rank two and dimen-
sion N − 2 given as a weight matrix [︃

a1 a2 a3 · · · aN
b1 b2 b3 · · · bN

]︃
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Model True confusion matrix Predicted confusion matrix

SVM

MLP2

MLP100

MLP102

Table 3.4: Comparison of confusion matrices. Confusion matrices for various models ap-
plied to the data coming from DSdim_rk2: a linear SVM and the neural networks MLP2,
MLP100, and MLP102. The first column is normalised with respect to the true axis; the
second column is normalised with respect to the predicted axis.
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satisfying Assumption 1.4.2. Let a = a1 + · · ·+ aN and b = b1 + · · ·+ bN , and let [µ : ν] ∈ P1 be
the unique solution to the bivariate homogeneous equation

N∏︂
i=1

(aiµ+ biν)
aib =

N∏︂
i=1

(aiµ+ biν)
bia

(︃
µ
ν

)︃
∈ C

(3.4.2)

where
C = {x ∈ Rr | αT

i · x ≥ 0 for all i = 1, . . . , N} .

Let cd denote the coefficient of td in the regularized quantum period ˆ︁GX(t) (as in (1.5.2)). Then
non-zero coefficients cd satisfy

log cd ∼ Ad− dimX

2
log d+B

as d→∞, where

A = −
N∑︂
i=1

pi log pi

B = −dimX

2
log(2π)− 1

2

N∑︂
i=1

log pi −
1

2
log

(︄
N∑︂
i=1

(aib− bia)2

ℓ2pi

)︄ (3.4.3)

and pi =
µai + νbi
µa+ νb

.

Note that neither these results assume terminality, but they hold as long as our varieties
are Q-factorial.

3.5 Experiments with principal component analysis

So far in this chapter we have relied on applying linear regression to reduce the dimension-
ality of the data coming from the regularized quantum period of the algebraic varieties of
interest. However, a standard approach to dimensionality reduction is Principal Compo-
nent Analysis (PCA); see Section 2.2.2. In this section we explore a PCA approach to di-
mensionality reduction and motivate our choice to not consider it in our machine learning
analysis.

We perform four experiments using PCA.We consider only the first two components of the
PCA (PCA1,PCA2) in an attempt to reproduce plots resembling the clustering behaviour
from Figures 3.2 and 3.5, which were obtained by looking at the linear regression output.

1. The first experiment fits a two component PCA on the first 100 000 terms of the se-
quence (cd)d originating from DSdim_wps, taking the logarithm of the non-zero terms
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(a) PCA components for DSdim_wps

including zeros (experiment 1).
(b) PCA components for DSdim_wps ex-
cluding zeros (experiment 2).

(c) PCA components for DSdim_rk2

including zeros (experiment 3).
(d) PCA components for DSdim_rk2 ex-
cluding zeros (experiment 4).

Figure 3.17: Plot of the two PCA components of the regularized quantum period data from
DSdim_wps and DSdim_rk2, either including or excluding those values that are zeros. Each
data point is coloured by dimension.
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and leaving the zero terms unchanged. This approach is not very successful, and
was very computationally expensive (as we have to perform partial fits for the PCA
because the data does not fit in memory). The PCA explained variance ratios for
the first two components are (0.014, 0.011), and when we plot PCA1 against PCA2 in
Figure 3.17a we note that the clusters are not linearly separable.

2. The second experiment fits a two-components PCA to the first 100 terms of the se-
quence (cd)d for dataset DSdim_rk2, taking the logarithm of the non-zero terms and
leaving the zero terms unchanged. This approach is again not very successful: the
PCAexplained variance ratios are (0.148, 0.053), andwhenweplot PCA1 against PCA2

in Figure 3.17b we note that there are no clear clusters.
3. The third experiment uses (log cd)d coming from DSdim_wps, where in each case d

ranges over the sequence such that cd ̸= 0. Depending on the weights, the indices
corresponding to non-zero cd vary – cd is non-zero only if d is divisible by the Fano
index r of the corresponding weighted projective space. So in order to fit the PCAwe
consider only the firstm non-zero terms of each weighted projective space, wherem
is theminimal number of non-zero terms encountered overall in DSdim_wps. Without
knowing the statement of Theorem 3.4.1 it is unclear why this would be a sensible
approach, since a priori we are comparing terms cd for different values of d. This
experiment is successful, with PCA explained variance ratios (0.999, 0.216×10−9) and
the clusters in Figure 3.17c, obtained when plotting PCA1 against PCA2, revealing a
‘stretched out’ version of Figure 3.2. The clusters are clearly linearly separable.

4. The fourth experiment fits a PCA with two components to (log cd)d coming from
DSdim_rk2. Again, depending on the weights, the indices corresponding to non-
zero cd varies, so in order to fit the PCA we consider only the firstm non-zero terms
of each, where m is the minimal number of non-zero terms encountered. Again,
without knowing the statement of Theorem 3.4.2 it is unclear why this would be
meaningful, for the same reason as above. This experiment wasmore successful than
experiment 2, with PCA explained variance ratios (0.993, 0.004) and the clusters in
Figure 3.17d, obtained when plotting PCA1 against PCA2, somewhat reminiscent of
Figure 3.5.

Note that we can improve experiment 3 by considering the different patterns of zeros in
the period sequence, depending on the Fano index r. Therefore, the correct way of using
PCA would be to perform PCA for Fano varieties of each Fano index r separately. When
doing this, we note that for each r the first two components of PCA are related to the
growth coefficients (A,B) fromTheorem 3.4.1 by an invertible affine-linear transformation.
In Table 3.5 we record some of the affine-linear transformation coefficients αr, βr, γr that
describe the following relationships

PCA1 ∼ α1
rA+ β1

rB + γ1r ,

PCA2 ∼ α2
rA+ β2

rB + γ2r .

Therefore, by performing this analysis, we conclude that the first two components of the
PCA seem to carry an equivalent amount of information as the coefficientsA andB. How-
ever, using A andB as features has major benefits compared to using the PCA coefficients.
First, they allow us to make a meaningful comparison between Fano varieties of different
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PCA1 PCA2

r α1
r β1

r γ1r r α2
r β2

r γ2r
1 1.23× 106 18.3 −2.21× 106 1 −2.22× 202 −10.9 1.18× 102

2 1.14× 106 17.2 −2.13× 106 2 −2.20× 202 −10.1 1.33× 102

3 1.20× 106 17.9 −2.18× 106 3 −2.18× 202 −10.6 1.21× 102

4 1.18× 106 17.7 −2.16× 106 4 −1.93× 202 −10.4 0.78× 102

5 1.31× 106 19.7 −2.29× 106 5 −2.21× 202 −10.6 1.05× 102

Table 3.5: Affine transformations between (A,B) and the first two principal compo-
nents (PCA1,PCA2) obtained by performing PCA on (cd)d for Fano indices between r =
1, 2, 3, 4, 5.

Fano index. Secondly, unlike PCA-derived values, they can be computed for a single Fano
varieties, while the PCA needs to be fitted on a large number of Fano varieties of the same
index before it can be used. We also expect a similar analysis can be performed on the
Picard rank two data.

3.6 Theoretical analysis

Having rigorous asymptotic formulae from Theorems 3.4.1 allows us to revisit the cluster-
ing behaviour from Figure 3.2. Instead of using the data coming from the linear regression
(i.e. the slope and the y-intercept), we use the coefficientsA andB appearing in the asymp-
totic expression

log cd ∼ Ad− dimX

2
log d+B .

For weighted projective spaces, the formulae for A and B are specified in Theorem 3.4.1.
Figure 3.18 shows the values of A and B for all terminal weighted projective spaces (with
weights bounded by 25) and dimension between one and ten, coloured by dimension.
Note the clusters which now overlap.
As an example, let us consider the cluster for weighted projective spaces of dimension five,
which are reproduced in Figure 3.19. We can produce linear upper and lower bounds in
the following way. For a suitable θ ≥ 0we can consider

B + θA = −dimX

2
log(2π)− 1

2

N∑︂
i=1

log pi − θ
N∑︂
i=1

pi log pi

where dimX = N = 5. The lower bound is obtained by solving the constrained optimisa-
tion problem

min(B + θA) subject to p0 + · · ·+ p5 = 1

p0, . . . , p5 ≥ 0

on the five-simplex. Note that we are not assuming terminality to construct this bound.
However, we are unable to construct an upper bound in a similar way, since B is un-
bounded, meaning that B + θA must also be. However, we can consider the following
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Figure 3.18: The values of A and B for all weighted projective spaces P(a0, . . . , aN) with
terminal singularities and ai ≤ 25 for all i, coloured by dimension.

constrained optimisation problem for a small positive ϵ > 0

max(B + θA) subject to p0 + · · ·+ p5 = 1

ϵ ≤ p0 ≤ · · · ≤ p5 .

Note that ϵ can be taken as 1/a (for a the maximum sum of the weights considered). In our
case a = 124, since all our weights are bounded by 25 (and they cannot all be 25 because
of the well-formedness assumption, Condition 2 in Assumption 1.4.1). This value is the
one taken in Figure 3.19. We know that such an amust exist since there are finitely many
terminal weighted projective spaces (by boundedness of Fanos with bounded complexity
on the singularities [Bir21]). Having this value will give a linear upper bound for the
cluster. This is summarised in the following Proposition.
Proposition 3.6.1 (Illustrated in Figure 3.19). LetX be the five-dimensional weighted projective
space P(a0, . . . , a5), and letA,B be as in Theorem 3.4.1. ThenB+ 5

2
A ≥ 41

8
. If in addition ai ≤ 25

for all i then B + 5A ≤ 41
40
.

Similarly, we could obtain linear bounds for the clusters in each dimension, however, as
Figure 3.18 shows the clusters are not linearly separable. This is in contrast with Figure 3.2
where the clusters were separated by the linear boundaries from the linear SVM. This can
be justified in the followingway. The actual asymptotics of the regularized quantumperiod
do not take into account the term−D

2
log(d), whereD is the dimension of the variety. Note

that this term does not vary too much in the range of degrees considered, i.e. d < 100 000.
Therefore, we could consider the y-intercept resulting from the linear regression as being
approximated by B − 11

2
dimX (log(100 000) ∼ 11). This extra term distorts the clusters

and translates them, making them linearly separable. A pictorial representation of this is
given by Figure 3.21.
We expect that the same mechanism applies in Picard rank two as well; see Figure 3.20.
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Figure 3.19: Linear bounds for the cluster given byweighted projective spaces P(a0, . . . , a5)
with terminal singularities and ai ≤ 25 for all i, given by Proposition 3.6.1.

Figure 3.20: The values of A and B for toric varieties of Picard rank two in the dataset
DSdim_rk2, coloured by dimension.
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However, we note that generating large numbers of Picard rank two terminal toric Fano
varieties is hard, because checking terminality in higher rank relies on lattice point counts
(see Section 1.1.2 for details). So, we are currently unable to produce a more comprehen-
sive picture for Picard rank two variety, as the one for weighted projective spaces. We
explore how to address this problem further in Chapter 5.

Figure 3.21: The values ofA andB− 11
2
dimX for all weighted projective spaceP(a0, . . . , aN)

with terminal singularities and ai ≤ 25 for all i, coloured by dimension.

3.7 Outlook

In this chapter we have built models that predict the dimension of weighted projective
spaces and Picard rank two toric Fano varieties using data coming from their regularized
quantum periods. This is proof of concept and evidence for a fundamental conjecture in
the Fano classification program: that the regularized quantum period of a Fano variety
determines that variety. The machine learning experiments guided the construction of
rigorous asymptotic formulae that make clear the dependency of the period sequence on
the dimension, in the case we have studied. However, somewhat perversely, because the
series involved converge extremely slowly, reading the dimension of a Fano variety directly
from the asymptotics of the regularized quantum period is not practical.
For instance, consider the Fano variety from Example 3.2.2. Since we now know that log cd
does not grow linearly, but its asymptotic behaviour depends on a subleading logarithmic
term, we can include a log d term when fitting the linear regression. This means that we
are fitting the following function

ad+ b log(d) + c

to our data {(d, log(cd)) | cd ̸= 0}. However, this results in a less accurate prediction. Us-
ing the formulae from Theorem 3.4.2, we expect to see the dimension as −2b. However, as
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shown in Figure 3.22, the convergence is extremely slow, and we are nowhere near the cor-
rect dimension (five), even after computing 40 000 terms of the period sequence (without
sampling).

Figure 3.22: The dimension and its standard error (sdim) for Example 3.2.2, computed from
pairs (k, log ck) such that d − 20 000 ≤ k ≤ d by sampling every 100th term, together with
a LOWESS-smoothed trend line.

On the other hand, when we fit the logarithm of the period sequence with a linear regres-
sion and use the slope and the y-intercept to predict the dimension, we obtain a much
better estimate for the dimension. In fact, if we use the regression data obtained by the last
interval from Figure 3.9, it is incorrectly classified as a six-dimensional variety by the linear
SVM, we have trained in Section 3.3.2; see Figure 3.23. While the predicted dimension is
incorrect, while it is off only by one, the dimensions that result from Figure 3.22 are not
even in the correct range.

Figure 3.23: Figure 3.13 with a superimposed red dot, which correspond to the regression
data computed in Example 3.2.2.
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4 Asymptotics of the Regularized
Quantum Period

In this chapter, we construct the asymptotics for the regularized quantum period of toric
Fano varieties which are Q-factorial. The result expands and supersedes the earlier result
for toric Fano varietieswith Picard rank one and two from [CKV23b], recalled in Section 3.4
(Theorem 3.4.1 and Theorem 3.4.2). We also discuss some work in progress for the con-
struction in the context of the regularized quantum period of toric complete intersections.

4.1 Toric varieties

Let X be a Q-factorial toric Fano variety of dimension D and Picard rank r. Assume this
data is given as a weight matrixW ∈ Rr×N (whereN = D+ r), as described in Section 1.1.
Let us write the columns ofW by α1, . . . , αN ∈ Rr and α =

∑︁N
i=1 αi. Recall that the regu-

larized quantum period for X is expressed as

ĜX(t) =
∑︂

k∈C∩Zr

tα
T ·k (αT · k)!∏︁N

i=1(α
T
i · k)!

(4.1.1)

where C is the strictly convex cone in Rr defined by

C := {x ∈ Rr | αT
i · x ≥ 0 for all i} .

We want to study the asymptotic behaviour of cd (the dth coefficient of the regularized
quantum period ĜX) as d→∞. Fix d≫ 0, then

cd =
∑︂

k∈C∩Zr

αT ·k=d

d!∏︁N
i=1(α

T
i · k)!

.

We show that the summands are approximated by a rescaled Gaussian with the mean
corresponding to k∗ ∈ Zr ∩C such that αT · k∗ = d and ck∗ maximizes the summands. This
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corresponds to finding k∗ such that it minimises the quantity
N∏︂
i=1

(αT
i · k)! ,

with constraint αT · k = d. For k ∈ C and d≫ 0, we can approximate this expression using
Stirling’s formula

N∏︂
i=1

(αT
i · k)! ∼ (2π)N/2e−αT ·k

N∏︂
i=1

(αT
i · k)α

T
i ·k+1/2 .

We can ignore the constants and just minimise
N∏︂
i=1

(αT
i · k)αi·k ,

with constraint αT · k = d. Note that we ignore the exponents 1/2 since they do not matter
as d→∞.

Proposition 4.1.1. The constrained optimisation problem

min

(︄
N∏︂
i=1

(αT
i · x)α

T
i ·x

)︄
subject to

{︄
x ∈ C◦

αT · x = d
(4.1.2)

has a unique solution x∗, where

C = {x ∈ Rr | αT
i · x ≥ 0 for all i} .

Furthermore, setting

pi =
αT
i · x∗

αT · x∗
for i = 1, . . . , N ,

for α =
∑︁N

i=1 αi, we have that
N∏︂
i=1

p
αT
i ·k

i

depends on k ∈ Zr only via αT · k.

Proof. Taking logarithms gives the equivalent problem

min
N∑︂
i=1

(αT
i · x) log(αT

i · x) subject to
{︄
x ∈ C◦

αT · x = d
. (4.1.3)
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The objective function∑︁N
i=1(α

T
i · x) log(αT

i · x) is the pullback to Rr of f : RN → R

f(x1, . . . , xN) =
N∑︂
i=1

xi log xi

along the linear embeddingφ : Rr → RN given by (α1, . . . , αN). Note thatC is the preimage
under φ of the positive orthant RN

≥0, so we need to minimise f on the intersection of the
simplex

{(x1, . . . , xN) ∈ RN
≥0 | x1 + · · ·+ xN = d}

with the image of φ. The function f is strongly convex (since it is the sum of strongly
convex functions) and it decreases as we move away from the boundary of the simplex.
Moreover, φ is injective, meaning that the composition f ◦ φ is strongly convex and there-
fore the minimisation problem in (4.1.3) has a unique solution x∗ that lies in the strict
interior of C. We can therefore find the global minimum x∗ using the method of Lagrange
multipliers, by solving

N∑︂
i=1

αi log(α
T
i · x) + α = λα (4.1.4)

for λ ∈ R and x ∈ C◦ with αT · x = d. Thus,
N∑︂
i=1

αi log(α
T
i · x∗) = (λ− 1)α

and, evaluating on k ∈ Zr and exponentiating, we see that
N∏︂
i=1

(αT
i · x∗)α

T
i ·k

depends only on αT · k = d. The result follows.

The solution x∗ from Proposition 4.1.1, can be calculated as the unique solution to the
system of homogeneous real polynomial equations⎧⎪⎪⎨⎪⎪⎩

∏︁N
i=1(α

T
i · x)α

1
iα

r
=
∏︁N

i=1(α
T
i · x)α

r
iα

1

...∏︁N
i=1(α

T
i · x)α

r−1
i αr

=
∏︁N

i=1(α
T
i · x)α

r
iα

r−1

, (4.1.5)

where αi = (α1
i , . . . , α

r
i ) and α = (α1, . . . , αr). This is obtained by solving the appropriate

Lagrange multiplier problem in(4.1.4). We will discuss methods of computing x∗ effi-
ciently in Section 4.3.

Theorem 4.1.2. Let (α)i=1,...,N ∈ Zr×N be an integer–valued weight matrix with columns αi for
aQ-factorial toric Fano varietyX of dimensionD and Picard rank r (N = D+r). Then, as d→∞,

log(cd) ∼ Ad+B − D

2
log(d) ,
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where A and B are constants that depend only on the weight matrix.

Proof. The dth term of period sequence of X is computed as

cd =
∑︂

k∈Zr∩C
αT ·k=d

d!∏︁N
i=1(α

T
i · k)!

.

Fix R > 0 and for d ≫ 0 consider the ball BR
√
d around x∗ ∈ C◦, the solution to the min-

imisation problem in Proposition 4.1.1. Then, we apply the Local Theorem from [Gne18],
which we recall here.
Theorem 4.1.3. (Local Theorem, Ch. 2 §12, [Gne18]) For p1, . . . , pn > 0 such that p1 + · · · +
pn = 1, the ratio

d!∏︁n
i=1 ki!

n∏︂
i=1

pkii :
exp(−1

2

∑︁n
i=1 x

2
i )

(2πd)
n−1
2
√
p1 · · · pn

→ 1

as d→∞, uniformly in all ki’s, where

xi =
ki − dpi√

dpi

and the xi’s lie in bounded intervals.

Let
ki := αT

i · k , pi :=
αT
i ·x∗

αT ·x∗ , xi :=
ki−dpi√

dpi
,

where k ∈ Zr ∩ C ∩ BR
√
d and αT · k = αT · x∗ = d. We can apply Theorem 4.1.3 since k ∈

BR
√
d ensures that the x′is lie in a bounded interval as d → ∞. Given the solution x∗ from

Proposition 4.1.1, we can conclude that
N∏︂
i=1

pkii =
N∏︂
i=1

p
αT
i ·x∗

i =
N∏︂
i=1

pdpii .

Moreover,
N∑︂
i=1

x2i =
(k − x∗)TA(k − x∗)

d

where A is the r × r matrix given by

A =
N∑︂
i=1

1

pi
αiα

T
i .

This matrix is positive-definite since it is equal to Hf (x
∗), the Hessian of f : RN → R

defined as
x ↦→

N∑︂
i=1

(αT
i · x) log

(︁
αT
i · x

)︁
,

which we have said is a strongly convex function in the proof of Proposition 4.1.1.
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Therefore, the statement Theorem 4.1.3 applied to this case translates to saying that as d→
∞ and for k ∈ Zr ∩ C ∩BR

√
d, such that αT · k = d, we have

ck =
d!∏︁N

i=1(α
T
i · k)!

∼ 1

(2πd)
N−1

2

∏︁N
i=1 p

dpi+
1
2

i

exp

(︃
−(k − x∗)TA(k − x∗)

2d

)︃
.

Note that, for d ≫ 0 , those ck for k ∈ Zr ∩ C, αT · k = d, but k ̸∈ BR
√
d, carry a negligible

contribution, therefore,

cd ∼
1

(2πd)
N−1

2

∏︁N
i=1 p

dpi+
1
2

i

∑︂
k∈Zr∩C
αT ·k=d

exp

(︃
−(k − x∗)TA(k − x∗)

2d

)︃
.

Applying the change of co-ordinate y = (k − x∗)/
√
d, and considering the sum here as a

Riemann sum we obtain

cd ∼
1

(2dπ)
N−1

2

∏︁N
i=1 p

dpi+
1
2

i

d
r−1
2

∫︂
y∈Lα

exp

(︃
−1

2
yTAy

)︃
dy

where Lα is the linear subspace given by ker(α) and dy is the measure on Lα given by the
integer lattice Zr ∩ Lα ⊂ Lα. In order to evaluate the integral, let B be the (r − 1) × r
matrix whose columns form a Z-basis of Lα. Observe that the pull-back of dy along the
map Rr−1 → Lα given by t ↦→ Bt is the standard measure on Rr−1. Thus,∫︂

Lα

exp

(︃
−1

2
yTAy

)︃
dy =

∫︂
Rr

exp

(︃
−1

2
xTCx

)︃
dx =

√︃
(2π)r−1

det C
,

where C = B · A · BT .

Therefore,
cd ∼

1

(2dπ)dimX/2
∏︁N

i=1 p
dpi+1/2
i

√︁
det(C)

since dimX = D = N − r

Remark 4.1.4. The following is a concrete, co-ordinate dependent, definition of thematrix C
from the proof,

Cij =
N∑︂
k=1

(αrαj
k − αjαr

k)(α
rαi

k − αiαr
k)

lrpk(αr)
r−2
r

,

where l = gcd(α1, . . . , αr), and αi = (α1
i , . . . , α

r
i ), α = (α1, . . . , αr). This is obtained by

projecting the co-ordinates k = (k1, . . . , kr) ∈ Zr on the {kr = 0} co-ordinate hyperplane,
and computing the integral over the r-simplex in Rr−1

∆d := {x ∈ Rn−1
≥0 | αT · x ≤ d} .
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4.2 Toric complete intersections

In this section we discuss current progress in generalising this asymptotic result to the
setting of toric complete intersections. Recall from Section 1.5 that we encode the data
defining a toric complete intersection in the following way. Let X be a Q-factorial toric
variety given by an r×N weight matrix with columns (αi)i=1,...,N . Then let Y be the quasi-
smooth complete intersection in X defined by a section of the bundle E = L1 ⊕ · · · ⊕ LM ,
where each Li is convex. Assume Y is Fano and an orbifold. Let βi = c1(Li), this data can
also be written in an r×M matrix with columns (β)i=1,...,M . Note that the βi’s belong to the
cone generated by the αi’s. We assume Y to be Fano, meaning that w =

∑︁N
i=1 αi −

∑︁M
i=1 βi

lives in the ample cone of the toric complete intersection.
Remark 4.2.1. Assuming X is Fano and taking the empty complete intersection, the above
set up recovers the Fano toric case from Section 4.1.

Let C be the convex cone

C = {x ∈ Rr | αT
i · x ≥ 0 for all i} .

We will consider the regularized version of the following hypergeometric series

GX(t) = e−ct
∑︂
d≥0

⎛⎜⎝ ∑︂
k∈C∩Zr

ωT ·k=d

∏︁M
i=1(β

T
i · k)!∏︁N

i=1(α
T
i · k)!

⎞⎟⎠ td (4.2.1)

which, if pd = d!
∏︁M

i=1(β
T
i ·k)!∏︁N

i=1(α
T
i ·k)! , then c = p1 and the regularized version of GX(t) is

ĜX(t) =
∑︂
d≥0

d∑︂
k=0

(︃
d

k

)︃
(−c)d−kpkt

d . (4.2.2)

For smooth toric complete intersections this is proven to be their regularized quantum pe-
riod [CCGK16]. This generalises to a wider class of examples, namely Fano toric complete
intersections which are quasi-smooth and have an orbifold structure (see Section 1.5 for
details). We do not discuss the details here, but just study the asymptotic behaviour of the
coefficients of this hypergeometric series.
Conjecture 4.2.2. Given data describing a quasi-smooth Fano toric complete intersection as above,
and cd the coefficients of ĜX(t) as in (4.2.2), then

log(cd) ∼ Ad− D

2
log(d) +B

as d→∞, where A,B ∈ R are constants depending entirely on the initial geometric data.

In order to prove this in the same fashion as Theorem 4.1.2 for toric complete intersections
we need an equivalent to Proposition 4.1.1 to hold. In order for that to be the case we need
to impose the following assumption (which is always satisfied byQ-factorial toric varieties,
as seen in Section 4.1).
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Assumption 4.2.3. Consider matrices (αi)i=1,...,N ∈ Zr×N and (βi)i=1,...,M ∈ Zr×M . The
function f : Rr → R

x ↦→
N∑︂
i=1

(αT
i · x) log(αT

i · x)−
M∑︂
i=1

(βT
i · x) log(βT

i · x) , (4.2.3)

is strictly convex on

C = {x ∈ Rr | αT
i · x ≥ 0 for all i} . (4.2.4)

Lemma 4.2.4. Let P(a0, . . . , aN) be a weighted projective space and consider the weighted pro-
jective intersection Y given by a section of E = O(d1) ⊕ · · · ⊕ O(dM), for ai, di ∈ Z>0. Then,
Assumption 4.2.3 holds if and only if Y is Fano.

Proof. The function from Assumption 4.2.3 is f : R→ R such that

f(x) =
N∑︂
i=0

(aix) log(aix)−
N∑︂
i=1

(dix) log(dix)

= x log(x)

(︄
N∑︂
i=0

ai −
M∑︂
i=1

di

)︄
+ x

(︄
N∑︂
i=0

ai log(ai)−
M∑︂
i=1

di log(di)

)︄
.

We note that f is strongly convex onR≥0 if and only if x log(x)
(︂∑︁N

i=0 ai −
∑︁M

i=1 di

)︂
is, since

the other term is linear in x. Clearly, f is strongly convex on R≥0 if and only if
N∑︂
i=0

ai −
M∑︂
i=1

di > 0 ,

which holds if and only if Y is Fano.

Lemma 4.2.5. Assumption 4.2.3 holds for data (αi)i=1,...,N and (βi)i=1,...,M for which there exists
a partition of {1, . . . , N}, {S0, S1, . . . , SM} such that βi =

∑︁
j∈Si

αj for all i = 1, . . . ,M .

Remark 4.2.6. This is a case of interest since it is the same as the assumptions needed for the
Givental/Hori-Vafa method to construct a Laurent polynomial mirror to a toric complete
intersection to apply [Giv98, HKK+03]. Note that S0 ̸= ∅ is essential.

Proof. The function from Assumption 4.2.3 is f : Rr → R such that

f(x) =
N∑︂
i=1

(αT
i · x) log

(︁
αT
i · x

)︁
−

M∑︂
i=1

(βT
i · x) log

(︁
βT
i · x

)︁
,
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Note that f can be written as∑︁M
j=0 fSj

using the partition (S0, S1, . . . , SM), where

fS0(x) :=
∑︂
i∈S0

(αT
i · x) log

(︁
αT
i · x

)︁
,

fSj
(x) :=

∑︂
i∈Sj

(αT
i · x) log

(︁
αT
i · x

)︁
−

⎛⎝∑︂
i∈Sj

(αT
i · x)

⎞⎠ log

⎛⎝∑︂
i∈Sj

(αT
i · x)

⎞⎠ for j = 1, . . . ,M.

Note that fS0(x) is the sum of strongly convex functions, and hence it is strongly convex.
We show that for each j = 1, . . . ,M , fSj

is convex, and therefore f is strongly convex,
concluding the proof. For j = 1, . . . ,M the Hessian of fSj

is

HfSj
(x) =

∑︂
i∈Sj

αi · αT
i

αT
i · x

−
βj · βT

j

βT
j · x

=
∑︂
i∈Sj

αi · αT
i

αT
i · x

−
(
∑︁

i∈Sj
αi) · (

∑︁
i∈Sj

αi)
T∑︁

i∈Sj
αT
i · x

=

∑︁
i,k∈Sj

i<k

(αi(α
T
k · x) + αk(α

T
i · x))2

∏︁
l∈Sj

l ̸=i,k

(αT
l · x)∏︁

i∈Sj
(αT

i · x)
(︂∑︁

i∈Sj
(αT

i · x)
)︂

which is non-negative definite for x ∈ C, so fSj
is strongly convex.

Example 4.2.7. For weighted complete intersections, Lemma 4.2.4 shows that Assump-
tion 4.2.3 holds if and only if the variety is Fano. However, these conditions are not equiv-
alent for general toric complete intersections, as we will now show.
Consider the three-dimensional toric variety X of Picard rank two given by the weight
matrix [︃

1 2 1 1 0
0 1 1 3 1

]︃
.

Consider the toric complete intersection Y given by the divisor of bi-degree (2, 4). There-
fore, in our notation β1 = ( 2

4 ). Then, we note that ω = ( 3
2 ) which does not belong to the

ample cone of the toric ambient space13, which coincides with the ample cone of the toric
complete intersection since the chosen line bundle is ample. Therefore, the toric complete
intersection is not Fano, however Assumption 4.2.3 holds by Lemma 4.2.5, since(︃

2
4

)︃
=

(︃
1
1

)︃
+

(︃
1
3

)︃
.

When Assumption 4.2.3 holds we have the following result which is the equivalent to
Proposition 4.1.1 in the toric complete intersection case.

Proposition 4.2.8. If Assumption 4.2.3 holds, the constrained optimisation problem

min

(︄∏︁N
i=1(α

T
i · x)α

T
i ·x∏︁M

i=1(β
T
i · x)β

T
i ·x

)︄
subject to

{︄
x ∈ C◦

ωT · x = d
(4.2.5)

13The ample cone is the cone where the sum of the weight matrix columns ( 56 ) lives, i.e. the cone
Cone (( 11 ) , ( 13 )).
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has a unique solution x∗, for

C = {x ∈ Rr | αT
i · x ≥ 0 for all i} .

Furthermore, setting

pi =
αT
i · x∗

ωT · x∗
for i = 1, . . . , N ,

qi =
βT
i · x∗

ωT · x∗
for i = 1, . . . ,M ,

for ω =
∑︁N

i=1 αi −
∑︁M

i=1 αi, we have that ∏︁N
i=1 p

αT
i ·k

i∏︁M
i=1 q

βT
i ·k

i

depends on k ∈ Zr only via ωT · k.

Proof. The proof is equivalent to the proof of Proposition 4.1.1, using explicitly that the
global minimum exists because the function f : Rr → R

x ↦→
N∑︂
i=1

(αT
i · x) log(αT

i · x)−
M∑︂
i=1

(βT
i · x) log(βT

i · x)

is assumed to be strongly convex by Assumption 4.2.3.

As for the toric case, the solution x∗ to Proposition 4.2.8 can be calculated as the solution
to the homogeneous system of polynomial equations⎧⎪⎪⎨⎪⎪⎩

∏︁N
i=1(α

T
i · x)α

1
iω

r ∏︁M
i=1(β

T
i · x)β

r
i ω

1
=
∏︁N

i=1(α
T
i · x)α

r
iω

1∏︁M
i=1(β

T
i · x)β

1
i ω

r

...∏︁N
i=1(α

T
i · x)α

r−1
i ωr ∏︁M

i=1(β
T
i · x)β

r
i ω

r−1
=
∏︁N

i=1(α
T
i · x)α

r
iω

r−1∏︁M
i=1(β

T
i · x)β

r−1
i ωr

(4.2.6)

where αi = (α1
i , . . . , α

r
i ), βi = (β1

i , . . . , β
r
i ), ω = (ω1, . . . , ωr).

We prove Conjecture 4.2.2 in the case of a toric complete intersection that satisfy Assump-
tion 4.2.3 and such that c = 0 in (4.2.2). In this case the regularized quantum period is

ĜX(t) =
∑︂
d≥0

⎛⎜⎝ ∑︂
k∈C∩Zr

ωT ·k=d

∏︁M
i=1(β

T
i · k)!∏︁N

i=1(α
T
i · k)!

⎞⎟⎠ d!td .

For this we need a generalisation of Theorem 4.1.3 to this setting.
Theorem 4.2.9. For p1, . . . , pn, q1, . . . , qm > 0 such that p1 + · · · + pn − q1 − · · · − qm = 1, the
ratio

d!

∏︁m
i=1 li!∏︁n
i=1 ki!

n∏︂
i=1

pkii

m∏︂
i=1

q−li
i :

exp(−1
2

∑︁n
i=1 x

2
i +

1
2

∑︁m
i=1 y

2
i )
√
q1 · · · qm

(2πd)
n−m−1

2
√
p1 · · · pn

→ 1
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as d→∞, uniformly in all ki’s and all li’s, where

xi =
ki − dpi√

dpi
yi =

li − dqi√
dqi

and the xi’s and the yi’s lie in bounded intervals.

Proof. This proof is adapted from the proof ofDeMoivre–Laplace theorem fromTheorem5
§7.3 [CA03]. Using Stirling’s formula repeatedly, we can approximate the following,

d!

∏︁m
i=1 li!∏︁n
i=1 ki!

n∏︂
i=1

pkii

m∏︂
i=1

q−li
i ∼ dd+

1
2 (2π)

m+1
2

∏︁m
i=1 l

li+
1
2

i

(2π)
n
2

∏︁n
i=1 k

ki+
1
2

i

n∏︂
i=1

pkii

m∏︂
i=1

q−li
i

=
1

(2dπ)
n−m−1

2

√︄∏︁m
i=1 li/d∏︁n
i=1 ki/d

n∏︂
i=1

(︃
dpi
ki

)︃ki m∏︂
i=1

(︃
li
dqi

)︃li

∼ 1

(2dπ)
n−m−1

2

√︄∏︁m
i=1 pi∏︁n
i=1 qi

n∏︂
i=1

(︃
dpi
ki

)︃ki m∏︂
i=1

(︃
li
dqi

)︃li

.

Here the last approximation is justified by, since the xi’s and the yi’s lie in bounded inter-
vals, we have that ki

d
→ pi and li

d
→ qi as d→∞.

Moreover, let

xi =
ki − dpi√

dpi
for i = 1, . . . , n and yi =

li − dqi√
dqi

for i = 1, . . . ,m .

Then,
n∏︂

i=1

(︃
dpi
ki

)︃ki m∏︂
i=1

(︃
li
dqi

)︃li

= exp

[︄
m∑︂
i=1

li log

(︃
li
dqi

)︃
−

n∑︂
i=1

ki log

(︃
ki
dpi

)︃]︄

= exp

[︄
m∑︂
i=1

(dqi + yi
√︁
dqi) log

(︃
1 +

yi
√
dqi

dqi

)︃
−

n∑︂
i=1

(dpi + xi
√︁
dpi) log

(︃
1 +

xi
√
dpi

dpi

)︃]︄

∼ exp

[︄
m∑︂
i=1

(dqi + yi
√︁
dqi)

(︃
yi
√
dqi

dqi
− y2i

2dqi
· ·
)︃
−

n∑︂
i=1

(dpi + xi
√︁
dpi)

(︃
xi
√
dpi

dpi
− x2i

2dpi
· ·
)︃]︄

= exp

[︄
m∑︂
i=1

(yi
√︁
dqi +

y2i
2
· · · )−

n∑︂
i=1

(xi
√︁
dpi +

x2i
2
· · · )

]︄
∼ exp

[︄
−1

2

(︄
n∑︂

i=1

x2i −
m∑︂
i=1

y2i

)︄]︄
.

Here we are using the approximation log(1+x) ∼ x− x2

2!
+ x3

3!
+ · · · , which converges since

we are assuming the xi’s and the yi’s lie in bounded intervals.
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Theorem 4.2.10. Consider matrices (αi)i=1,...,N ∈ Zr×N and (βi)i=1,...,M ∈ Zr×M , such that As-
sumption 4.2.3 holds. Then, consider the hypergeometric sequence

cd =
∑︂

k∈C∩Zr

ωT ·k=d

∏︁M
i=1(β

T
i · k)!∏︁N

i=1(α
T
i · k)!

d!

where ω =
∑︁N

i=1 αi −
∑︁M

i=1 βi and

C = {x ∈ Rr | αT
i · x ≥ 0 for all i} .

Then
log(cd) ∼ Ad− N −M − r

2
log(d) +B

as d→∞, where A,B ∈ R are constants that depend only on (αi)i=1,...,N and (βi)i=1,...,M .

Remark 4.2.11. If the matrix-data in Theorem 4.2.10 gives rise to a toric complete intersec-
tion X , then the asymptotic formula is equivalent to the one for toric varieties in Theo-
rem 4.1.2, since in this case dim(X) = N−M−r

2
.

Proof. The proof follows the same steps as the proof of Theorem 4.1.2 with some minor
changes that we highlight below. Consider

cd =
∑︂

k∈Zr∩C
ωT ·k=d

∏︁M
i=1(β

T
i · k)!∏︁N

i=1(α
T
i · k)!

d! .

Fix R > 0 and for d ≫ 0 consider the ball BR
√
d around x∗ ∈ C◦, the solution to the

minimisation problem in Proposition 4.2.8. Then, we apply Theorem 4.2.9, setting

ki := αT
i · k , pi :=

αT
i ·x∗

ωT ·x∗ , xi :=
ki−dpi√

dpi
,

li := βi · k , qi :=
βT
i ·x∗

ωT ·x∗ , yi :=
li−dqi√

dqi
,

where k ∈ Zr∩C∩BR
√
d andωT ·k = ωT ·x∗ = d. We can apply Theorem 4.2.9 since k ∈ BR

√
d

ensures that the x′is and yi’s lie in a bounded interval as d→∞. Given the solution x∗ from
Proposition 4.2.8, we can conclude that

N∏︂
i=1

pkii =
N∏︂
i=1

p
αT
i ·x∗

i =
N∏︂
i=1

pdpii ,

M∏︂
i=1

qkii =
M∏︂
i=1

q
βT
i ·x∗

i =
M∏︂
i=1

qdqii .

Moreover,
N∑︂
i=1

x2i −
M∑︂
i=1

y2i =
(k − x∗)TA(k − x∗)

d
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where A is the r × r matrix given by

A =
N∑︂
i=1

1

pi
αiα

T
i −

M∑︂
i=1

1

qi
βiβ

T
i .

This matrix is positive-definite since it is equal to Hf (x
∗), the Hessian of f : RN+M → R

defined as
x ↦→

N∑︂
i=1

(αT
i · x) log

(︁
(αT

i · x)
)︁
−

M∑︂
i=1

(βT
i · x) log

(︁
(βT

i · x)
)︁
,

which is strictly convex by Assumption 4.2.3.

Therefore, Theorem 4.2.9 applied to this case translates to saying that as d→∞ and for k ∈
Zr ∩ C ∩BR

√
d, such that ωT · k = d, we have

d!

∏︁M
i=1(β

T
i · k)!∏︁N

i=1(α
T
i · k)!

∼
∏︁M

i=1 q
dqi+

1
2

i

(2πd)
N−M−1

2

∏︁N
i=1 p

dpi+
1
2

i

exp

(︃
−(k − x∗)TA(k − x∗)

2d

)︃
.

Note that, for d ≫ 0 , those ck for k ∈ Zr ∩ C, ωT · k = d, but k ̸∈ BR
√
d, carry a negligible

contribution, therefore,

cd ∼
∏︁M

i=1 q
dqi+

1
2

i

(2πd)
N−M−1

2

∏︁N
i=1 p

dpi+
1
2

i

∑︂
k∈Zr∩C
ωT ·k=d

exp

(︃
−(k − x∗)TA(k − x∗)

2d

)︃
.

Applying the change of co-ordinate y = (k − x∗)/
√
d, and considering the sum here as a

Riemann sum we have

cd ∼
∏︁M

i=1 q
dqi+

1
2

i

(2dπ)
N−M−1

2

∏︁N
i=1 p

dpi+
1
2

i

d
r−1
2

∫︂
y∈Lω

exp

(︃
−1

2
yTAy

)︃
dy

where Lω is the linear subspace given by ker(ω) and dy is the measure on Lω given by the
integer lattice Zr ∩ Lω ⊂ Lω. In order to evaluate the integral, let B be the (r − 1) × r
matrix whose columns form a Z-basis of Lω. Observe that the pull-back of dy along the
map Rr−1 → Lω given by t ↦→ Bt is the standard measure on Rr−1. Thus,∫︂

Lω

exp

(︃
−1

2
yTAy

)︃
dy =

∫︂
Rr

exp

(︃
−1

2
xTCx

)︃
dx =

√︃
(2π)r−1

det C
,

where C = B · A · BT .

Therefore,

cd ∼
∏︁M

i=1 q
dqi+

1
2

i

(2dπ)
N−M−r

2

∏︁N
i=1 p

dpi+1/2
i

√︁
det(C)

.

Remark 4.2.12. As in Remark 4.1.4 we give a co-ordinate dependent definition of C which
is useful in computations. It is obtained by the same projection of k = (k1, . . . , kr) ∈ Zr on
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the {kr = 0} co-ordinate hyperplane.

Cij =
N∑︂
k=1

(ωrαj
k − ωjαr

k)(ω
rαi

k − ωiαr
k)

lrpk(ωr)
r−2
r

−
M∑︂
k=1

(ωrβj
k − ωjβr

k)(ω
rβi

k − ωiβr
k)

lrqk(ωr)
r−2
r

, (4.2.7)

where l = gcd(ω1, . . . , ωr), and αi = (α1
i , . . . , α

r
i ), βi = (β1

i , . . . , β
r
i ), ω = (ω1, . . . , ωr).

We expect Conjecture 4.2.2 to hold for the coefficients of the regularized quantum period
when c ̸= 0 in Eq (4.2.2) if we still assume Assumption 4.2.3.

4.3 Computing x∗

To compute x∗ from Proposition 4.1.1 and 4.2.8, we can use constrained gradient descent,
whose steps are made explicit in Algorithm 1. The input is assumed to be the data of the
ambient toric variety (given as a list of columns αi’s of the weight matrix for the toric am-
bient), the data for the line bundles (given as a list of the βi’s, which in the toric case is
just empty), the learning rate η, and the maximum number of iterations iters. A Python
implementation of this algorithm is found in the repository [Ven24b]. The algorithm as-
sumes and does not check that the function f from (4.2.3) is strongly convex.

Algorithm 1: The algorithm computes x∗ as in Proposition 4.1.1 and Proposi-
tion 4.2.8.
1 Function xStar((αi)

N
i=1: list of vectors, (β)Mi=1: list of vectors, η: float, iters: int):

vector is
2 F ←the function to minimise as in (4.2.3);
3 C ← the cone as in (4.2.4);
4 ω←

∑︁N
i=1 αi −

∑︁M
j=1 βj ;

5 x0← ω
ωT ·ω # Initial guess;

6 for n = 1, . . . , iters do
7 Compute y = ∇F (x0);
8 Take gradient step x1 = x0 − ηy;
9 Project on x1 on the plane ωT · x = 1;

10 while F (x1) > F (x0) or x1 ̸∈ C do
11 x1←(x1 + x0)/2;
12 end
13 x0 ← x1;
14 end
15 Return x0.
16 end

Remark 4.3.1. The existence and uniqueness of x∗ in C assures that Algorithm 1 converges
to a good approximation of x∗ for a high enough number of iterations.

Note that in the case of Picard rank two toric varieties and toric complete intersections in
Picard rank two toric varieties, the systems of homogeneous polynomial equations (4.1.5)
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and (4.2.6) reduce to solving one single variable polynomial equation. In these cases, the
solution x∗ = [µ : ν] ∈ P1, so we can fix µ = 1 and solve for ν (or the other way around).
The domain for ν is determined by the cone, since(︃

µ
ν

)︃
∈ C

forC as in Propositions 4.1.1 and 4.2.8. Such univariate polynomial equations can be solved
using numerical methods: this is how x∗ was calculated to produce Figure 3.20 and how
we will calculate x∗ to construct the dataset in Section 5.3.1 in the next chapter. However,
using Algorithm 1, we can compute the rigorous asymptotic data for varieties irrespective
their Picard rank.
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5 Detecting Terminal Singularities

Recall, in Chapter 3 we generated all terminal weighted projective spaces with dimen-
sion bounded by ten and weights bounded by 25. These were visualised using the coeffi-
cients (A,B) from Theorem 3.4.1 in Figure 3.18, which displayed a lot of geometric struc-
ture. We would like to conduct a similar study for toric varieties with higher Picard rank,
however checking terminality in these cases is a computationally expensive problem in
convex geometry. In Picard rank one (weighted projective spaces) there exists a fast com-
binatorial criterion that we have recalled in Proposition 1.1.3 – which is how we produced
the data displayed in Figure 3.18. In this chapter, we investigate how to check the condition
of being terminal for a Picard rank two toric variety using machine learning, with the aim
of avoiding having to perform expensive computer algebra routines to produce a similar
figure.

In this chapter we cover parts of the content of [CKV24].

5.1 Data generation

In this section, we describe the dataset used in the construction of our machine learning
model. The datasets are generated using Magma v2.25-4, [BCP97].

The data is a balanced labelled dataset of 5 million terminal and 5 million non-terminal
Q-factorial toric varieties of Picard rank two and dimension eight. The motivation for the
choice of dimension is two-fold. It is important to distance ourselves from the surface case,
where the terminality check is trivial (recall that smooth implies terminal in dimension
two). Moreover, we need to consider examples of sufficiently high dimension where there
are an abundance of examples, so that we can benefit from a machine learning approach.
For example, the analogue of our dataset in dimension three contains only 34 examples;
see [Kas06]. On the other hand, the choice of Picard rank two is natural. As we have
mentioned above, there already exists a fast combinatorial formula to check terminality in
Picard rank one (Proposition 1.1.3), so the next step to consider is Picard rank two.

As in Chapter 3 we use generate toric Fano varieties using weight matrices. Therefore, our
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data points are 2× 10 integer valued matrices[︃
a1 · · · a10
b1 · · · b10

]︃
(5.1.1)

that satisfy Assumption 1.4.2.

Note that classification problems using the weight matrices as features need to be treated
as invariant machine learning problems. In fact, recall that we have two actions on a weight
matrix that keep the corresponding geometric quotient unchanged (so they trivially leave
the label terminal/non-terminal unchanged). Explicitly, given aweightmatrix as in (5.1.1)
there is an action of S10 permuting the columns and an action of GL2(Z) on the left which
reparametrises the action of the torus14. Recall that this class of transformations leaves the
geometric quotient unchanged [Ahm17]. We approach this group invariant problem by
ensuring all ourweightmatrices are in standard form, a specific choice of orbit representative
that is consistent for the whole dataset (see [APS23] for a survey on equivariant machine
learning and an exposition of fundamental domain projection). In fact, since all ( ai

bi ) lie in a
strictly convex cone we can always transform a weight matrix via a GL2(Z)-transformation
into a matrix of the form [︃

a1 a2 · · · a10
0 b2 · · · b10

]︃
, (5.1.2)

where the columns are ordered anticlockwise cyclically, a10 < b10 and (
ai
bi ) ∈ Z2

≥0. We refer
to such a matrix as a matrix in standard form. Note that any 2 × N weight matrices can be
put into standard form, so this can be done for any Picard rank two toric Fano variety for
any dimension.

The 2× 10matrices are generated in standard form, as in (5.1.2), where all integer entries
are chosen uniformly at random in the range [0, 7], with the following exceptions: a1, bN ∈
[1, 7] and aN ∈ [0, bN − 1]. Once a weight matrix has been constructed, we check that it
satisfies the conditions in Assumption 1.4.2. We use rejection sampling to create an overall
balanced dataset betweenweightmatrices corresponding to terminal and non-terminal va-
rieties. Before generating any weight matrix, a random boolean True (terminal) or False
(non-terminal) is initialised. If the generated matrix satisfies Assumption 1.4.2, the corre-
sponding fan is constructed (as described in Section 1.1.1), otherwise it is discarded. We
determine whether the example corresponds to a terminal variety by performing a cone-
by-cone analysis of the singularities on the fan (see Section 1.1.2 for details). If the termi-
nality status agrees with the initial boolean, the sample is added to the dataset, otherwise
the example is discarded, and the process is repeated until we have a balanced dataset of
5 million terminal examples and 5 million non-terminal examples. We will refer to this
dataset as DSterm_10M.

Just like in the data generation step for DSdim_rk2 from Chapter 3, we deduplicate the
data using the normal form of the fan (for details see [GK13, KS04]), which we have con-
structed anyway to check the terminality status of a given weight matrix. We note that
even if we are choosing our matrices to be in standard form, there are always two standard

14Recall that GL2(Z) is the group of 2× 2 integer–valued invertible matrices whose inverse is also integer–
valued.
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forms representative that correspond to the same variety. Therefore, note that we could
have deduplicated just by looking at the standard forms directly, which is what we do in
Section 5.3.1 (since in that case we are not constructing the fan to perform a terminality
check, so it would have been way more expensive to construct it just to deduplicate the
dataset).

5.2 Neural network

In this section, we build a neural network classifier that determines whether a toric Fano
variety (of dimension eight and Picard rank two) is terminal using the flattened weight
matrices as features.

5.2.1 Model

All experiments are implemented in Pytorch v.1.13.1 [PGM+19] (the model design, train-
ing, and testing) and scikit-learn v1.1.3 [PVG+11] (the data pre-processing step). The code
used to perform this analysis is available from Bitbucket [CKV23c] under an MIT licence.

The Multi-Layer Perceptrons (MLP) constructed are feedforward fully-connected neural
networks (see Section 2.3.3) trained with binary cross entropy loss function (see Exam-
ple 2.3.2), leaky ReLU activation (see Example 2.3.1), stochastic mini-batch gradient de-
scent as optimiser. They are trained using early-stopping for a maximum of 100 epochs
and learning rate reduction on plateau. Hyperparameter tuning is partly carried out us-
ing RayTune [LLN+18] (a popular Python library for hyperparameter tuning at any scale)
on a small portion of the training data via randomgrid searchwith Async SuccessiveHalv-
ing Algorithm (ASHA) scheduler [LJR+20]. Given the best configuration resulting from
the random grid search, the most optimal one is chosen by manually exploring the config-
urations nearby.

5.2.2 Training

The input to our neural networkwill be a vector of twenty entries given by flatteningweight
matrices

(a1, . . . , a10, b1, . . . , b10) ∈ Z20 .

These vectors are standardised by translating the mean to zero and scaling to variance one
(see Section 2.2). Note that this destroys the integer structure, but neural networks are
known to perform better on standardised inputs. We train a feedforward fully-connected
MLPwith three hidden layers on a balanced dataset of terminal and non-terminal varieties
to predict terminality. The summary of the network configuration, optimised via hyper-
parameter tuning, is found in Table 5.1. During training, we keep 20% of the training data
as validation, to plot the loss learning curves in Figure 5.1.
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Hyperparameter Value
Hidden layers (512, 768, 512)
Training size 5million

Initial learning rate 0.01
Momentum 0.99

LeakyReLU slope 0.01
Batch size 128

Table 5.1: Final network architecture and configuration for MLP5M.

By training using different train–test splits we obtain the training learning curve in Fig-
ure 5.1a, which shows that the last train–test split (5 million samples) produces an accu-
rate model that does not overfit. We include all loss learning curves in Figure 5.1. The
final accuracy of this MLP is 95% on the remaining testing data, and it produces confusion
matrices as in Figure 5.2. We will refer to this neural network as MLP5M.

The high accuracy of the neural network is very surprising. Despite their fundamental
role in algebraic geometry, checking whether a Fano variety has terminal singularities is
an extremely challenging question in convex geometry. For the toric case, as we have high-
lighted in Section 1.1.2, checking if a variety has at worst terminal singularities involves
constructing the fan and performing a cone-by-cone analysis of its combinatorics. This is
not only expensive from the computational point of view, but it is also unsatisfying from
the theoretical one. The result of the neural network suggests the existence of a simpler
criterion that uses the weights directly instead of constructing the fan. We explore this
direction in Chapter 6 Section 6.1.1.

5.3 Exploring the landscape

The suggestion that a simpler criterion for determining whether a weight matrix corre-
spond to a terminal toric variety is not the only outcome of the high accuracy machine
learning model. In fact, we can use the machine learning model to substitute the usual ter-
minality check in order to generate huge amount of data. This would have been practically
impossible using the usual computational routines, because they are simply too slow. For
example, just generating dataset DSterm_10M took 30 CPU years.

5.3.1 Data generation

Wewant to be able to generate a large amount of terminal toric Fano varieties of Picard rank
two, compute their regression data (i.e. A and B from Theorem 3.4.2), and plot them. The
aim is to produce plots like Figures 3.18 and 3.20. To do so we implement an AI-assisted
data generationworkflow that combines algorithmic checks and testing viamachine learn-
ing, outlined as follows. This dataset is generated using Pytorch v1.13.1 [PGM+19] and
SageMath v9.8 [The23].
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Learning curves: (a) number of training samples against accuracy for different
train–test splits; (b)–(f) epochs against loss forMLP’s trained on 1, 2, 3, 4, 5million samples
from the dataset DSterm_10M
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(a) (b)

Figure 5.2: Confusion matrices for MLP5M: (a) is normalised with respect to the true axis;
(b) is normalised with respect to the predicted axis.

1. Generate a random (2× 10) integer–valued matrix with entries chosen uniformly at
random from in [0, 7].

2. Cyclically order the columns and check if the matrix is in standard form (5.1.2). If it
is, we keep it, otherwise go back to Step 1.

3. Check that it satisfy the conditions in Assumption 1.4.2.

4. Checkwhether thematrix is terminal by themodelMLP5M constructed in Section 5.2.
If the example is classified as terminal we keep it and store its probability, otherwise
go back to Step 1.

5. Calculate the regression data (A,B) using formulae in (3.4.3) (here x∗ is calculated
using the methodology for Picard rank two examples discussed in Section 4.3).

6. If the example is not already in the dataset, insert it, recording the weight matrix, the
regression data (A,B), and its Fano index15.

Remark 5.3.1. Note that in this case, when we are checking whether the sample has already
been added to the dataset we are not constructing the normal fan. Instead, we are using
the fact that each orbit has at most two representatives in standard form. Therefore, for
each standard form weight matrix that we compute, we can compute its other partner in
standard form and check if either matrix is already in the dataset.

The final dataset is composed of 100million samples. A summary of the keys and values of
each entry is found in Table 5.2. We call this dataset DSterm_100M and note that it contains
weight matrices corresponding to probable Q-Fano toric Fano varieties of Picard rank two
and dimension eight. The probable here stands for the fact that the terminality check is
carried out with the neural network, hence it is not certain that these varieties have at
worst terminal singularities.

15Recall that this is gcd(a, b)where a =
∑︁10

i=1 ai and b =
∑︁10

i=1 bi for ai, bi as in (6.2.2).
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Key Description
Weights Weight matrix, in standard form, given as the two row vectors.

Regression A vector of floats, the regression data (A,B).
FanoIndex An integer, the Fano index.

Total 100million

Table 5.2: The keys and values for the entries in the dataset DSterm_100M.

5.3.2 Data analysis

Given the large amount of data we have generated, we plot A against B, the regression
data, for each example; see in Figures 5.3. Note that in the formula for B in (3.4.3), the
dependency on the Fano index is logarithmic, and so we have rendered the colour scale
logarithmically in Figure 5.3a. In Figure 5.4 we restrict the dataset to low Fano indices. For
each Fano index in the range one through to nine, we plot the convex hull of the resulting
point cloud. The overlap between these clusters is clear.

(a) (b)

Figure 5.3: The values of A and B from Theorem 3.4.2 for the varieties in dataset
DSterm_100M. In (a) we colour by Fano index, while in (b) we colour a heatmap according
to the frequency. In both cases the colours are rendered logarithmically.

We immediately note that the vertical line that bounds the cluster of Fano varieties is not
surprising. In fact, applying the log–sum inequality to the formula of Awe obtain that

A = −
N∑︂
i=1

pi log(pi) ≤ −

(︄
N∑︂
i=1

pi

)︄
log

(︄∑︁N
i=1 pi
N

)︄
= log(N) .

In our case N = 10 (since our examples have dimension eight), hence x = log(10) ∼ 2.3
is the vertical boundary we see in Figure 5.3. Moreover, we note a linear lower bound
for the cluster, and a similar bound was observed and rigorously established for weighted
projective spaces Section 3.6.
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Figure 5.4: Convex hulls obtained from the point clouds of (A,B) for varieties from dataset
DSterm_100M with Fano indices between one and nine, obtained by projecting to R2 using
the growth coefficients from (3.4.3).

(a) (b)

Figure 5.5: Q-Fano products of weighted projective space in dimension eight, with weights
bounded by seven. (a) Projection to R2 using the growth coefficients from. (b) The same
as (a), but plotted on top of (A,B) for varieties in dataset DSterm_100M, plotted in grey.

Smooth Fano toric varieties Using the known classification of smooth toric Fano varieties
(see Section 1.3) we know that there are 62 smooth Fano toric varieties in dimension eight
and of Picard rank two, all of which have weights bounded by seven when expressed in
standard form (5.1.2). These are plotted in Figure 5.6, and appear to fall in the upper
extreme region within each cluster. This could suggest that one of the directions of the
cluster is recording the complexity of the singularities.

Products of weighted projective space To better understand this clustering by Fano in-
dex, we consider the simplest Q-factorial Fano toric varieties of Picard rank two: products
of weighted projective spaces. Recall from Section 1.1 that a product of weighted projective
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(a) (b)

Figure 5.6: The smooth Fano toric varieties in dimension eight and of Picard rank two.
(a) Projection to R2 using the growth coefficients from (3.4.3). (b) The same as (a), but
plotted on top of (A,B) for varieties in dataset DSterm_100M, plotted in grey.

spaces X = P(a0, . . . , aN) and Y = P(b0, . . . , bM) is specified by a weight matrix[︃
a0 · · · aN 0 · · · 0
0 · · · 0 b0 · · · bM

]︃
.

This matrix determines a Q-factorial Fano toric variety of Picard rank two and dimen-
sionN +M , denotedX × Y . The singular points ofX × Y are determined by the singular
points ofX and Y . In particular,X×Y is terminal if and only if bothX and Y are terminal.
Recall, that we can test terminality for weighted projective spaces using Proposition 1.1.3.

We can then enumerate all terminal weighted projective spaces in dimensions one to seven,
with weights 1 ≤ ai ≤ 7. The number in each dimension is given in Table 5.3. By taking
products, we obtain 8792 distinct Q-Fano toric varieties of Picard rank two in dimension
eight; these examples are plotted in Figure 5.5. This supports our observation that the
Q-Fano varieties fall into large overlapping clusters that are determined by the Fano index.
Note that the products of weighted projective space appear to fall within the upper region
of each cluster.

d 1 2 3 4 5 6 7
# 1 1 7 80 356 972 2088

Table 5.3: The number of terminal weighted projective spaces in dimension d, 1 ≤ d ≤ 7,
with weights ai bounded by seven.

A cluster of high-Fano index examples Curiously, Figure 5.3b shows a cluster of high-
Fano index cases (at the top of the plot) standing apart from the remainder of the data.
This is also visible in Figure 5.7 which shows the frequency distribution of the Fano in-
dix across the dataset. This can be explained as follows. The uptick in frequencies in the
histogram in Figure 5.7 can be justified by the following argument. Consider how many
ways we can write n as a sum of ten numbers between 0 and 7 (inclusive, and with pos-
sible repeats). This resembles a normal distribution with n = 35: the integer with most
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different ways of writing it as a sum. Therefore, the higher proportion of these high Fano
index examples is due to our sampling constraints on the entries of the weight matrix:
amongst those matrices that have a = b we have the highest probability of selecting one
that has a = b = 35. Therefore, we see a misleading accumulation around those Fano in-
dices: if we were sampling with a bigger weight bound we would see this cluster higher
up.

Figure 5.7: Distribution of the Fano index gcd(a, b) for the varieties in dataset DSterm_100M
(note that the vertical axis scale is logged).

5.4 Limitations and outlook

Out-of-sample performance Despite its potential, this approach has some limitations:
tackling these problems will guide further research. A key problem with our workflow
is that our classifier performs poorly on out-of-sample data. In fact, our weight matrices
are generated with weights bounded by seven. To test the performance out-of-sample we
generate 10 000 random weight matrices with weight bound increasing from five to ten,
balanced between terminal and non-terminal. The data generation steps for these sam-
ples are the same as the data generation steps for DSterm_10M. For those weight matri-
ces with weights bounded by seven (or smaller bounds) the model is extremely accurate
(95%). However, when we increase the bound the accuracy quickly drops: 62% for entries
bounded by eight; 52% for entries bounded by nine; and 50% for entries bounded by ten.
These results are summarised in the confusion matrices in Figure 5.8a, which highlight
how the network quickly degenerated to always predicting non-terminal example.

Because of this, it is natural to ask what kind of statement the neural network is approxi-
mating. Is it actually picking up some genuinemathematical structure or is it just the result
of some finite-size effect due to the choice of bound on the weights (which is seven in our
case)? Intuitively, we expect the neural network to be approximating an actual mathe-
matical statement, given that the training and testing data are free of noise and the final
accuracy is so high. However, the poor out-of-sample performance indicates that wemight
not know which kind of mathematical statement the network is approximating. There are
two possibilities.
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(a) MLP5M, trained on DSterm_10M, which contains weight matrices with bound on the
entries seven.

(b) MLP10M, trained on DSterm_20M, which contains weight matrices with bound on the
entries ten.

Figure 5.8: Confusion matrices for the neural network classifier on in-sample and out-of-
sample data. In each case a balanced set of 10 000 random examples was tested. Note that
the confusionmatrices are not normalisedwith respect to neither the true nor the predicted
axis.

• The neural network might be approximating a general statement for detecting ter-
minality of Picard rank two toric Fano varieties. In this case, the poor out-of-sample
performance could be because the network is approximating such a statement in a
way that does not generalise well to matrices with bigger weights. This is a common
phenomenon when using neural networks.

• The neural network might be approximating a statement that only applies to weight
matrices with small entries, which mathematically correspond to Fano varieties with
terminal singularities of small index16. If this is truewewould expect not to be able to
build a corresponding high accuracy network forweightmatriceswith bigger bounds
on the weights. In this case, the drop in accuracy for higher bound is justified by the
fact that the actualmathematical statement that is being approximate requires a small
bound on the weights.

To understand this we perform the same experiment for weight matrices that have weights
bounded by ten, instead of seven. Using the same data generation workflow as in Sec-
tion 5.1 we generate a new dataset of 20 million balanced examples labelled terminal and
non-terminal. The data generation steps are exactly the same except for the terminality
check, forwhichwewere now able to use the new algorithm explained in Chapter 6, whose
formulation came after the success of the neural network MLP5M. The new algorithm is
roughly fifteen times faster than the original method, and therefore this allowed us to com-
fortably generatemore data compared to DSterm_10M.We call this newdataset DSterm_20M.

We train a fully-connected feed-forward neural network with the same architecture as the
original neural network MLP5M; recall the final configuration from Table 5.1. The network
was trained on the flattened weight matrices, where we applied a standard scaler to each
entry. It was trained using binary cross-entropy as loss function, stochastic mini-batch

16The index of a singularity P ∈ X is the smallest r such that rKX is Cartier in a neighbourhood of P .
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(a) (b) (c)

Figure 5.9: (a) Accuracy for different train–test splits; (b) epochs against loss for the net-
work trained on 5 million samples of DSterm_20M; (c) epochs against loss for the network
trained on 10million samples of DSterm_20M.

gradient descent optimiser and using early-stopping, for a maximum of 150 epochs and
with learning rate reduction on plateaux. Using 5 million balanced samples for training
(80% for training and 20% for validation) and testing on 15 million samples, the network
obtained an accuracy of 90% – Figure 5.9b displays the loss learning curve. We were able
to recover a 94% accuracy by training on 10million samples – Figure 5.9c displays the loss
learning curve for this case. Moreover, we record the training and validation accuracies for
intermediate training sizes in Figure 5.9a.

Therefore, training on dataset DSterm_20Mwas also able to produce a high testing accuracy,
as with the original bounds (seven) on the weights. However, it is important to note that
this made possible only by using a much larger training sample, which is a testament to
the increased difficulty of the task. In addition to this, the plateau shown in the learning
curve in Figure 5.9a suggests that increasing the training set size further will not lead to an
increase in accuracy, meaning that we might have reached the limits of this model.

Overall, the fact that we were able to build a high-accuracy neural network for a larger
weight bound supports the argument that the model is actually approximating a gen-
eral mathematical statement, but in a way that does not generalise well to higher bound.
Nonetheless, the new chosen bound (ten) is still too low to exclude the possibility that
the model is actually capturing a mathematical statement that needs weight matrices with
small entries. To reach a definite conclusion about this, similar studies with even larger
bounds should be carried out (and they could potentially suggest if the cut-off bound of
the weight exists, and if it does what it is).

Training size Moreover, an additional limitation of this approach is that the training pro-
cess appears to needmore samples that it would be ideal, since the accurate computational
check that a toric variety is terminal is incredibly time-consuming (especially if we were to
consider examples of dimension much higher than eight). We can imagine that a more so-
phisticatedmodel (potentially able to capture the group-invariance nature of the problem)
might require less training data that the chosen architecture.

However, we also remark that the design of the new terminality algorithm for Picard rank
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two varieties (which we describe and prove in Chapter 6) is fifteen times faster than the
naïve cone-by-cone analysis described in Chapter 1. Therefore, adopting this new algo-
rithm greatly improves the data generation workflow, making repeating this analysis for
other dimension (and/or weight bounds) much more accessible.

Beyond toric varieties Lastly, we have only been working with toric varieties of Picard
rank two, which are a special class of Q-Fano varieties. Higher rank toric varieties are
definitely accessible by similar tools, however their vectorisation might require a more so-
phisticated study of tackling the groups acting on the space of weight matrices. In fact,
in the construction of an MLP for the Picard rank two case we rely on the existence of
a standard form (5.1.2) – for weight matrices, which allows us to pick an almost unique
representative of each group orbit. It is not clear whether there exists an equally nice stan-
dard form for weight matrices in higher rank, therefore a possibility would be to tackle the
group action by building a machine learning invariant model (either with a preprocessing
step, data augmentation, or by choosing the correct architecture).

Dealing with general Q-Fano varieties seems unapproachable, however if we are only in-
terested in classifying algebraic varieties up to deformation, the situation is better than ex-
pected. In fact, where we know the classification (see Table 1.1), any smooth Fano variety
in low dimension is either (up to deformation) a toric variety, a toric complete intersec-
tion, or a quiver flag zero locus [CCGK16, Kal19]. The hope here is that the (currently
unknown) classification of Q-Fano varieties will share this property of mostly being cov-
ered by varieties of these types. This is especially important since each of these classes
of varieties has a geometry that is highly controlled by combinatorics (just like toric vari-
eties). This sheds some hope that their combinatorial vectorisation makes them amenable
to similar data-driven tools.

The best possible path forward would be to train an explainable model that predicted ter-
minality from the weight data. This would allow us to extract from the machine learning
not only that the problem is tractable, but also a precisemathematical conjecture for the so-
lution. At the moment, however, we are very far from this. The multilayer perceptron that
we trained is a black-box model, and post-hoc explanatory methods such as SHAP anal-
ysis [LL17] yielded little insight: all features were used uniformly, as might be expected;
see Figure 5.10. Of course, b1 has no influence, since it is always zero, but apart from this
nothing stands out as particularly influential. Interestingly, a low value of a feature (our
lowest value is zero) is very influential for the outcome of the model for many – but not all
– the features.
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Figure 5.10: Model sensitivity analysis using SHAP values, for the model MLP5M trained
on the data coming from DSterm_10M. It predicts terminality with 95% accuracy.
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6 Algorithms for Toric Fano Varieties

In this chapter, we collect results related to the construction of algorithms for toric Fano
varieties. The first part develops a new algorithm to test for terminal singularities for toric
Fano varieties of Picard rank two. This is originally from [CKV24] where it was designed
after the construction of the neural network that detects terminal singularities which we
have presented in Chapter 5. We then use the same methodology to generalise to a new
algorithm to check if a toric Fano varieties of Picard rank two has at worst canonical sin-
gularities. We conclude this part by discussing why the methodology does not extend to
Picard rank higher than two in a straightforward way.

In the second part of the chapter, we sketch some work in progress that aims to answer the
following question

“Does a sequence (pi)ni=0 arise as the period sequence of a toric Fano variety?”

This is current ongoing work, and we do not answer this question in full by the end of the
chapter. However, we sketch some initial progress and produce an algorithm that answers
this question in the case of weighted projective spaces and a special case of Picard rank
two varieties.

We include pseudocode for the algorithms mentioned and the implementation of the al-
gorithms is in Python and SageMath [The23] and is found at [Ven24b].

6.1 Terminal and canonical singularities

In this section we describe a new global criterion for determining whether a Q-factorial
toric Fano variety of Picard rank two has at worst terminal singularities. This result is in-
spired by the high accuracy neural networkmodel fromChapter 5 (but unlike themachine
learningmodel, this is an exactmethod that is not restricted just to dimension eight). Then,
we extend this result to checking whether a Q-factorial toric Fano variety of Picard rank
two has at worst canonical singularities. Finally, we discuss why it is difficult to extend this
methodology to varieties with Picard rank greater than two.
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6.1.1 Picard rank two

Terminal singularities We prove a theoretical result, Proposition 6.1.3, which leads to
a new algorithm for checking terminality directly from the weight matrix, for Q-factorial
toric Fano varieties of Picard rank two (these steps are made explicit in Algorithm 2). Con-
sider a weight matrix as in (1.1.2), [︃

a1 · · · aN
b1 · · · bN

]︃
satisfying the conditions in Assumption 1.4.2. LetX be the toric Fano variety that it speci-
fies. As discussed in Section 1.1.1 we can build a convex polytope P corresponding to the
weight matrix. The polytope P ⊂ RN−2 hasN vertices given by the primitive lattice points
on the N rays of the corresponding fan, {e1, . . . , eN}. They satisfy the following system{︃

a1e1 + · · ·+ aNeN = 0
b1e1 + · · ·+ bNeN = 0

.

Then, X has terminal singularities if and only if the only lattice points in P are the ver-
tices {e1, . . . , eN} and the origin; see Section 1.1.2 for a detailed discussion of this.
Definition 6.1.1. Let ∆i denote the convex hull in RN−2 with vertices {e1, . . . , êi, . . . , eN}.
We say that ∆i is mostly empty if each lattice point in ∆i is either a vertex or the origin.
Remark 6.1.2. Note that in our setup (where X is Q-factorial and has Picard rank two) ∆i

will be a simplex for all i ∈ {1, . . . , N}.
Proposition 6.1.3. Consider an integer–valued weight matrix[︃

a1 · · · aN
b1 · · · bN

]︃
that satisfies Assumption 1.4.2. Let gi = gcd(ai, bi), and letAi, Bi ∈ Z such thatAiai+Bibi = gi.
Set

αj
i =

ajbi − bjai
gi

αi =
N∑︂
j=1

αj
i

βj
i = −Aiaj −Bibj βi =

N∑︂
j=1

βj
i fi =

αigi
gcd(gi, βi)

noting that all these quantities are integers. Then ∆i is mostly empty if and only if for all k ∈
{0, . . . , fi − 1} and l ∈ {0, . . . , gi − 1} such that

∑︂
j ̸=i

{︄
k
αj
i

fi
+ l

βj
i

gi

}︄
= 1

we have that {︄
k
αj
i

fi
+ l

βj
i

gi

}︄
=
αj
i

αi
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for all j ̸= i. Here {q} = q − ⌊q⌋ for q ∈ Q.

Proof. Recall that we can construct a convex polytope P from the given weight matrix with
vertices e1, . . . , eN ∈ ZN−2, and that{︃

a1e1 + · · ·+ aNeN = 0
b1e1 + · · ·+ bNeN = 0

where ai’s and bj’s are the entries in the weight matrix. The same argument applied to the
equivalent weight matrix [︃

bi/gi −ai/gi
Ai Bi

]︃
·
[︃
a1 · · · aN
b1 · · · bN

]︃
gives barycentric co-ordinates for the origin and ei in terms of the remaining vertices of∆i,{︃

α1
i e1 + · · ·+ αi−1

i ei−1 + αi+1
i ei+1 + · · ·+ αN

i eN = 0
β1
i e1 + · · ·+ βi−1

i ei−1 + βi+1
i ei+1 + · · ·+ βN

i eN = giei
.

Fix i ∈ {1, 2, . . . , N}. Define u : QN−1 → Q by u(x1, . . . , xN−1) = x1 + · · · + xN−1, and let Ψ
denote the lattice

{v ∈ Z | u(v) = 1}

where Z is the span over Z of the standard basis E1, . . . , EN−1 for QN−1 together with
1

fi
(α1

1, . . . , α̂
i
i, . . . , α

N
1 ) and 1

gi
(β1

1 , . . . , β̂
i

i, . . . , β
N
1 ) .

Here theˆ indicates that the ith entry in each vector is omitted. We define ϕ : Ψ→ ZN−2 to
be the Z-linear map that sends E1, . . . , EN−1 to e1, . . . , êi, . . . , eN and

ϕ

(︃
1

fi
(α1

i , . . . , α̂
i
i, . . . , α

N
i )

)︃
= 0 , ϕ

(︃
1

gi
(β1

i , . . . , β̂
i

i, . . . , β
N
i )

)︃
= ei .

It is easy to see that ϕ is well-defined and bijective.

Consider the higher-dimensional parallelepiped Γ in Z generated by the standard basis
ofZN−1. We note that each lattice point ofZ in Γ can be represented as a linear combination

k

fi
(α1

i , . . . , α̂
i
i, . . . , α

N
i ) +

l

gi
(β1

i , . . . , β̂
i

i, . . . , β
N
i ) (6.1.1)

for some k ∈ {0, . . . , fi−1} and l ∈ {0, . . . , gi−1}; this representation is unique if and only
if the vertices of ∆i Z-span ZN−2. Hence, ∆i is mostly empty if and only if whenever

∑︂
j ̸=i

{︄
k
αj
i

fi
+ l

βj
i

gi

}︄
= 1 (6.1.2)

we have that the linear combination in (6.1.1) represents the origin. However, this is the
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case if and only if {︄
k
αj
i

fi
+ l

βj
i

gi

}︄
=
αj
i

αi

for all j, since (k, l) = ( fi
αi
, 0) represents the origin by construction.

Let s+ = {i | aib− bia > 0}, s− = {i | aib− bia < 0}, and let I be the smallest of s+ and s−.
Then {∆i | i ∈ I} forms a triangulation of P by the following lemma.
Lemma 6.1.4. Given an integer–valued weight matrix[︃

a1 · · · aN
b1 · · · bN

]︃
that satisfies Assumption 1.4.2, let

s+ = {i | aib− bia > 0}
s− = {i | aib− bia < 0}

for a =
∑︁N

i=1 ai and b =
∑︁N

i=1 bi. Then, {∆i | i ∈ s+} and {∆i | i ∈ s−} both form a triangulation
of P by (N − 2)-dimensional simplices, where P is a spanning polytope obtained from the weight
matrix.

Proof. Recall that∆i is defined as the convex hull of {e1, . . . , êi, . . . , eN}, where {e1, . . . , eN}
are the vertices of P . Then ∆i and ∆j belong to a triangulation into simplices of P if and
only if

∆i ∩∆j = Conv{ek | k ̸= i, j} .

The inclusion of the convex hull into the intersection is clear, and equality holds if and only
if the cone

σ = Cone{ek | k ̸= i, j}

is not a cone in Σ (the fan corresponding to the polytope P) given the stability condi-
tion ω = ( a

b ). Recall from Section 1.1.1 that σ ̸∈ Σ if and only if {i, j} ̸∈ Aω. This holds if
and only if ( ai

bi ) and (
ai
bi ) are on the same side of the stability condition, i.e.

(aib− abi)(ajb− abj) > 0 ,

i.e. i, j ∈ s− or s+.

Thus, aQ-factorial toric Fano variety with Picard rank two has terminal singularities if and
only if ∆i is mostly empty for each i ∈ I . We outline these steps in Algorithm 2.
Remark 6.1.5. Testing on 100 000 randomly-chosen examples indicates that Algorithm 2 is
approximately 15 times faster than the fan-based approach to checking terminality (0.020s
per weight matrix for Algorithm 2 versus 0.305s for the standard approach, both imple-
mented in Magma). On single examples, the neural network classifier from Chapter 5
(MLP5M) is approximately 30 times faster than Algorithm 2. The neural network also
benefits greatly from batching, whereas the other two algorithms do not: for batches of
size 10 000, the neural network is roughly 2000 times faster than Algorithm 2.
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Algorithm 2:The algorithm checks if aQ-factorial toric Fano variety of Picard rank
two (given by a weight matrix 2×N) has at worst terminal singularities.
1 Function IsTerminal(((a1, . . . , aN), (b1, . . . , bN)): list of lists): is
2 a←

∑︁N
i=1 ai, b←

∑︁N
i=1 bi;

3 s+←{i | aib− bia > 0}, s−←{i | aib− bia < 0};
4 I ←the smallest of s+ and s−;
5 for i in I do
6 Test if ∆i is mostly empty, using Proposition 6.1.3.;
7 if ∆i is not mostly empty then
8 Return False

9 end
10 end
11 Return True;
12 end

Canonical singularities Canonical singularities17 are a less restrictive class of singulari-
ties than terminal singularities: if an algebraic variety has at worst canonical singularities
then it has at worst terminal singularities. As for terminal singularities, they have a nice
combinatorial characterisation in the case of toric Fano varieties. In fact, given a toric Fano
variety X of dimension D and its associated spanning polytope P ⊂ RD, then X has at
worst canonical singularities if and only if

P ◦ ∩ ZD = {0} ,

where P ◦ is the interior of P .

Therefore, we can easily generalise our above result to a test for canonical singularities in
the case of Picard rank two Q-factorial toric Fano varieties. This is achieved by the same
mechanisms as Algorithm 2 to check that P ◦∩ZD = {0} rather than P ∩ZD = vert(P )∪{0}
(in our case of Picard rank two we will have, as usual,D = N − 2, where N is the number
of columns in the weight matrix).

Let us define an equivalent to Definition 6.1.1 property for this case.

Definition 6.1.6. Let ∆i denote the convex hull in RN−2 with vertices {e1, . . . , êi, . . . , eN}.
We say that ∆i \ ∂P is mostly empty if ∆i \ (∂∆i ∩ ∂P ) is either empty or just contains the
origin.

We can then generalise Proposition 6.1.3 to check if ∆i \ ∂P is mostly empty.

Proposition 6.1.7. Consider a weight matrix[︃
a1 · · · aN
b1 · · · bN

]︃
17A varietyX has canonical singularities if it satisfies two conditions: there exists r ∈ Z≥1 such that rKX is

Cartier; if f : X → Y is a resolution of singularities and {Ei}i is the family of all exceptional prime divisors
of f then rKy = f∗(rKX) +

∑︁
i aiEi for ai ≥ 0; see [Rei87].
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that satisfies Assumption 1.4.2. Let gi = gcd(ai, bi), and letAi, Bi ∈ Z such thatAiai+Bibi = gi.
Set

αj
i =

ajbi − bjai
gi

αi =
N∑︂
j=1

αj
i

βj
i = −Aiaj −Bibj βi =

N∑︂
j=1

βj
i fi =

αigi
gcd(gi, βi)

noting that all these quantities are integers. Define Ω as the set of those vectors(︄{︃
k
α1
i

fi
+ l

β1
i

gi

}︃
, . . . ,

ˆ︂{︃
k
αi
i

fi
+ l

βi
i

gi

}︃
. . . ,

{︃
k
αN
i

fi
+ l

βN
i

gi

}︃)︄

for k ∈ {0, . . . , fi − 1} and l ∈ {0, . . . , gi − 1}, such that

∑︂
j ̸=i

{︄
k
αj
i

fi
+ l

βj
i

gi

}︄
= 1

we have that {︄
k
αj
i

fi
+ l

βj
i

gi

}︄
̸= αj

i

αi

for some j. The ∆i \ ∂P is mostly empty if and only if either Ω = ∅ or ∀v ∈ Ω, there exists j ∈
{j | vj = 0} such that

(abj+1j≥i
− aj+1j≥i

b)(abi − aib) < 0 ,

where a =
∑︁N

i=1 ai and b =
∑︁N

i=1 bi and k = j + 1j≥i.

Proof. The construction of the set Ω is analogous to Proposition 6.1.3. There, we had de-
fined a surjection from the lattice points in∆i to the lattice point of Z in the convex hull of
the standard basis vectorsE1, . . . , EN−1 inQN−1, whereZ is the span overZ of the standard
basis E1, . . . , EN−1 for QN−1 together with

1

fi
(α1

i , . . . , α̂
i
i, . . . , α

N
i ) and 1

gi
(β1

i , . . . , β̂
i

i, . . . , β
N
i )

Then, Ω is the set of these lattice points, unless they correspond to the origin (which might
or might not be inside ∆i). Therefore, Ω = ∅ is equivalent to ∆i being mostly empty,
the case for Proposition 6.1.3. If ∆i is not mostly empty, but ∆i \ ∂P is mostly empty,
then ∅ ̸= Ω ⊂ ∂∆i ∩ ∂P . Therefore, this is equivalent to for all v ∈ Ω to lie in a facet of the
convex hull of the standard basis vectors in QN−1, corresponding to a facet of P . We can
check whether the convex hull of a subset of vertices is a facet of the polytope by checking
whether it generates a cone in the fan, so combinatorially this translates to the condition
that there exists j ∈ {j | vj = 0} such that the (j+1j≥i)th and the ith columns of the weight
matrix lie on different sides of the stability condition, i.e.

(abj+1j≥i
− aj+1j≥i

b)(abi − aib) < 0 ,
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where a =
∑︁N

i=1 ai and b =
∑︁N

i=1 bi. Note that the shift in index is because v ∈ Ω is such
that v =

∑︁N−1
j=1 vjEj and Φ(v) =

∑︁i−1
j=1 vjej +

∑︁N
j=i+1 vjej where Φ is the bijection as in the

proof of Proposition 6.1.3.

As for the terminal case, we outline the steps for checking if a Q-factorial toric Fano va-
riety with Picard rank two has at worst canonical singularities using this proposition in
Algorithm 3, using the fact that we can triangulate P into simplices using Lemma 6.1.4.

Algorithm 3:The algorithm checks if aQ-factorial toric Fano variety of Picard rank
two (given by a weight matrix 2×N) has at worst canonical singularities.
1 Function IsCanonical(((a1, . . . , aN), (b1, . . . , bN)): list of lists): is
2 a←

∑︁N
i=1 ai, b←

∑︁N
i=1 bi;

3 s+←{i | aib− bia > 0}, s−←{i | aib− bia < 0};
4 I ←the smallest of s+ and s−;
5 for i in I do
6 Test if ∆i \ ∂P is mostly empty, using Proposition 6.1.7.;
7 if ∆i \ ∂P is not mostly empty then
8 Return False

9 end
10 end
11 Return True;
12 end

6.1.2 Higher Picard rank

We note that similar ideas seem to be applicable Picard rank higher than two. Consider a
Q-factorial toric Fano varietyX of Picard rank r and dimensionD. Its geometrical informa-
tion is encoded in an r×N integer valued matrix with columns (αi)i – as seen in Chapter 1
where N = D + r. Such a variety will correspond to a lattice polytope P in ZD: one might
imagine triangulating such a polytope intoD-dimensional simplices and applying a crite-
rion similar to Proposition 6.1.3 (or Proposition 6.1.7 in the canonical case) to check if each
simplex is mostly empty. However, the higher Picard case needs more careful thoughts.

In fact, in Algorithm 2 (respectively in Algorithm 3) we use the fact that P can be cut into
non-trivial simplices by considering the convex hull of the set of verticesminus one. This is
only true because P is assumed to be simplicial (since our toric Fano variety isQ-factorial)
and has Picard rank two: ignoring one vertex gives a non-trivial polytope inRD withD+1
vertices, so it is a simplex. Consider now a Q-factorial Picard rank three variety. This
corresponds to a simplicial polytope P withD+3 vertices inRD. We can imagine ignoring
one of the vertices, obtaining a new polytope QwithD+ 2 vertices in RD. Then, we could
imagine traingulating it as in the Picard rank two case, by ignoring one vertex at a time and
taking the convex hull. However, to do so wewould needQ to be simplicial, but there is no
reason why that would be the case given only that P is simplicial. For example consider
the product P1×P1×P1, a three-dimensional toric Fano variety of Picard rank three, as in
Example 6.1.8.
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Example 6.1.8. Consider P1 × P1 × P1, which can be given as the following weight matrix⎡⎣1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎤⎦ .

We can associate to it the polytope P ⊂ R3 in Figure 6.1 with vertices

e1 =
(︂

1
0
0

)︂
, e2 =

(︂
0
1
0

)︂
, e3 =

(︂
0
0
1

)︂
,

e4 =
(︂

−1
0
0

)︂
, e5 =

(︂
0
−1
0

)︂
, e6 =

(︂
0
0
−1

)︂
.

Note that even if P is simplicial, removing any of the vertices ei and considering the con-
vex hull of the remaining vertices is a pyramid with a square base, which is not simpli-
cial. Therefore, removing a subset of the vertices in turn (like we could do in the case
of Proposition 6.1.3) does not always yield a triangulation into simplices. For example,
removing {e1, e2} gives a degenerate simplex.

e1 e4

e6

e3

e2

e5

Figure 6.1: A polytope associated to P1 × P1 × P1.

Therefore, products of weighted projective spaces are problematic, but their terminality
check is trivial (since the product is terminal if each weighted projective space is terminal
– so we fall back on Proposition 1.1.3). Unfortunately, these are not the only bad examples,
meaning that this methodology for checking terminal singularities does not generalise in a
straightforwardway, but it will require an extra check that the triangulation of the polytope
obtained by removing certain vertices is given by non-degenerate simplices.

6.2 From period sequence to weight matrix

In this section, we describe ongoing work in designing an algorithm to determine whether
a sequence can arise as the period sequence of aQ-factorial toric Fano variety, returning its
weight matrix in case it can. This is meaningful in the context of the mirror symmetry for
Fano varieties picture described in Section 1.5. In fact, the aim there is to classify Fano va-
rieties by looking at their mirror partner, Laurent polynomials. Recall, that a Fano variety
and a Laurent polynomial are said to bemirror partners if there is an equality between reg-
ularized quantum period of the variety and classical period of the polynomial. Therefore,
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if we are given a Laurent polynomial and its classical period, we could ask: does it corre-
spond to a toric Fano variety? And if yes, which one? We will not answer this question
completely in this section, but we take a first step by looking at the weighted projective
spaces and a special case for Picard rank two toric Fano varieties. Note that the desired
output of the algorithm is not only a positive or negative answer, but it should produce
possible weight matrices that describe completely the geometry of the plausible toric Fano
variety that corresponds to the given sequence.

The inputs will be a truncated sequence (pi)ni=0 (for some n > 0) and an integer D, which
correspond to the dimension. Note that in Chapters 3 and 4, we have showed that there is
a strong relationship between the asymptotic behaviour of the regularized period and the
dimension of the corresponding variety. Therefore, it is a reasonable assumption to expect
that we could include the expected dimension of the variety as part of the inputs, since it
can be obtained from the truncated sequence, if it corresponds to the period sequence of a
toric Fano variety.

We implement such an algorithm for weighted projective spaces and in a special case of
the Picard rank two case in SageMath [The23], which can be found at [Ven24b].

6.2.1 Weighted projective spaces

Recall from (1.5.1) that the coefficients of the regularized quantumperiod for theweighted
projective space P(a0, . . . , aD) are

cd =

{︄
d!∏︁D

i=0(kai)!
if a = kd for some k ∈ N

0 otherwise

where a =
∑︁D

i=0 ai. Therefore, if we are given a truncated sequence p = (pi)
n
i=0, it can arise

as the period sequence of a D-dimensional weighted projective space only if pi = ci for
all i = 0, . . . , n, for some weights (a0, . . . , aD). This is the case only if

{i | pi ̸= 0} ⊂ {ka | k ∈ N}

for a = min{i | pi ̸= 0 and i ̸= 0}. If this is satisfied, then the period sequence can corre-
spond to a weighted projective space and a is the possible sum of its weights.

To obtain the possible sets of weights, first consider pa. The aim is to find (a0, . . . , aD) such
that

D∏︂
i=0

ai! =
a!

pa
∈ Z . (6.2.1)

Finding some weights that satisfy the above is equivalent to factorising a!/pa into products
of factorials. We outline the steps of a recursive algorithm to factorise an integer into a
product of factorials (which are neither 0 nor 1) in Algorithm 5. If this returns any possible
sets ofweights, thenwe can check if any of them can give rise to aweighted projective space
of dimension D: they must have D + 1 factor or less. If they have less than D + 1 factors
we can pad the list with 1’s, since 1! = 1, so it does not change the equality (6.2.1).
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Lastly, we need to checkwhether the remaining sets ofweights have the correct sum, which
must be a = min{i | pi ̸= 0 and i ̸= 0} as specified above. If any possible set of weights
survive, we compute their period sequence (ci)ni=0 and compare it to (pi)ni=0, and return only
those for which they coincide. These steps are outlined in Algorithm 4 and made explicit
in the following example.

Example 6.2.1. Consider the sequence

p = (1, 0, 0, 6, 0, 0, 90, 0, 0, 1680) .

Wehave seen in Example 1.5.5 that these are the initial coefficients of the regularized quan-
tum period of P2. Assuming we did not know that, let us find the weights of a weighted
projective space directly whose period sequence (ci)9i=0 coincides with (pi)

9
i=0. Firstly, note

that
{i ∈ N | pi ̸= 0} ⊂ {3k | k ∈ N} .

Therefore, if this sequence arises as the period sequence of a weighted projective space, we
must have a = 3. So if p3 = c3 for some (a0, . . . , aD) we must have

D∏︂
i=0

ai! =
3!

p3
= 1 .

Therefore the only possibility is (a0, a1, a2) = (1, 1, 1), since we have the extra condition
that∑︁D

i=0 ai = a = 3 and none of the ai’s can be zero. Comparing the coefficients of the
regularized quantum period obtained by this choice of weights to (p)9i=0 we conclude that
this sequence can as the period sequence of P2.

6.2.2 Picard rank two

We now have a process to check if a truncated sequence can arise as the period sequence
for a D-dimensional weighted projective space. We would like to generalise this to higher
Picard rank toric Fano varieties: in this thesis we will consider only the Picard rank two
case. Recall that a Picard rank two toric Fano variety can be described by a weight matrix[︃

a1 · · · aN
b1 · · · bN

]︃
(6.2.2)

with ai, bi ∈ Z≥0 and N = D + 2. Let a =
∑︁N

i=1 ai and b =
∑︁N

i=1 bi. The coefficients of the
regularized period sequence of the corresponding toric Fano variety are given as in (1.5.2),

cd =
∑︂

ak+bl=d
(k,l)∈C∩Z2

d!∏︁N
i=1(kai + lbi)!

(6.2.3)

where

C = {(k, l) ∈ R2 | aik + bil ≥ 0 for all i = 1, . . . , N} . (6.2.4)
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Algorithm 4: The algorithm computes the weights of possible weighted projective
space of dimension D whose period sequence coincides with the truncated input
sequence (pi)

n
i=0. If no such weighted projective space exists it returns the empty

list.
1 Function IsWPS(p = (pi)

n
i=0: list, D: int): list of vectors is

2 a←min{i | pi ̸= 0 and i ̸= 0};
3 weights←[ ];
4 if {ka | k ∈ N} eq {i | pi ̸= 0} then
5 x←a!/pa;
6 prods_factorial←CheckProductFactorials(x) # From Algorithm 5;
7 for l in prods_factorial do
8 if (length(l)≤ D + 1) and (D + 1−length(l) eq a−sum(l)) then
9 while length(l) < D + 1 do
10 Append 1 to l ;
11 end
12 Append l to weights;
13 end
14 end
15 else
16 Return weights;
17 end
18 end

Assume again that our algorithm input is a truncated sequence p = (pi)
n
i=0 and the expected

dimensionD. We want the output of our algorithm to be a set of possible weight matrices
like (6.2.2). However, recall from Section 5.1 that this weight matrices do not uniquely
correspond to toric Fano varieties. Therefore, we instead aim to construct an output of the
form [︃

a1 a2 · · · aN
0 b2 · · · bN

]︃
(6.2.5)

with a ≤ b, aN < bN , ai, bi ∈ Z≥0, and the columns ordered cyclically. Each group orbit
in the space of weight matrices has at most two representatives of this form. Recall that
this is the standard form that we have introduced in Section 5.1, see (5.1.2). Therefore, the
output of the algorithm will be a set of possible weight matrices in standard form, whose
truncated period sequence coincides with the input sequence.

Depending on the shape of the standard form, the problem can be easier or harder to tackle.
Therefore, we implement a solution only in a special case of Picard rank two varieties,
namely when aN = 0 in (6.2.5). In fact, in this case the cone in (6.2.4) is always the positive
quadrant, i.e.

C = R2
≥0
,

independently of the other entries the weight matrix. On the other hand, if aN ̸= 0 then

C = Cone (︁[︁ bN
−aN

]︁
, [ 01 ]

)︁
.
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Algorithm 5: The recursive algorithm returns all the ways a positive integer n can
be written as a product of factorials (none of which are 0 or 1).
1 Function CheckProductFactorials(n: int): list of vectors is
2 result←( );
3 if n = 1 then
4 Return [( )];
5 else
6 P ←max{p | p is prime and p divides n};
7 Q←min{p | p is prime and p > P};
8 for i = 0 . . . Q− 1 do
9 N ←P + i;
10 n←n/N ! ;
11 if n ∈ N then
12 L←CheckProductFactorials(n);
13 for y in L do
14 Append N to y;
15 end
16 Append L to result;
17 else
18 Pass;
19 end
20 end
21 end
22 Return result;
23 end

Meaning that the domain for the sum in (6.2.3) depends on the entries of the possible
weight matrix. We discuss this condition at the end of the section.

A special case: aN = 0

Given an integer D (the expected dimension) and a truncated sequence p = (pi)
n
i=0, we

want to check whether it can give rise to the period sequence of a toric Fano variety of
Picard rank two, given by a weight matrix as in (6.2.2) with aN = 0. We structure the
algorithm in the following way.

1. We compute some possible a =
∑︁N

i=1 ai and b =
∑︁N

i=1 bi by looking {i | pi ̸= 0}.
2. By looking at pa and pb we obtain a finite list of candidates of for the ai’s and bi’s.
3. By looking at pa+b we understand how tomatch the possible ai’s and bi’s into aweight

matrix.
4. If we have found some possiblematching, we compare the resulting truncated period

sequences against (p)ni=0 to see which weight matrix is a good candidate.

Let us first informally walk through these steps in an example.
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Example 6.2.2. Assume we are given the truncated sequence

p = (1, 0, 0, 0, 0,

60, 0, 0, 0, 0,

18900, 0, 0, 0, 0,

46246200, 0, 0, 0, 0,

199910610900, 0, 0, 0, 0, 559045745818560) .

We want to check whether it can arise as the period sequence of a toric Fano variety of
dimension four and Picard rank two (with the extra assumption that a6 = 0 when the
corresponding weight matrix is in standard form). Explicitly, we want to find some ai, bi ∈
Z≥0 such that [︃

a1 a2 a3 a4 a5 0
0 b2 b3 b4 b5 b6

]︃
is a weight matrix whose truncated period sequence (pi)20i=0 coincides with (p)20i=0. By look-
ing at the pattern of zeros in (pi)

20
i=0 we note that

{i | pi ̸= 0} ⊂ {5k | k ∈ N} .

We note from (6.2.3) that for a period sequence (ci)i arising from a toric Fano variety of
Picard rank two

{i | ci ̸= 0} = {ak + bl | (k, l) ∈ Z2 ∩ C}

where C is as in (6.2.4). Since we are assuming a6 = 0, then C = R2
≥0. Therefore,

{i | ci ̸= 0} = {ak + bl | (k, l) ∈ Z2
≥0} .

Therefore, if (pi)20i=0 arises as the period sequence of a toric Fano variety of Picard rank two
such that C = R2

≥0 then we must have a = 5 and 5 | b (without loss of generalities we have
chosen a ≤ b). Since all non-zero coefficients of (pi)20i=0 have indices divisible by 5 we are
unable to identify b precisely: we just know that it is divisible by 5. Hence, we need to try
different values of b until we find some ai’s and bi’s that match the original series or we run
out of terms of the truncated input sequence.

First, assume b = 5. Therefore, let X =
∏︁6

i=1 ai! and Y =
∏︁6

i=1 bi!, so that

p5 = 60 =
5!

X
+

5!

Y
=

120(X + Y )

XY

i.e.XY = 2(X + Y ). Moreover, we know that bothX and Y are products of factorials and
they must be less than 5! = 120, since∑︁6

i=1 ai =
∑︁6

i=1 bi = 5. Therefore, by looking at all
possible positive integers that are products of factorials and less than 5!we obtain that the
only solution is X = Y = 4 = 2!2!. This tells us that both the ai’s and the bi’s are equal (as
unordered lists) to

(2, 2, 1, 0, 0, 0)

where we have padded with 1 and 0’s to sets of weights of the correct length that sum to 5.

Is this the correct solution? We verify this by looking at the next non-zero term of the input
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sequence, p10. Let Z =
∏︁6

i=1(ai + bi)!, then

c10 = 18900 =
10!∏︁6

i=1(2ai)!
+

10!∏︁6
i=1(ai + bi)!

+
10!∏︁6

i=1(2bi)!
= 2

10!

1152
+

10!

Z
.

Hence, there are two possibilities to write Z as a product of factorials

Z = 288 = (3!)2(2!)3 = 4!3!2! .

For each of these products of factorials we check whether we canmatch the ai’s and the bi’s
such that the sums ai + bi’s match the single factors. This is not possible for (3!)2(2!)3, but
it is for 4!3!2! and the proposed weight matrix is[︃

1 2 2 0 0 0
0 1 2 2 0 0

]︃
.

However, we cannot have zero columns, so this is not an admissible solution. Therefore, b ̸=
5.

Next, let us b = 10. So, the coefficient p5 tells us information only about the ai’s. Explicitly,
6∏︂

i=1

ai! =
5!

60
= 2 .

So by factoring 2 as a product of factorials, and appropriately padding, we obtain that
the ai’s are, as an unordered list,

[2, 1, 1, 1, 0, 0] .

Looking at p10 gives us information about the bi’s,

p10 = 18900 =
10!∏︁6

i=1(2ai)!
+

10!∏︁6
i=1 bi!

=
10!

192
+

10!∏︁6
i=1 bi!

= 18900 +
10!∏︁6
i=1 bi!

> 18900

which is a contradiction. Hence, b ̸= 10.

Let us check b = 15. The possibilities for the ai’s stay the same, since assuming b = 15 does
not change the calculation for p5. Also, p10 is not influenced by the bi’s now. Therefore, we
just check that our proposed ai’s do not lead to a contradiction, and they do not:

18900 =
10!∏︁6

i=1(2ai)!
=

10!

4!2!2!2!
= 18900 .

Consider p15 and let Z =
∏︁6

i=1 bi!, then

46246200 =
15!∏︁6

i=1(3ai)!
+

15!

Z

so
Z = 34560 = 6!3!(2!)3 = 5!(3!)2(2!)2 = 6!4!2! = 5!4!3!2! .

Excluding the last possibility (since it sums to more than 15), then the bi’s can have the
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following values (after padding appropriately)

(6, 3, 2, 2, 2, 0) ,

(6, 4, 2, 1, 1, 1) ,

(5, 4, 3, 2, 1, 0) .

Looking at p20 we can see how to match the ai’s and the bi’s. Let Z =
∏︁6

i=1(ai + bi)!, then

p20 = 199910610900 =
20!∏︁6

i=1(4ai)!
+

20!

Z

then

Z = 12441600 = (5!)2(3!)32!2! = (5!)24!(3!)2 = (6!)23!(2!)2

= (6!)24! = 6!5!(3!)2(2!)2 = 6!5!4!3! .

The first product of factorials is not possible because the variety is six-dimensional, while
all others are possible. We identify how to match the ai’s and bi’s to give rise to an appro-
priate weight matrix in Table 6.1.∏︁6

i=1(ai + bi)! Possible weight matrices
6!6!3!(2!)2

[︃
1 1 2 2 0 0
2 2 4 3 6 1

]︃

6!5!4!3!

[︃
1 1 2 1 0 0
0 2 3 5 1 4

]︃ [︃
1 2 1 1 0 0
0 2 4 5 1 3

]︃
[︃
1 1 2 1 0 0
0 2 4 3 1 5

]︃ [︃
1 1 2 1 0 0
0 1 4 5 2 3

]︃

Table 6.1: Possible weight matrices corresponding to the different decompositions
of 12441600 as a product of factorials.

We immediately note that the first possibility is not in standard form, so we exclude it.
To understand which of the other possibilities is the correct one we compute the period
sequence of each one and see which one matches the given input. The only survivor is[︃

1 1 2 1 0 0
0 2 4 3 1 5

]︃
. (6.2.6)

We note that b cannot be greater than 15 since, in that case p15 would only depend on
the ai’s, but this leads to a contradiction

p15 = 46246200 ̸= 8408400 =
15!

6!3!3!3!
.

Therefore, we can conclude that (6.2.6) is the only weight matrix of the desired form that
gives us the input sequence.
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Weoutline the precise computational routines below, referencing pseudocode, and include
a SageMath implementation in [Ven24b].

• Algorithm 6 is the wrapper function. It computes a and b by looking at {i | pi ̸= 0}.
It distinguishes two cases: {i | pi ̸= 0} ⊂ {mk+nl | k, l ∈ Z≥0} (for somem ̸= n ∈ N)
and {i | pi ̸= 0} ⊂ {mk | k ∈ Z≥0} (for some m ∈ N). In the first case, since we
have that C = R2

≥0 by assumption, we can conclude that {a, b} = {m,n} (without
loss of generalities we always choose a ≤ b). In the second case, we let a = m, but
we cannot determine the value of b precisely: we can only say that m divides b. In
this case, the wrapper function loops through different multiples of m for the value
of b until it finds a solution or it runs out of terms in the truncated sequence output.
Once it has a value of a and b thewrapper function calls the other routines to compute
the possible sets of weight matrices whose period sequence coincides with the input
sequence and returns them (only if they are in standard form with aN = 0).

• Algorithm 7 is the heart of the computation. It assumes we have fixed a and b and
loops through different terms of the sequence to compute possible entries of the
weight matrix ai’s and bi’s. It uses pa and pb to compute possible entries for each row
in the weight matrix, by calling Algorithm 8. Once it has candidates for the entries of
each row of the matrix, it attempts to match them into amatrix using Algorithm 9, by
looking at the term pa+b. Once it has a set of possible weight matrices it checks their
corresponding period sequences against the input sequence, and returns only those
weight matrices for which the input sequence can give rise to its period sequence.

• Algorithm 8 finds for a given input n all possible sets of integers of a specified length
and sum whose product of factorials is the input. This is achieved by factorising
the input integer into non-trivial products of factorials (using Algorithm 5) and ap-
propriately padding them with 1’s and 0’s (if possible) to make them of the correct
length and sum. Note that unlike the weighted projective space case we are allowed
to have zero values.

• Algorithm 9 takes three lists l,m, n as input, and recursively computes all permuta-
tions π and σ such that

li +mπ(i) = nσ(i) .

The algorithm is inductive on the length of the list, therefore it lifts permutations
from Sk to Sk+1 using Algorithm 10.

Outlook: towards the general case

The above section deals exclusively with the case of a weight matrix in standard form
with aN = 0. In this section, we discuss why removing this assumption complicates the
approach.

The general case for a Picard rank two variety would consider whether a sequence of num-
ber can originate as the period sequence of a toric Fano variety with weight matrix[︃

a1 a2 · · · aN
0 b2 · · · bN

]︃
(6.2.7)
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with a ≤ b, aN < bN , ai, bi ∈ Z≥0, and the columns ordered cyclically. Recall, that the
period sequence is defined as

cd =
∑︂

ak+bl=d
(k,l)∈C

d!∏︁N
i=1(kai + lbi)!

where

C = {(k, l) ∈ R2 | aik + bil ≥ 0 for all i = 1, . . . , N} = Cone (︁[︁ bN
−aN

]︁
, [ 01 ]

)︁
,

as we have previously discussed.

[ a10 ]

[︁ aN
bN

]︁

(a) Secondary fan.

[0, a1]

[bN ,−aN ]

(b) Dual cone

Figure 6.2: Secondary fan (i.e. the columns of the weight matrix) and dual cone for a gen-
eral weight matrix in standard form corresponding to a Picard rank two variety. Note that
since aN < bN then C is contained in the convex cone Cone ([ 1

−1 ] , [
0
1 ]), hence we include

the dashed line y = −x.

When aN = 0 we have the nice feature that C = R2
≥0 independently of the entries of the

weight matrix, but when aN ̸= 0 then R2
≥0 ⊊ C; see Figure 6.2. Note that assumption that

the weight matrix is in standard form, so that aN < bN , implies that C ⊊ Cone ([ 1
−1 ] , [

0
1 ]),

so at least we know it belongs to a bounded domain.
Not havingC = R2

≥0 means that we are only able to extract g = gcd(a, b) from the pattern of
zeros of (pi)ni=0, instead of the values of a and b, like we did in the first step of Algorithm 6.
Therefore, a procedure to compute whether a truncated sequence (pi)

n
i=0 can arise as the

period sequence of a general weight matrix in standard form for a Picard rank two toric
Fano varietywill have to loop over various possible values of a and b knowing their greatest
common factor (just as we did in the previous section when a | b).
Then, we could imagine running through similar steps to the previous section, but not
knowingwhatC ismakes the proceduremuchmore computationally expensive. We could
imagine considering pd where d = min{i > 0 | pi ̸= 0}. If we assume pd = cd for the period
sequence (cd)d of some weight matrix, then we need to find ai’s and bi’s such that

pd =
∑︂

ak+bl=d
(k,l)∈C∩Z2

d!∏︁N
i=1(kai + lbi)!

.
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However, without knowing the cone C, we cannot be sure of what indices this sum is over.
We know that R2

≥0 ⊂ C, so one could imagine trying to find some candidates by con-
sidering R2

≥0 = C. If we find some solutions, we move to the next non-zero term of the
truncated sequence, but if we do not find any solution we consider C = Cone (︁[︁ i

j

]︁
, [ 01 ]

)︁
where [︁ i

j

]︁ is the next lattice point anticlockwise on the line ai+ bj = d outside the positive
quadrant. If we still do not find any points, we keep adding anticlockwise lattice points
until we hit the line defined by [ b

−a ] or [ 1
−1 ]. This procedure would go through all possibil-

ities, but it is much more computationally expensive than the case when aN = 0. We leave
as future work implementing this case and studying whether an exhaustive search of the
possibilities can be avoided.

Algorithm 6:Wrapper function to compute the weight matrix as in (6.2.2) of pos-
sible Picard rank two toric Fano variety of dimension D whose period sequence
coincides with the truncated input sequence (pi)ni=0. If no such weight matrix ex-
ists it returns the empty list.
1 Function WeightsCalculator(p = (pi)

n
i=0: list, D: int): list of matrices is

2 non-zero←{i ∈ N | pi ̸= 0};
3 a←min{i ∈ non-zero | i ̸= 0};
4 try:
5 b←min{i ∈ non-zero | a ∤ i};
6 weights←ComputeWeights(p,D, a, b) # From Algorithm 7;
7 catch {i ∈ non-zero | a ∤ i} = ∅:
8 b←a;
9 weights←ComputeWeights(p,D, a, b) # From Algorithm 7;
10 while weights = [( ), ( )] do
11 weights←ComputeWeights(p,D, a, b) # From Algorithm 7;
12 b←b+ a;
13 end
14 end
15 Return {w ∈ weights | w is in standard form with aN = 0};
16 end
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Algorithm 7: The algorithm computes the possible weights knowing the period
sequence, the dimension, and (a, b) – the sum of the weight matrix columns.
1 Function ComputeWeights(p = (pi)

n
i=0: list, D: int, a: int, b: int): list of matrices is

2 w_unordered←[ ];
3 non-zero←{i ∈ N | pi ̸= 0};
4 if b not eq a then
5 a_poss←PossibleProducts(a,D + 2, a!/pa) # From Algorithm 8;
6 if a ∤ b then
7 b_poss←PossibleProducts(b,D + 2, b!/pb) # From Algorithm 8;
8 w_unordered←w_unordered + zip(a_poss, b_poss);
9 else
10 for x in a_poss do
11 M ←b!/(pb − b!/

∏︁
i(bai/a)!);

12 b_poss←PossibleProducts(b,D + 2,M) # From Algorithm 8;
13 w_unordered←w_unordered + [(x, y) for y in b_poss] ;
14 end
15 end
16 else
17 prod_factorials←{n ∈ N | n < a! and n is a product of factorials};
18 for x and y in prod_factorials do
19 if a!(1/x+ 1/y) eq pa then
20 a_poss←PossibleProducts(a,D + 2, x) # From Algorithm 8;
21 b_poss←PossibleProducts(a,D + 2, y) # From Algorithm 8;
22 w_unordered←w_unordered + zip(a_poss, b_poss);
23 end
24 end
25 end
26 for w in w_unordered do
27 a_list, b_list←first row of w, second row of w ;
28 if a | b then
29 k←b/a+1 ;
30 M ←(a+ b)!/(pa+b − (a+ b)!/

∏︁
i(kai)!);

31 else
32 M ←(a+ b)!/pa+b;
33 end
34 ab_list←PossibleProducts(a+ b,D + 2,M) # From Algorithm 8;
35 if ab_list is not empty then
36 for (π, σ) in ComputePerms(a_list, ab_list, ab_list) do
37 b_list_perm ←π(b_list)
38 end
39 Append [a_list, b_list_perm] to weights;
40 end
41 end
42 Return {w ∈ weights | the truncated period sequence of w equals (pi)ni=0};
43 end
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Algorithm 8: The algorithm returns all sets of integers of length L and sum s
whose product of factorials is n.
1 Function PossibleProducts (s: int, L: int, n: int): list of vectors is
2 weights←CheckProductFactorials(n) # From Algorithm 5;
3 filtered_weights←[ ];
4 for l in weights do
5 if sum(l)≤ a then
6 for i = 1, . . . ,sum(l)−a do
7 Append 1 to l;
8 end
9 if length(l)≤ L then
10 for i = 1, . . . ,length(l)−L do
11 Append 0 to l;
12 end
13 Append l to filtered_weights;
14 end
15 end
16 end
17 Return filtered_weights;
18 end

Algorithm 9: The algorithm returns all possible permutations π and σ such that
li +mπ(i) = nσ(i). Note that n−1 stands for the last element in the list n.
1 Function ComputePerms (l: list,m: list, n: list): list of permutations is
2 if length(n) eq 1 then
3 Return [(0), (0)]
4 else
5 L←{(i, j) | li +mj = n−1};
6 for (i, j) in L do
7 li←(l with the ith element removed);
8 mj←(mwith the jth element removed);
9 n−1←(nwith the last element removed);
10 for (π, σ) in ComputePerms(li,mj ,n−1) do
11 Append (Lift(π, i, j), Lift(σ, i,−1)) to result # From

Algorithm 10;
12 end
13 end
14 Return result;
15 end
16 end
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Algorithm 10: The algorithm lifts a permutation from Sk to Sk+1 so that i is
mapped to j.
1 Function Lift (perm: list, i: int, j: int): list is
2 l←length(perm);
3 new_perm←a list of zeros of length l + 1;
4 for k = 0 . . . l − 1 do
5 if k = i then
6 new_perm[k]←j ;
7 else if perm[k] < j and k < i then
8 new_perm[k]←perm[k];
9 else if perm[k] ≥ j and k < i then
10 new_perm[k]←perm[k]+1;
11 else if perm[k − 1] < j and k > i then
12 new_perm[k]←perm[k − 1];
13 else if perm[k − 1] ≥ j and k > i then
14 new_perm[k]←perm[k − 1]+1;
15 end
16 Return new_perm;
17 end
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7 Conclusion and Outlook

We conclude this thesiswith some reflections on integration ofmachine learningwith pure
mathematics. We discuss some positive and negative aspects of our approach and sketch
some natural next steps.

Beyond Fano Varieties

This work is well-positioned in the context of experimental and computational mathemat-
ics. The use of large-scale computations in pure mathematics is a relatively recent area of re-
search that is becoming more popular with the improvement of computational efficiency.
The machine learning methodology we have illustrated in this thesis complements these
recent efforts in experimental mathematics by providing a range of additional model-blind
tools.
Therefore, the AI-enhanced experimental workflow proposed in this thesis for algebraic
geometry is already applicable in those settings that employ large computations and ex-
periments. For example, number theory has a long history of experimental mathematics
and computations (recall the computations that first led to the formulation of the Birch
and Swinnerton-Dyer Conjecture [BSD63]), and there are already some examples of ap-
plications of AI in this area [HLO22, HLOP22]. We also recall from the Introduction and
Section 2.5 some examples of research areas that benefit from the availability of datasets
mathematical objects, e.g. [BKnt, APC+16, KS00, CCN+85, Cre16]. Data generation and
data availability is the biggest constraint in applying machine learning methods to pure
mathematics, therefore we expect areas that already have large datasets available to be the
most amenable to this methodology.
Nevertheless, in our work we have not used a pre-existing dataset, but instead we have
generated our own data, using computer algebra software (namely Magma [BCP97] and
SageMath [The23]). Similar specialised software would be used by researchers gener-
ating their own datasets. Most machine learning libraries (PyTorch [PGM+19], Tensor-
Flow [AAB+15], JAX [BFH+18]) are integrated in Python. However, with the exception of
SageMath which is written in python and OSCAR [OSC24] which is written in Julia, most
other computer algebra systems are based on their own language (e.g. Magma [BCP97],
Mathematica [Inc23] and Macaulay2 [GS]). A next step to make this workflow accessible
to more pure mathematics researchers would be integrating these systems with existing
machine learning libraries more efficiently.
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Sampling

As discussed above (and a common aspect of this workwith [DVB+21]), the datasets used
in this thesis were generated with the specific problems we wanted to investigate in mind.
There were not pre-existing and complete datasets of mathematical objects. Dealing with
this type of data generation opens up the problem of random sampling from an unknown
distribution in the context of mathematical data. It raises questions like ‘what is a ran-
dom algebraic variety?’, ‘what is a random knot diagram?’, ‘is randomly generated data the correct
framework to work with?’. While these issues might encourage us to concentrate on complete
datasets rather than random samples, we remark that working on the latter has some ben-
efits. In fact, carrying out machine learning experiments on datasets that contain complete
classifications ofmathematical objectsmight highlight novel relationships. However, these
might not be of great use, since they have been found byworking on a dataset where all the
objects and properties have already been computed. Working with a random sample from
an unknown classification could lead to finding new relationships that might help under-
stand the unknown classification of objects better leading to new mathematics. However,
randomly sampling in this context might lead to bias and formulating incorrect conjec-
tures. In this section, we discuss the dangers of sampling bias when it comes to generating
mathematical datasets for machine learning.

In the first part of [DVB+21], the authors carry out some experiments to predict relation-
ships between knot invariants using machine learning. They work on a database made up
of three different datasets: all knots up to 16 crossings (from the Regina census [Bur20]);
random knots diagrams of 80 crossings; knots obtained as closures of certain braids. The
latter dataset of knots was included to disprove the first conjecture which was suggested
by the machine learning analysis, which turned out to be incorrect. The authors remarked
that the original training data did not include these ‘non-generic’ examples of knots, which
are actually counterexamples to the conjecture. Therefore, this shows how randomness or
genericity might not be the correct property to require when constructing training data.
Usual applications of machine learning in scientific domains call for algorithms to be ro-
bust to outliers, i.e. they must be able to ignore noisy data samples. However, unless some
randomness is included in the data generation steps, there are no outliers in data coming
frommathematical constructions: every sample is correct and interesting. This leads to two
issues. Firstly, machine learning algorithms might ignore interesting examples in mathe-
matical data, because they do not fit with the generic objects: however, these might be
counterexamples to false conjectures, and therefore they should definitely not be ignored.
Secondly, while generating random mathematical objects can produce samples which are
generic, theymight not be actually representative, since theymight not include less common
– but still interesting – examples.

In this thesis, we also had to make some decision regarding sampling criteria, but we en-
countered issues with a slightly different flavour. When looking at properties of weight
matrices in Chapter 5, we generated random weight matrices in a specific standard form
(a choice of group orbit representative), by uniformly sampling each entry of the matrix
given some fixed bounds. This is an easy construction, however it does not lead to a true
random sample of weight matrices (and therefore of algebraic varieties). This is made
clear in Figure 5.3b and Figure 5.7. These pictures highlight how the dataset contains a
cluster of varieties with Fano index around 35. Therefore, our sampling criterion cannot
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be truly random, since there is no reason to have more varieties cluster around that Fano
index value. As wemake clear in Section 5.3.2, this is a result of the bound on the entries of
the weight matrices that we have chosen in order to generate each weight matrix randomly
(by choosing each entry uniformly at random within some specified bounds).

Our issues with sampling are somewhat different from those from [DVB+21]. We are not
excluding a family of important samples because they are less common, but we are impos-
ing a sampling criterion which is clearly not uniformly random. However, we remark that
while our criterion is not truly random (and therefore it comes with certain downsides),
it is easily formulated and implemented. When generating data we must pay attention to
the trade-off between generating generic data and computable data. There might be con-
texts where we are not able to formulate a computable criterion to generate truly random
samples. In these cases, choosing a non-representative sampling criterion which is sys-
tematically computable is not necessarily the worst choice. In fact, conducting machine
learning experiments on biased data can still highlight a criterion that can be proven rigor-
ously in general or for a larger class of objects. A small example of this is the experiments
in Chapter 3, where we also dealt with weight matrices as a representation of toric Fano
varieties. When generating the data we impose that each weight matrix must contain an
identity block (see Remark 3.1.1 for details). This restriction was done for computational
reasons, and does not produce a representative data sample (since not all weight matrices
can be assumed to have an identity block). However, the machine learning highlighted
a behaviour that was then rigorously proven for much more general objects in Chapter 4.
As long as we are aware of what kind of bias they are introducing when generating data,
being unable to generate a truly random sample of mathematical objects should not be an
obstacle from using a machine learning approach. As we have seen, this type of studies
can still highlight non-trivial relationships that are then proven rigorously.

Data Representation and Group Actions

As highlighted in Chapter 5, our representation of toric Fano varieties via weight matrices
comes equipped with two group actions: an action of the permutation group SN acting by
permutation of the columns, and an action of GL2(Z), that acts on the left by matrix multi-
plication. In the context of mathematical data, objects often come with presentations that
benefit (or suffer) exactly from this: they come equipped with a group action that changes
the representation but leaves the underlying mathematical object the same. Therefore, we
need a machine learning framework that takes such group actions into account in some
way.

The study of equivariant and invariant machine learning brings approaches to deal with
exactly this problem. For example, one can build a model taking the symmetry into ac-
count when designing its architecture [HGLBR18, ZKR+17]. On the other hand, we could
add synthetic examples obtained by choosing a lot of different representatives of the same
symmetry class [CDL20, KSH12]. In our context in Chapter 5, we addressed this problem
using fundamental domain projection, meaning that we choose a representative from each
group orbit which has a specific form. This is a cheap preprocessing step that helped us
address the action of the group GL2(Z): this is an infinite discrete group. There is no ar-
chitecture that has been designed to be invariant with respect to this group action, and it
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is unclear how to meaningfully augment the data, since the group is infinite. However,
fundamental domain projection comes with its drawbacks. In fact, for more complicated
groups it might be impossible to find a suitable representative of each group orbit. More-
over, the choice of a certain orbit representative complicates the sampling discussion from
the previous section: is sampling uniformly from the space of representatives equal to
sampling uniformly from the underlying distribution? Future research will concentrate
on benchmarking different equivariant and invariantmachine learning approaches against
each other, in order to understand which one is better suited to which group action and
task.

AI for Maths and LLMs

Given the context of this thesis, it is important to mention the recent work in using Large
Language Models (LLMs) to produce correct mathematical proofs of statements. Recent
results in this direction have been produced using LLMs in conjunction with interactive
theorem provers, like LEAN [YSG+24] and Isabelle [JLHW21]. This type of paradigm is
very different to theworkflowwe have covered in this thesis. The idea is to train an LLMon
a library of formal proofs in order to generate new proofs in that formal language, given a
formalised statement as a prompt. Since proof assistants benefit from a logic checker, which
can check whether the produced proof is mathematically correct. We can imagine using
the feedback from the logic checker in some reinforcement learning loop, which improves
the output of the LLM and eventually produces a correct proof.

Ideas in this fashion are very promising and there have already been exciting and unex-
pected results in this direction; see [AAt24, TL24, PHZ+22, XRS+24]. Most of these ex-
amples focused on dealing with problems from the International Mathematical Olympiad
(IMO), and are not yet addressing research-level mathematics. Part of the reason is the
lack of a large corpus of formalised proofs for these models to learn from. Such a corpus is
expensive to obtain (not only time-consuming, but it requires a lot of mathematical exper-
tise to produce), and we can expect that this will be a considerable obstacle for bridging
the gap from IMO problems to open questions found in the mathematics literature.

The use ofmore standardmachine learning tools (aswehave done in thiswork) has a lower
entry level (both in terms of machine learning expertise and computational requirements)
than LLMs and can be already integrated into a research-level workflow. At the same
time, these are not competing research directions, since we have been focusing more on
discovering newmathematicswith the aid ofmachine learning, rather than proving it. In the
future, we can imagine using machine learning on large datasets of mathematical objects
to suggest conjectures, which can then be proven rigorously and automatically using an
LLM trained on formal proofs.

Mathematics as Testing Ground

Finally, we conclude by describing a promising flavour of future research, which we have
not addressed in this thesis. The study of mathematical data using a machine learning
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approach is not only beneficial to address problems in mathematics, but can also drive
machine learning research.

As we have pointed out above, data originating from mathematical constructions has no
noise nor outliers. It is perfect data. Usingmachine learning tools onmathematical data can
aid our understanding of three fundamental problems in the application of artificial intel-
ligence: sampling, representation, and explainability. Note how these topics mirror the
themes we have recalled in the previous sections. This is a statement to the close interac-
tions between puremathematics andmachine learning. Let us sketchwhat these problems
are and how mathematics is a good setting to address them.

Sampling bias occurs when the training data of a model is not uniform: some members of
a populationmight have a higher or lower chance to be represented in the data. Themodel
might erroneously attribute this bias in the sampling to a novel phenomenon rather than
noisy data generation. When applying machine learning to mathematical data there is the
unique advantage of having complete control over the data generation and sampling. In
fact, data collection in other subjects might be unclear and not well-documented for the
machine learning practitioner, while also often being expensive and time-consuming. On
the other hand, when building mathematical datasets the sampling criterion is described
precisely and the data generation is algorithmic. Therefore, mathematical datasets present
the unique opportunity to study how sampling bias affects the performance of machine
learning models and how to recognise it in a highly controlled environment.

Similarly, mathematical datasets provide a unique testing ground when it comes to study-
ing how machine learning algorithms deal with symmetries in the data representations
(symmetries are often described by group actions). Mathematical objects are rich with
complicated symmetries and, unlike real-world data (where a ‘9’ can either be a nine or a
rotated six), are completely regular with respect to them. Therefore, mathematical data is
useful to benchmark current approaches to symmetries in the constructions of AI systems.
Moreover, it gives us the opportunity to develop new methods, since the mathematical
objects might come with group actions which are not found commonly in real-world data.

Lastly, one of the main open questions in both AI applications to mathematics and pure
AI research is explainability. AI systems are often built on black box models (such as neural
networks). Explainability – being able to fully understand the reasons for an AI prediction
– is often out of reach, but it is a fundamental feature required in many AI applications,
especially in the context of AI safety. Understanding the inner workings of AI systems
is vital to determining in which context they can be safely deployed. This is, of course,
also desirable in the context of AI applications to mathematics, where the ultimate aim
is to understand what the statement the model is suggesting in order to prove it. Again,
mathematical data is the perfect setting to probe questions related to explainability for AI,
since – by its very nature – precise rules must underpin any signal uncovered by machine
learning. Therefore, mathematical datasets are the ideal testing ground to evaluate and
develop explainable models.
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Abbreviations and Acronyms

Abbreviation Definition

(A)NN (Artificial) Neural Network
CPU Central Processing Unit

DSdim_wps Dataset of 150 000weighted projective spaces
DSdim_rk2 Dataset of 200 000 Picard rank two toric Fano varieties

DSdim_rk2_cut
DSdim_rk2 filtered to include only varieties
with dimension higher than six

DSterm_10M
Balanced dataset of 10million Q-factorial terminal and non-terminal
toric Fano varieties with weights bounded by 7

DSterm_20M
Balanced dataset of 20million Q-factorial terminal and non-terminal
toric Fano varieties with weights bounded by 10

DSterm_100M
Dataset of 100million probable Q-Fano toric varieties of Picard rank
two and dimension eight

HPC High Performance Computing
GIT Geometric Invariant Theory

LeakyReLU Leaky Rectified Linear Unit
LOWLESS Locally Weighted Scatterplot Smoothing

ML Machine Learning
MLP Multi-Layer Perceptron
MMP Minimal Model Program
MSE Mean Squared Error
PCA Principal Component Analysis

Q-Fano Q-factorial Fano variety with at worst terminal singularities
ReLU Rectified Linear Unit
SHAP SHapley Additive exPlanations
SVM Support Vector Machine
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